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Today’s learning objectives

Extend the model of the synchronous machine considered in the previous
lesson to . . .

1 . . . add more details appropriate for dynamic studies;

2 . . . include the effect of damper windings;

3 . . . be applicable to machines with salient-pole rotors (hydro power
plants);

Much of the material was adapted from the courses delivered by Prof. Thierry
Van Cutsem at the University of Liege.
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Remarks

In this lesson, we consider:

a machine with a single pair of poles, for simplicity. This does not affect
the electrical behaviour of the generator (it affects the moment of inertia
and the kinetic energy of rotating masses)

the general case of a salient-pole machine. For a round-rotor machine:
set some parameters to the same value in the d and q axes (to account
for the equal air gap width)

the configuration with four rotor windings (f , d1, q1, q2). For a
salient-pole generator: remove the q2 winding.
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1 Outline

1 Modelling of machine with magnetically coupled circuits

2 Park transformation and equations

3 Energy, power and torque

4 The synchronous machine in steady state

5 Nominal values, per unit system and orders of magnitudes
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1 Relations between voltages, fluxes and currents

Stator windings (generator convention):

va(t) = −Raia(t)−
dψa

dt
vb(t) = −Rb ib(t)−

dψb

dt
vc(t) = −Rc ic(t)−

dψc

dt

R? : Resistance of (a,b,c) phase ψ? : flux linkage in (a,b,c) phase

In matrix form:
vT = −RT iT −

dψT

dt
RT = diag(Ra Ra Ra)
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1 Relations between voltages, fluxes and currents

Field windings (motor convention):

vf (t) = Rf if (t) +
dψf

dt

0 = Rd1id1(t) +
dψd1

dt

0 = Rq1iq1(t) +
dψq1

dt

0 = Rq2iq2(t) +
dψq2

dt

R? : Resistance of (f, d1, q1, q2) winding ψ? : flux linkages in (f, d1, q1, q2) winding

In matrix form:
v r = −Rr i r −

dψr

dt
Rr = diag(Rf Rd1 Rq1 Rq2)
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1 Inductances

Saturation being neglected, the fluxes vary linearly with the currents
according to: [

ψT

ψr

]
=

[
LTT (θr ) LTr (θr )

LT
Tr (θr ) Lrr

][
iT

i r

]

LTT and LTr vary with the position θr of the rotor but Lrr does not

the components of LTT and LTr are periodic functions of θr

the space harmonics in θr are assumed negligible = sinusoidal machine
assumption.
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1 Inductances

LTT (θr ) = L0 + L1 cos(2θr ) −Lm − L1 cos
(
2(θr +

π
6 )
)
−Lm − L1 cos

(
2(θr − π

6 )
)

−Lm − L1 cos
(
2(θr +

π
6 )
)

L0 + L1 cos
(
2(θr − 2π

3 )
)
−Lm − L1 cos

(
2(θr +

π
2 )
)

−Lm − L1 cos
(
2(θr − π

6 )
)
−Lm − L1 cos

(
2(θr +

π
2 )
)

L0 + L1 cos
(
2(θr +

2π
3 )
)


L0, L1, Lm > 0
,
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1 Inductances

LTr (θr ) = Laf cos(θr ) Lad1 cos(θr ) Laq1 sin(θr ) Laq2 sin(θr )

Laf cos(θr − 2π
3 ) Lad1 cos(θr − 2π

3 ) Laq1 sin(θr − 2π
3 ) Laq2 sin(θr − 2π

3 )

Laf cos(θr +
2π
3 ) Lad1 cos(θr +

2π
3 ) Laq1 sin(θr +

2π
3 ) Laq2 sin(θr +

2π
3 )


Laf , Lad1, Laq1, Laq2 > 0
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1 Inductances

Lrr =


Lff Lfd1 0 0

Lfd1 Ld1d1 0 0

0 0 Lq1q1 Lq1q2

0 0 Lq1q2 Lq2q2


,
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2 Outline

1 Modelling of machine with magnetically coupled circuits

2 Park transformation and equations

3 Energy, power and torque

4 The synchronous machine in steady state

5 Nominal values, per unit system and orders of magnitudes
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2 Park and Clarke transformations

Flux linkages, induced voltages, and currents change continuously as
the electric circuit is in relative motion – very difficult to model and
solve!

Mathematical transformations are often used to decouple variables and
to solve equations involving time varying quantities by referring all
variables to a common frame of reference

Among the various transformation methods, the most well-known are:
Clarke Transformation

Park Transformation

,
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2 Park and Clarke transformations

Clarke Transformation: This transformation converts balanced
three-phase quantities into balanced two-phase quadrature quantities.

Park Transformation: This transformation converts vectors in balanced
two-phase orthogonal stationary system into orthogonal rotating
reference frame.
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2 Park and Clarke transformations

The three reference frames considered in this implementation are:

Three-phase reference frame, in which Ia, Ib, and Ic are co-planar
three-phase quantities at an angle of 120 degrees to each other.

Orthogonal stationary reference frame, in which Iα (along α axis) and Iβ
(along β axis) are perpendicular to each other, but in the same plane as
the three-phase reference frame.

Orthogonal rotating reference frame, in which Id is at an angle θ (rotation
angle) to the α axis and Iq is perpendicular to Id along the q axis.

,
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2 Clarke transformation
The three-phase quantities are translated from the three-phase reference
frame to the two-axis orthogonal stationary reference frame using Clarke
transformation1: αβ

0

 =

√
2
3


1 − 1

2 − 1
2

0
√

3
2 −

√
3

2√
1
2

√
1
2

√
1
2


a

b

c


where:

a, b, and c are three-phase quantities

α and β are stationary orthogonal reference frame quantities

0 is the zero component of the two-axis system in the stationary
reference frame

1We use a power invariant version that preserves active and reactive power
,
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2 Park transformation

The two-axis orthogonal stationary reference frame quantities are
transformed into rotating reference frame quantities using Park
transformation2:d

q

0

 =

√
2
3


cos(θr ) cos(θr − 2π

3 ) cos(θr +
2π
3 )

sin(θr ) sin(θr − 2π
3 ) sin(θr +

2π
3 )√

1
2

√
1
2

√
1
2


︸ ︷︷ ︸

P

a

b

c



where:

Ia, Ib, and Ic are three-phase quantities

Id and Iq are the components of the two-axis system in the rotating
reference frame

0 is the zero component of the two-axis system in the stationary
reference frame

2We use a power invariant version that preserves active and reactive power
,
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2 Park transformation

Transforming the stator quantities gives:

vdq0 = Pvabc idq0 = Piabc ψdq0 = Pψabc

We can also see that:
PPT = I ⇔ P−1 = PT
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2 Park transformation

Total magnetic field created by the currents Ia, Ib, and Ic :

projected on d axis: k
(
cos(θr )ia + cos(θr −

2π
3

)ib + cos(θr −
4π
3

)ic
)

= k

√
3
2

id

projected on q axis: k
(
sin(θr )ia + sin(θr −

2π
3

)ib + sin(θr −
4π
3

)ic
)

= k

√
3
2

iq

The Park transformation consists of replacing the (a, b, c) stator windings by
three equivalent windings (d , q, 0):

the d winding is attached to the d axis

the q winding is attached to the q axis

the currents id and iq produce together
the same magnetic field, to the

multiplicative constant
√

3
2

,
ΕΕΝ452 — Dr Petros Aristidou — Last updated: February 3, 2021 18/ 40

apetros



2 Park equations of the synchronous machine

Applying the Park transformation to the equations of slide 5, we get:

vd = −Raid − θ̇rψq −
dψd

dt

vq = −Raiq + θ̇rψd −
dψq

dt

v0 = −Rai0 −
dψ0

dt
where:
θ̇rψq , θ̇rψd : speed voltages
dψd

dt ,
dψq

dt : transformer voltages
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2 Park equations of the synchronous machine

Applying the Park transformation to the equations of slide 7, we get:[
ψT

ψr

]
=

[
LTT LTr

LT
Tr Lrr

][
iT

i r

]
⇔

[
P−1ψP

ψr

]
=

[
LTT LTr

LT
Tr Lrr

][
P−1iP

i r

]
[
ψP

ψr

]
=

[
PLTTP−1 PLTr

LT
TrP−1 Lrr

][
iP

i r

]
=

[
LPP LPr

LT
rP Lrr

][
iP

i r

]

[
LPP LPr

LT
rP Lrr

]
=



Ldd Ldf Ldd1

Lqq Lqq1 Lqq2

L00

Ldf Lff Lfd1

Ldd1 Lfd1 Ld1d1

Lqq1 Lq1q1 Lq1q2

Lqq2 Lq1q2 Lq2q2


*zero entries have been left empty for legibility
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2 Park equations of the synchronous machine

where:

Ldd = L0Lm +
3
2

L1

Lqq = L0Lm −
3
2

L1

Ldf =

√
3
2

Laf

Ldd1 =

√
3
2

Lad1

Lqq1 =

√
3
2

Laq1

Lqq2 =

√
3
2

Laq2

L00 = L0 − 2Lm

As expected, a ll components are independent of the rotor position θr !

There is no magnetic coupling between d and q axes (this was already
assumed in LTr and Lrr : zero mutual inductances between coils with
orthogonal axes).
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2 Park equations of the synchronous machine
If we ignore the 0 component (is this a valid simplification?) and we group (d,
f, d1) and (q, q1, q2), we get: vd

−vf

0

 = −

Ra

Rf

Rd1


 id

if
id1

−
θ̇rψq

0

0

− d
dt

ψd

ψf

ψd1


vq

0

0

 = −

Ra

Rq1

Rq2


 iq

iq1

iq2

+

θ̇rψd

0

0

− d
dt

ψq

ψq1

ψq2


with the following flux-current relations:ψd

ψf

ψd1

 =

 Ldd Ldf Ldd1

Ldf Lff Lfd1

Ldd1 Lfd1 Ld1d1


 id

if
id1


ψq

ψq1

ψq2

 =

 Lqq Lqq1 Lqq2

Lqq1 Lq1q1 Lq1q2

Lqq2 Lq1q2 Lq2q2


 iq

iq1

iq2


,
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3 Outline

1 Modelling of machine with magnetically coupled circuits

2 Park transformation and equations

3 Energy, power and torque

4 The synchronous machine in steady state

5 Nominal values, per unit system and orders of magnitudes
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3 Balance of power at stator

pT + pJs +
dWms

dt
= pr→s

where
pT : three-phase instantaneous power leaving the stator
pJs: Joule losses in stator windings
Wms: magnetic energy stored in the stator windings
pr→s: power transfer from rotor to stator (mechanical? electrical?)

Three-phase instantaneous power leaving the stator:

pT (t) = vaia + vb ib + vc ic = vd id + vq iq + v0i0

= −
(

Rai2
d + Rai2

q + Rai2
0

)
︸ ︷︷ ︸

pJs

−
(

id
dψd

dt
+ iq

dψq

dt
+ i0

dψ0

dt

)
︸ ︷︷ ︸

dWms/dt

+θ̇r (ψd iq − ψq id)

⇒ pr→s = θ̇r (ψd iq − ψq id)

,
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3 Balance of power at rotor

Pm + pf = pJr +
dWmr

dt
+ pr→s +

dWc

dt
where
Pm: mechanical power provided by the turbine
pf : electrical power provided to the field winding (by the excitation system)
pJr : Joule losses in the rotor windings
Wmr : magnetic energy stored in the rotor windings
Wc : kinetic energy of all rotating masses

Instantaneous power provided to field winding:

pf = vf if = vf if + vd1id1 + vq1iq1 + vq2iq2

=
(

Rf i
2
f + Rd1i2

d1 + Rq1i2
q1 + Rq2i2

q2

)
︸ ︷︷ ︸

pJr

+

(
if

dψf

dt
+ id1

dψd1

dt
+ iq1

dψq1

dt
+ iq2

dψq2

dt

)
︸ ︷︷ ︸

dWmr/dt

⇒ Pm −
dWc

dt
= θ̇r (ψd iq − ψq id)
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3 Equation of rotor motion

J
d2θr

dt2 = Tm − Te

where
J: moment of inertia of all the rotating masses
Tm: mechanical torque applied to the rotor by the turbine
Te: electromagnetic torque applied to the rotor by the generator

Multiplying by θ̇r :
J θ̇r θ̈r = θ̇r (Tm − Te)

dWc

dt
= Pm − θ̇r Te

where
Pm: mechanical power applied to the rotor by the turbine

Hence, the (compact and elegant!) expression of the electromagnetic torque
is:

Te = ψd iq − ψq id

,
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3 Components of the torque Te

Te = Ldd id iq + Ldf if iq + Ldd1id1iq − Lqq iq id − Lqq1iq1id − Lqq2iq2id

(Ldd − Lqq)id iq : synchronous torque due to rotor saliency
exists in salient-pole machines only

even without excitation (if = 0), the rotor tends to align its direct axis with
the axis of the rotating magnetic field created by the stator currents,
offering to the latter a longer path in iron

a significant fraction of the total torque in a salient-pole generator

Ldd1id1iq − Lqq1iq1id − Lqq2iq2id : damping torque
due to currents induced in the damper windings

zero in steady-state operation

Ldf if iq : only component involving the field current if
the main part of the total torque in steady-state operation

in steady state, it is the synchronous torque due to excitation

during transients, the field winding also contributes to the damping
torque

,
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4 Outline

1 Modelling of machine with magnetically coupled circuits

2 Park transformation and equations

3 Energy, power and torque

4 The synchronous machine in steady state

5 Nominal values, per unit system and orders of magnitudes
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4 Remarks

In steady-state we have:

Balanced three-phase currents of angular frequency ωN flow in the stator
windings

a direct current flows in the field winding subjected to a constant
excitation voltage:

if =
Vf

Rf

the rotor rotates at the synchronous speed:

θr = θ0
r + ωN t

no current is induced in the other rotor circuits:

id1 = iq1 = iq2 = 0

,
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4 Operation with stator opened

ia = ib = ic = 0

⇒ id = iq = i0 = 0

⇒ ψd = Ldf if and ψq = 0

Park equations:
vd = 0, vq = ωNψd = ωNLdf if

Getting back to the stator voltages, e.g. in phase a:

va(t) =

√
2
3
ωNLdf if sin(θ

0
r + ωN t) =

√
2Eq sin(θ

0
r + ωN t)

where:
Eq = ωN Ldf if√

3
: e.m.f. proportional to excitation current = RMS voltage at the

terminal of the opened machine.
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4 Operation under load

va(t) =
√

2V cos(ωN t + θ)

vb(t) =
√

2V cos(ωN t + θ − 2π
3

)

vc(t) =
√

2V cos(ωN t + θ +
2π
3

)

ia(t) =
√

2I cos(ωN t + ψ)

ib(t) =
√

2I cos(ωN t + ψ − 2π
3

)

ic(t) =
√

2I cos(ωN t + ψ +
2π
3

)

id =

√
2
3

√
2I
[
cos(θ0

r + ωN t) cos(ωN t + ψ) + cos(θ0
r + ωN t − 2π

3
) cos(ωN t + ψ − 2π

3
)

+ cos(θ0
r + ωN t +

2π
3

) cos(ωN t + ψ +
2π
3

) ]

=
I√
3

[
cos(θ0

r + 2ωN t + ψ) + cos(θ0
r + 2ωN t + ψ − 4π

3
) + cos(θ0

r + 2ωN t + ψ − 4π
3

)

+ 3 cos(θ0
r − ψ) ] =

√
3I cos(θ0

r − ψ)

Similarly:

iq =
√

3I sin(θ0
r − ψ) i0 = 0

vd =
√

3V cos(θ0
r − θ) vq =

√
3V sin(θ0

r − θ) v0 = 0

In steady-state, id and iq are constant. This was expected!
,
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4 Magnetic flux in the d and q windings

ψd = Ldd id + Ldf if
ψq = Lqq iq

The electromagnetic torque:

Te = ψd iq − ψq id

is constant. This is important from mechanical viewpoint (no vibrations!).

Park equations:

vd = −Raid − ωNLqq iq = −Raid − Xq iq

vq = −Raiq − ωNLdd id = −Raiq + Xd id +
√

3Eq

v0 = 0

where
Xd = ωNLdd : direct-axis synchronous reactance
Xq = ωNLqq : quadrature-axis synchronous reactance

,
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4 Phasor diagram
The Park equations become:

V cos(θ0
r − θ) = −RaI cos(θ0

r − ψ)− Xq I sin(θ0
r − ψ)

V sin(θ0
r − θ) = −RaI sin(θ0

r − ψ) + Xd I cos(θ0
r − ψ) + Eq

which are the projections on the d and q axes of the complex equation:

Eq = V + RaI + jXd Id + jXq Iq

,
ΕΕΝ452 — Dr Petros Aristidou — Last updated: February 3, 2021 33/ 40

apetros



4 Equivalent diagram

Round-rotor machine (Xd = Xq = X ):

Eq = V + RaI + jX (Id + Iq) = V + RaI + jX I

Eq

jX Ra I

V

Not valid for a salient-pole generator!
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4 Powers

Eq = Eqej(θ0
r −

π
2 ) Id = I cos(θ0

r − ψ)ejθ0
r =

id√
3

ejθ0
r

Iq = I sin(θ0
r − ψ)ej(θ0

r −
π
2 ) = −j

iq√
3

ejθ0
r I = Id + Iq =

(
id√
3
− j

iq√
3

)
ejθ0

r

V d = V cos(θ0
r − θ)ejθ0

r =
vd√

3
ejθ0

r V q = V sin(θ0
r − θ)ej(θ0

r −
π
2 ) = −j

vq√
3

ejθ0
r

V = V d + V q =

(
vd√

3
− j

vq√
3

)
ejθ0

r

,
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4 Powers
Three-phase complex power produced by the machine:

S = 3VI∗ = 3
(

vd√
3
− j

vq√
3

)(
id√
3
+ j

iq√
3

)
= (vd − jvq)(id + jiq)

⇒ P = vd id + vq iq Q = vd iq − vq id

P and Q as functions of V , Eq and the internal angle δ. Assuming Ra u 0:

vd = −Xq iq ⇒ iq = − vd

Xq

vq = −Xd id +
√

3Eq ⇒ id = −vq −
√

3Eq

Xd

vd =
√

3V cos(θ0
r − θ) = −

√
3V sin(δ), vq =

√
3V sin(θ0

r − θ) =
√

3V cos(δ)

P = 3
EqV
Xd

sin(δ) +
3V 2

2

(
1

Xq
− 1

Xd

)
sin(2δ) round−rotor−−−−−−−→ P = 3

EqV
X

sin(δ)

Q = 3
EqV
Xd

cos(δ)−3V 2

2

(
sin2(δ)

Xq
+

cos2(δ)

Xd

)
round−rotor−−−−−−−→ Q = 3

EqV
X

cos(δ)−3
V 2

X

,
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5 Outline

1 Modelling of machine with magnetically coupled circuits

2 Park transformation and equations

3 Energy, power and torque

4 The synchronous machine in steady state

5 Nominal values, per unit system and orders of magnitudes
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5 Stator

nominal line voltage VN : voltage for which the machine has been
designed (in particular its insulation). The real voltage may deviate from
this value by a few %

nominal current IN : current for which machine has been designed (in
particular the cross-section of its conductors). Maximum current that can
be accepted without limit in time

nominal apparent power: SN =
√

3VN IN

Conversion of parameters in per unit values:

base power: SB = SN

base voltage: VB = VN√
3

base current: IB = SN
3VB

base impedance: ZB =
3V 2

B
SB

,
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5 Orders of magnitude

(more typical of machines with a nominal power above 100 MVA)
(pu values on the machine base)

round-rotor salient-pole

resistance Ra 0.005 pu

direct-axis reactance Xd 1.5 - 2.5 pu 0.9 - 1.5 pu

quadrature-axis reactance Xq 1.5 - 2.5 pu 0.5 - 1.1 pu
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5 Park (equivalent) windings

base power: SN

base voltage:
√

3VB

base current:
√

3IB = SN√
3VB

(single-phase formula!)

Thus:

idpu =
id√
3Ib

=

√
3√
3

I
IB

cos(θ0
r − ψ) = Ipu cos(θ

0
r − ψ)

iqpu = Ipu sin(θ
0
r − ψ), vdpu = Vpu cos(θ

0
r − θ), vqpu = Vpu sin(θ

0
r − θ)

I = Id + Iq = (id − jiq)ejθ0
r V = V d + V q = (vd − jvq)ejθ0

r

All coefficients
√

3 have disappeared

hence, the Park currents (resp. voltages) are exactly the projections on
the machine d and q axes of the phasor I (resp. V )
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