] [ Cyprus

University of
Technology

EEN452 - Control and Operation of Electric Power Systems
Part 2B: Synchronous machine model (detailed)

https://sps.cut.ac.cy/courses/eend52/

Dr Petros Aristidou

Department of Electrical Engineering, Computer Engineering & Informatics
Last updated: February 3, 2021

A4O» «F» «E=)»

<

>

Q>


https://sps.cut.ac.cy/courses/een452/

=== Cyprus

Today’s learning objectives L s

Extend the model of the synchronous machine considered in the previous
lessonto...

@ ...add more details appropriate for dynamic studies;
@ ...include the effect of damper windings;

@ ...be applicable to machines with salient-pole rotors (hydro power
plants);

Much of the material was adapted from the courses delivered by Prof. Thierry
Van Cutsem at the University of Liege.
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Remarks [ ooy

In this lesson, we consider:
o a machine with a single pair of poles, for simplicity. This does not affect
the electrical behaviour of the generator (it affects the moment of inertia
and the kinetic energy of rotating masses)

o the general case of a salient-pole machine. For a round-rotor machine:
set some parameters to the same value in the d and g axes (to account
for the equal air gap width)

o the configuration with four rotor windings (f , di, g1, g2). For a
salient-pole generator: remove the g winding.
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1 Outline |

Q Modelling of machine with magnetically coupled circuits
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1 Relations between voltages, fluxes and currents L s
J ROTO! STATOR
— 1l‘ ,11 AN
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et ‘axia of phase a _—ﬂﬂﬂ -
/ 1 =0 Vg
" /“ U2 =0
w\% /e
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q

Stator windings (generator convention):
”

Va(t) = —Rala(t) — dff Vo(t) = —Rois(t) - ﬂ ve(t) = —Relo(1) — dff

R; : Resistance of (a,b,c) phase +; : flux linkage in (a,b,c) phase

In matrix form: e
= —Rpir — 2T
vr TIT at

Rt = diag(Ra Ra Ra)

EEN452 — Dr Petros Aristidou — Last updated: February 3, 2021 5/40


apetros

apetros


=== Cyprus

1 Relations between voltages, fluxes and currents L s

Field windings (motor convention):

d¢fé/
dﬁ’m /

ot
dipgr &2

Vf(t) = Rflf(t) + —

Ra1iag1 (1) +

Ratiqi (1) +

0/= Raeloa(t) + —=
R: : Resistance of (f, d1, q1, g2) winding ¢ : flux linkages in (f, d1, q1, g2) winding

In matrix form:

. dYr
= —Ri; - :{f
R, = d/ag(F:’, Rd1 Rq1 ng)
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1 Inductances

Saturation being neglected, the fluxes vary linearly with the currents

according to:
[wr] _ {Ln(er) Ln(er)} H
Pr Ln(6)  Le | Lir
o Lyr and Ly vary with the position 6, of the rotor but L, does not

o the components of Lyr and Ly are periodic functions of 6,

o the space harmonics in 6, are assumed negligible = sinusoidal machine
assumption.
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1 Inductances
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direct quadrature
axis i

axis

-
Lo + Ly cos(26;) —Lm — Lycos (2(6: + %))
—Lm— Lycos (2(6: + %)) Lo+ Licos (2(6: — &)

—Lm — Lqcos (2(0, -5 ) —Lm — Lqcos (2(0, + g))

Lo, L17 Lm>0

—Lm — Lycos (2(6, — %))
—Lm — Lycos (2(6: + %))
Lo + Ly cos (2(0; + 1))
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1 Inductances ][ Unirersity of

axis of
phase a

direct quadrature
axis i

axis

G =

Lar cos(6r) Lag1 cos(6r) Lag1 sin(6r) Lage sin(6r)
Larcos(6r — &°)  Lagrcos(0; — 2F)  Lagrsin(6, — 2”) Lagesin(0; — &F

Larcos(6r + 2°)  Lagicos(0r + 2F)  Lagisin(0r + &) Lagesin(6r + &)

I—af: Lad1: l—aq17 Laq2 >0
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1 Inductances AL Unersier

axis of
phase a

direct

i quadrature
axis r

Ly Lg1 0 0
L1 Lgtar O 0
0 0 Lytgt  Lgige
0 0  Lgige Lgege

er =
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2 Outline |

Q Park transformation and equations
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2 Park and Clarke transformations |

o Flux linkages, induced voltages, and currents change continuously as
the electric circuit is in relative motion — very difficult to model and
solve!

o Mathematical transformations are often used to decouple variables and
to solve equations involving time varying quantities by referring all
variables to a common frame of reference

@ Among the various transformation methods, the most well-known are:
o Clarke Transformation

o Park Transformation

EEN452 — Dr Petros Aristidou — Last updated: February 3, 2021 12/ 40



Cyprus

2 Park and Clarke transformations |

o Clarke Transformation: This transformation converts balanced
three-phase quantities into balanced two-phase quadrature quantities.

o Park Transformation: This transformation converts vectors in balanced
two-phase orthogonal stationary system into orthogonal rotating
reference frame.

Three-phase reference frame  Two-phase reference frame Rotating reference frame
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2 Park and Clarke transformations ][ Technology

The three reference frames considered in this implementation are:

o Three-phase reference frame, in which /,, I, and I; are co-planar
three-phase quantities at an angle of 120 degrees to each other.

o Orthogonal stationary reference frame, in which I, (along « axis) and Iz
(along B axis) are perpendicular to each other, but in the same plane as
the three-phase reference frame.

o Orthogonal rotating reference frame, in which /y is at an angle 6 (rotation
angle) to the « axis and /y is perpendicular to /y along the g axis.

Three-phase reference frame ~ Two-phase reference frame Rotating reference frame

I8 k\ la Ja
\ Ia B
\ -
77777 lay N 1d
o axis Ia
I 1 la
B~ w -
\ \ /
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2 Clarke transformation

Technology
The three-phase quantities are translated from the three-phase reference
frame to the two-axis orthogonal stationary reference frame using Clarke

transformation':
1 1
5 2 T2 a
I I
1 1 1
0 N
where:

@ a, b, and c are three-phase quantities

Q

o « and g are stationary orthogonal reference frame quantities

o 0 is the zero component of the two-axis system in the stationary
reference frame

"We use a power invariant version that preserves active and reactive power
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2 Park transformation |

The two-axis orthogonal stationary reference frame quantities are
transformed into rotating reference frame quantities using Park
transformation?:

cos(f;) cos(fr — &) cos(6:+ &) | |a
5

5 )
\ﬁ sin(,) sin(0, — %) sin(0,+ %) | |b

A |

where:
9 Ia, Ip, and I; are three-phase quantities

o Iy and I are the components of the two-axis system in the rotating
reference frame

o 0 is the zero component of the two-axis system in the stationary
reference frame

2We use a power invariant version that preserves active and reactive power
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2 Park transformation AL Unersier

Transforming the stator quantities gives:

quO = PVabc iqu - Piabc ’lquo = P"/’abc

We can also see that:
PP =lep =P

var =0 _,@{
NN
. __x"®\i,“ Lf

. axis of phase a
v =0

<&
ig1 !
N _ v =0
<2
tq2 {

A}
q
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2 Park transformation
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Total magnetic field created by the currents I, Iy, and /;:

2n

projected on d axis: k (cos(@,)ia + cos(0r — 3

)ip + cos(6, — 4—”)&) =k gid

3

projected on q axis: k (sin(e,)ia + sin(6, — %ﬂ)ib + sin(6; — %ﬂ)ic> = k\/giq

The Park transformation consists of replacing the (a, b, ¢) st
three equivalent windings (d, g, 0):

X 0, )
o the d winding is attached to the d axis ¢ NP

o the g winding is attached to the g axis e \
Ud

> 11.
multiplicative constant \/g %

. . Fod ¥
o the currents iy and iy produce together u,\}/\% : T
the same magnetic field, to the v 0 éﬂ@\
1 % @ { \i,l

ator windings by

U

axis of

d 1 phase a

q axis
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2 Park equations of the synchronous machine L s

Applying the Park transformation to the equations of slide 5, we get:

ad
Vd = _Rald erwq thd
ad
= _Ra/q + Hrwd :ftq
. d
Vo = —FRaio — (;io
where:
0ripq, 0rbg: speed voltages

%7 dwq : transformer voltages
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2 Park equations of the synchronous machine L s

Applying the Park transformation to the equations of slide 7, we get:
[d’r} _ |:LTT L7?:| [ir} N |:P11/’P:| _ |:LTT Ly
’l,br L% er ir ’l.l’r L% er

|:¢P:| - |:7)LTT7)1 PLTr:| |:iP:| - |:LPP LPr:| |:iP:|
Py LiP~' Ly ] L L, L] Lir

P lip
ir

[ Lo Lot Lot ]
Loq Lot Laqe
Loo
{’;_Z l::] = | Lar Ly Lo
Lo Ligt  La1a1
Lggt Lytgt  Lgige
L Lo Lotz Lgoge ]

*zero entries have been left empty for legibility
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2 Park equations of the synchronous machine L s

where:

Laa

Logt = 3 L
qu LOLm - *L1 9t = E aqt
faa § 2 :
Lar = \/g Lar Loz = \/ 5 Laq2
3 Loo = Lo — 2L
Lag1 = \/;/-am
et

o As expected, a Il components are independent of the rotor position 6,!

o There is no magnetic coupling between d and q axes (this was already
assumed in Ly and L, : zero mutual inductances between coils with
orthogonal axes).

EEN452 — Dr Petros Aristidou — Last updated: February 3, 2021 21/ 40


apetros


2 Park equations of the synchronous machine

=== Cyprus
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If we ignore the 0 component (is this a valid simplification?) and we group (d,

f, d1) and (g, 91, g2), we get:

7] Ra i
—Vi| — — Ry if
0 Ra1] Lig1]
Vg _F?a 17 g
0| =— Rq1 Ig1
0 i Rg2| Lig2]
with the following flux-current relations:
Y Log Lo
vr | = | Lo Ly
LY Lag1 Lt
g Log  Log
Yq1| = |Lagt  Latqn
a2 qu? Lq1 q2

Ld1 di

Oribg

Lot g

Lig1 f

Log2 lq
Lq1 q2 iq1

Lq2q2 iq2

d Y
dt pr
K2
d -wq
at |V
[ ¥z
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3 Outline |

Q Energy, power and torque

EEN452 — Dr Petros Aristidou — Last updated: February 3, 2021 23/ 40



=== Cyprus

3 Balance of power at stator 0 seesoer

AWns

pr + pus + at

= Pros

where

pr: three-phase instantaneous power leaving the stator

pus: Joule losses in stator windings

Wims: magnetic energy stored in the stator windings

Pr—s: power transfer from rotor to stator (mechanical? electrical?)

Three-phase instantaneous power leaving the stator:

Pr(t) = Vaia + Vpip + Vele = Vgig + Vglg + Voo
cdyg L dyg . di

= — (Hal(-zj + Ralg + Ra/oz) — (Idw + Iqw + IO?) +9.r(1/}diq — 'l/qud)

Pus AWps /it

= Pros = ér(wdiq — Yqld)

EEN452 — Dr Petros Aristidou — Last updated: February 3, 2021 24/ 40



=== Cyprus

3 Balance of power at rotor L s

Pm+pf:er+%+pras+%
where
Pm: mechanical power provided by the turbine
pr: electrical power provided to the field winding (by the excitation system)
pur: Joule losses in the rotor windings
Wmr: magnetic energy stored in the rotor windings
W, kinetic energy of all rotating masses

Instantaneous power provided to field winding:

Pr = Vil = Viis + Varigr + Varigt + Vozige

; ; ; ; . d . d . d . d
= (Rfl,«z + Ry1 131 + Rq1 121 + Rq2l§2) + (I{% + g Z}:“ + Ig1 2;71 + g2 Z;?Z)
Pur AWy /dlt
aw, : . ,
> P — B = b (ala — val)
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3 Equation of rotor motion L s

a%e,
ar

J =Tm—Te

where

J: moment of inertia of all the rotating masses

Tm: mechanical torque applied to the rotor by the turbine

Te: electromagnetic torque applied to the rotor by the generator

Multiplying by 6, .
J00, = 0,(Tm — To)

where
Pm: mechanical power applied to the rotor by the turbine
Hence, the (compact and elegant!) expression of the electromagnetic torque
is:

Te = ¢diq - I/qud
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3 Components of the torque T 0 seesoer

Te = Laalalg + Laritig + Laatia1iqg — Laglgla — Laqtiqtia — Lageigeia
(Lag — Lgq)iaiq: synchronous torque due to rotor saliency
0 exists in salient-pole machines only

@ even without excitation (i = 0), the rotor tends to align its direct axis with
the axis of the rotating magnetic field created by the stator currents,
offering to the latter a longer path in iron

o a significant fraction of the total torque in a salient-pole generator

de1 id1 iq — qu1 iq1 id — qugiqgidl damplng torque
o due to currents induced in the damper windings
o zero in steady-state operation
Laritiq: only component involving the field current it
o the main part of the total torque in steady-state operation
o in steady state, it is the synchronous torque due to excitation

@ during transients, the field winding also contributes to the damping
torque
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4 Outline |

@ The synchronous machine in steady state
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4 Remarks ][ %_J:Cl}\:i?ll;g;f

In steady-state we have:
o Balanced three-phase currents of angular frequency wy flow in the stator
windings

o adirect current flows in the field winding subjected to a constant
excitation voltage:

=
Ry
o the rotor rotates at the synchronous speed:
0r = 00 + wnt
@ no current is induced in the other rotor circuits:

gt =gt =i =0
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4 Operation with stator opened L s

la=ip=1Ic=0
= id = iq = fo =0
= Yg=Lyir and g=0
Park equations:

Vg = 0, Vg = wN'l,Dd = wNLdfif

Getting back to the stator voltages, e.g. in phase a:

va(t) = \EWNLG,,/, sin(6° 4+ wnt) = V2Egsin(62 + wnt)

where:
E,= %: e.m.f. proportional to excitation current = RMS voltage at the

terminal of the opened machine.
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4 Operation under load L sniversivo
Va(t) = V2V cos(wnt + 0) ia(t) = V2l cos(wnt + 1)
Vb(t):\/EVCOS(th+0— 2?71.) ’b(t):\@/COS(th—i—q/)— 2?71-)
ve(t) = \@VCOS(WNt-i— 0+ 2%) ic(t) = \/élcos(th-i- v+ 2?71-)

g :\/gﬂl {cos(@? + wnt) cos(wnt + V) + cos(6° + wnt — %r) cos(wnt + 9 — 2%)

+ cos(6? + wnt + 2?ﬂ)cos(w,\/l‘ + ¥+ 2%) ]
:é {cos(@? + 2wnt 4 1) 4 cos(0 + 2wt + ¢ — %T) + cos(6? + 2wnt + b — 4%
+ 3cos(6? — ) ] = V3l cos(6? — 1)
Similarly:
ig=V3lsin(0? —¢) io=0
Vg =V3Vcos(#? —0) vg=V3Vsin(0>—60) w=0
In steady-state, iy and iy are constant. This was expected!
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4 Magnetic flux in the d and q windings AL e

Ya = Lagia + Larls
Vg = Ll
The electromagnetic torque:
Te = ¢diq - wqid
is constant. This is important from mechanical viewpoint (no vibrations!).
Park equations:
Vd = _Raid — UJNquiq = —Raid — Xqiq
Vg = —Raig — wyLagiy = — Raig + Xyiy + V3E,
W = 0

where
Xyg = wnLqg: direct-axis synchronous reactance
Xq = wnlgq: quadrature-axis synchronous reactance

EEN452 — Dr Petros Aristidou — Last updated: February 3, 2021 32/ 40



== Cyprus

4 Phasor diagram L sniversivo

The Park equations become:

V cos(6? — 0) = —Ral cos(62 — 1) — Xqlsin(6° — 1)

Vsin(62 — 0) = —Ralsin(62 — 1) + Xglcos(6? — ) + Eq
which are the projections on the d and q axes of the complex equation:

E :M"‘ Ha!‘f’jxd!d +]Xq!q} ,——)
L, q

iXala

axis of

phase a
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4 Equivalent diagram L s

Round-rotor machine ‘X; =Xq= X)‘

Eg=V+Ral+jX(lg+15) = V + Ral + jX1

X Ra |

LYY YN

y

I<

Eii

Not valid for a salient-pole generator!
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4 Powers
_l . i .
E, = Eé” 1, = lcos(60 — 1)’ = %eﬁﬁ’
9 o '99 id C '99
Iy = in(6? — ) "7 = —j e 1:1d+1q—(f %)

Vy = Veos(6® — 0)e” = %d’"‘r’ V, = Vsin(6? —

iXals

axis of

phase a

05 = _j Ve g
) 175
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4 Powers [ ooy

Three-phase complex power produced by the machine:
%
S= 3v1_3<——'—q>( +j—= )z Vo — jvq)(ig + Ji
= P=vyig+ Vq/q Q= Vdiq — tid

P and Q as functions of V, E; and the internal angle 6. Assuming R, = 0:

. . ’Z]
Vg = — Xyl = ig=——
q'q q Xq

Vg = —Xglyg + V3E, = = _Va—V3E

Xa
Vo = V3V cos(6° — 0) = —v/3Vsin(4), Vg = V3Vsin(62 — 0) = V3V cos()

_ EqV . 3V2 1 1 . round— rotor _ EqV
P= S—Xd sin(d) + 5 (717 — z) sin(20)) ——— P =3 %

sin(9)

Q 3Eq (6)737\/2 (sinz(é) + COS2((5)> round — rotor Q _ 3EqV

V2
X, X, ¥ cos(6)737
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5 Outline |

@ Nominal values, per unit system and orders of magnitudes
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5 Stator |

o nominal line voltage Vy: voltage for which the machine has been
designed (in particular its insulation). The real voltage may deviate from
this value by a few %

@ nominal current Iy: current for which machine has been designed (in
particular the cross-section of its conductors). Maximum current that can
be accepted without limit in time

o nominal apparent power: Sy = v/3Vy/y

Conversion of parameters in per unit values:
o base power: Sg = Sy

o base voltage: Vg = %
o base current: Iz = :;STNB

. 3V32
0 base impedance: Zg = S—BB
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(more typical of machines with a nominal power above 100 MVA)
(pu values on the machine base)

round-rotor ‘ salient-pole

resistance R,

0.005 pu

direct-axis reactance Xy

1.5-25pu | 0.9-1.5pu

quadrature-axis reactance Xj

1.5-25pu | 0.5-1.1pu
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5 Park (equivalent) windings L s

o base power: Sy

o base voltage: v3Vp

) _ s ;
o base current: v/3/lg = \/EA\I/B (single-phase formula!)
Thus:
s V31

ooy = = 2~ cos(6? — ) = | 00 —
Y TR 8 cos(0r — ¢) = lou cos(6; — 1)

igpu = lpusin(02 — ), Vapu = Vpucos(6? — 6),  Vapu = Vpusin(6° — 6)

I=ly+ 1, = (g — ji)&" V= Vy+ V= (va— jva)&”

o All coefficients /3 have disappeared

o hence, the Park currents (resp. voltages) are exactly the projections on
the machine d and q axes of the phasor / (resp. V)
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