

(日) (四) (문) (문) (문) (문)

5900

EEN320 - Power Systems I (Συστήματα Ισχύος I) Part 7: Induction machine https://sps.cut.ac.cy/courses/een320/

Dr Petros Aristidou Department of Electrical Engineering, Computer Engineering & Informatics Last updated: March 17, 2025

After this part of the lecture and additional reading, you should be able to ...

- ... Understand the key differences between a synchronous motor and an induction motor;
- Understand the concept of rotor slip and its relationship to rotor frequency;
- Induction motor; and,
- ④Be able to use the equation for the torque-speed characteristic curve.

2 Induction motor equivalent model

1 Basic concepts of induction machine

- 2 Induction motor equivalent model
- **3** Induction machine characteristics

1 Induced torque in induction machine

- Supplying three-phase voltage to the stator creates a rotating magnetic field \underline{B}_S with speed of rotation $n = (60 \cdot f_{se})/(P/2)$
- The rotating magnetic field induces a voltage on the rotor (similar to a transformer). This is given by e_{ind} = (<u>v</u> × <u>B</u>) · *I* where <u>v</u> is the velocity of the rotor *relative to the magnetic field*, <u>B</u> the magnetic flux density and *I* the length of the conductor.
- The induced voltage creates a current in the rotor <u>I</u>_R (lagging the voltage due to the inductive nature of the rotor).

S. J. Chapman, Electric Machinery Fundamentals, 5th ed. McGraw-Hill, 2012.

1 Induced torque in induction machine

- The induced current in the rotor \underline{I}_R creates a rotor magnetic field \underline{B}_R (lagging the current due to the inductive nature of the rotor).
- The induced torque is given by $\tau_{ind} = k\underline{B}_R \times \underline{B}_S$ (counter-clockwise).
- If the rotor was turning at synchronous speed, then the rotor bars would be stationary relative to the magnetic field and there would be no induced voltage $e_{ind} = 0$. Thus, no rotor current or magnetic field $\rightarrow \tau_{ind} = 0$

S. J. Chapman, Electric Machinery Fundamentals, 5th ed. McGraw-Hill, 2012.

In normal operation both the rotor and stator magnetic fields rotate **together** at synchronous speed n_{sync} , while the rotor itself turns at a slower speed n_m . The *slip speed* is defined as:

$$n_{slip} = n_{sync} - n_m$$

The *slip* is then:

$$s = \frac{n_{sync} - n_m}{n_{sync}} \cdot 100\% = \frac{\omega_{sync} - \omega_m}{\omega_{sync}} \cdot 100\%$$

- At synchronous speed: *s* = 0
- At locked rotor speed: s = 1

The induction motor operates as a transformer but the secondary frequency is not necessarily the same as in the primary:

- If the rotor of a motor is locked so that it cannot move, then the rotor will have the same frequency as the stator
- If the rotor turns at synchronous speed, the frequency on the rotor will be zero.

The rotor current frequency can be expressed as:

$$f_{re} = s \cdot f_{se}$$

Basic concepts of induction machine

2 Induction motor equivalent model

3 Induction machine characteristics

2 Induction machine model

- The induction machine is an electrical machine in which the stator windings are fed through a three- phase voltage source, while the rotor windings are short circuited and are circulated by currents induced by the stator.
- In balanced steady-state conditions, the induction machine has an analog behavior to that of a transformer and hence a transformer model can be used to represent this machine.
- It should be noted that the frequency on the secondary is different than the primary (unlike transformers).

S. J. Chapman, Electric Machinery Fundamentals, 5th ed. McGraw-Hill, 2012.

2 Per-phase equivalent model

Transferring at the primary, gives:

where R_2 and X_2 are estimated based on measurements.

S. J. Chapman, Electric Machinery Fundamentals, 5th ed. McGraw-Hill, 2012.

2 Losses and the power-flow diagram

S. J. Chapman, Electric Machinery Fundamentals, 5th ed. McGraw-Hill, 2012.

2 Losses and the power-flow diagram

Based on the digram of the induction motor:

Stator coper losses

$$P_{SCL} = 3I_1^2 R_1$$

Core losses

$$P_{core} = 3E_1^2G_C$$

Air-gap power

$$P_{AG} = P_{in} - P_{SCL} - P_{core} = 3l_2^2 \frac{R_2}{s}$$

Rotor coper losses

$$P_{RCL}=3I_2^2R_2$$

Developed mechanical power

$$P_{conv} = 3I_2^2 R_2 \left(\frac{1-s}{s}\right) = (1-s)P_{AG}$$

Developed torque

$$au_{ind} = rac{P_{conv}}{\omega_m} = rac{(1-s)P_{AG}}{(1-s)\omega_{sync}} = rac{P_{AG}}{\omega_{sync}}$$

- Basic concepts of induction machine
- 2 Induction motor equivalent model
- 3 Induction machine characteristics

3 Thevenin equivalent

We can use the Thevenin equivalent for the primary side of the induction motor model (ignoring R_c):

where

$$V_{TH} = V_{\phi} rac{X_M}{X_1 + X_M}$$
 and $Z_{TH} = R_{TH} + jX_{TH} = rac{Z_1 Z_M}{Z_1 + Z_M}$

and

$$I_2 = \frac{V_{TH}}{Z_{TH} + Z_2}$$

S. J. Chapman, Electric Machinery Fundamentals, 5th ed. McGraw-Hill, 2012.

University of

Technology

3 Torque-speed characteristic

Cyprus University of Technology

Using the Thevenin equivalent, we get:

S. J. Chapman, Electric Machinery Fundamentals, 5th ed. McGraw-Hill, 2012.

Using the *maximum power transfer theorem*, the slip at maximum power is given by:

$$rac{R_2}{s} = \sqrt{R_{TH}^2 + (X_{TH} + X_2)^2} o s_{max} = rac{R_2}{\sqrt{R_{TH}^2 + (X_{TH} + X_2)^2}}$$

Leading to:

$$\tau_{ind-max} = \frac{3V_{TH}^2}{2\omega_{sync} \left[R_{TH} + \sqrt{R_{TH}^2 + (X_{TH} + X_2)^2} \right]}$$

3 P-s and Q-s characteristics

- Special cases: $s = 1 \rightarrow$ locked-rotor, $s = 0 \rightarrow$ no-load
- Operating limits:
 - Stator thermal limit Imax
 - Dielectric insulation or maximum feeding voltage limit V_{s,max}
 - Stability or magnetizing limit (from curve)

A. Gomez-Exposito, A. J. Conejo, and C. A. Cañizares, Electric Energy Systems Analysis and Operation, 2018.

- Induction motors do not present the types of starting problems that synchronous motors do (check torque curve).
- However, the starting current required may cause an unacceptable dip in the power system voltage
- Starting apparent power is given

$$S_{start} = rac{rated power}{code letter factor} \longrightarrow I_{start} = rac{S_{start}}{\sqrt{3}V_T}$$

 \sim

- To limit the starting current, different methods are used:
 - Autotransformer starter
 - Three-step resistive starter
 - Star-Delta method

Nominal code	Locked rotor,	Nominal code	Locked rotor,
letter	kVA/hp	letter	kVA/hp
А	0 - 3.15	L	9.00 - 10.00
В	3.15 – 3.55	М	10.00 - 11.00
С	3.55 - 4.00	Ν	11.20 - 12.50
D	4.00 - 4.50	Р	12.50 - 14.00
Е	4.50 - 5.00	R	14.00 - 16.00
F	5.00 - 5.60	S	16.00 - 18.00
G	5.60 - 6.30	Т	18.00 - 20.00
Н	6.30 - 7.10	U	20.00 - 22.40
J	7.10 - 8.00	V	22.40 and up
К	8.00 - 9.00		