

◀ ロ ▶ . ◀ @ ▶ . ◀ 듣 ▶ . ◀ 듣 ▶ . .

目

 OQ

EEN452 - Control and Operation of Electric Power Systems Part 6: Power system stability fundamentals <https://sps.cut.ac.cy/courses/een452/>

Dr Petros Aristidou Department of Electrical Engineering, Computer Engineering & Informatics Last updated: March 16, 2022

After this part of the lecture and additional reading, you should be able to . . .

- **¹** . . . understand the basic classifications of power system stability;
- **²** . . . be able to identify and perform stability analysis problems; and,
- **³** . . . propose methods for stabilizing power systems.

[Introduction](#page-3-0)

- **[Voltage Stability](#page-11-0)**
- **[Rotor Angle Stability](#page-25-0)**

[References](#page-58-0)

[Introduction](#page-3-0)

[Voltage Stability](#page-11-0)

[Rotor Angle Stability](#page-25-0)

[References](#page-58-0)

2 Voltage stability fundamentals

$$
P_l = \frac{U_l U_N}{X_e} \sin \phi \qquad Q_l = \frac{U_l U_N \cos \phi - U_l^2}{X_e}
$$

$$
P_l^2 + \left(Q_l + \frac{U_l^2}{X_e}\right)^2 = \left(\frac{U_l U_N}{X_e}\right)^2 \Rightarrow \left(U_l^2\right)^2 + \left(2Q_l X_e - U_N^2\right)U_l^2 + X_e^2(P_l^2 + Q_l^2) = 0
$$
\n(2.1)

2 Voltage stability fundamentals

To have (at least) one solution:

$$
\left(2Q_lX_e - U_N^2\right)^2 - 4X_e^2\left(P_l^2 + Q_l^2\right) \ge 0 \Rightarrow -\left(\frac{P_lX_e}{U_N}\right)^2 - \frac{Q_lX_e}{U_N^2} + 0.25 \ge 0
$$

- any *P^l* can be reached provided *Ql* is adjusted (but *U^l* may be unacceptable)
- dissymmetry between *P^l* and *Q^l* due to reactive transmission impedance
- locus symmetric w.r.t. *Q^l* axis; this does no longer hold when transmission resistance is included

Under a constant load power factor $\cos \phi$ (i.e., $Q_l = P_l \tan \phi$), we get from Eq. [\(2.1\)](#page-12-0):

$$
P_l^2 + \frac{U_N^2}{X_e} \tan \phi P_l - \frac{U_N^4}{4X_e^2} = 0
$$

Then, we get the maximum power:

$$
P_l^{max} = \frac{\cos\phi}{1+\sin\phi}\frac{U_N^2}{2X_e} \qquad Q_l^{max} = \frac{\sin\phi}{1+\sin\phi}\frac{U_N^2}{2X_e} \qquad U_l^{max} = \frac{U_N}{\sqrt{2}\sqrt{1+\sin\phi}}
$$

Or, for the extreme cases:

$$
\cos \phi = 1: \qquad P_l^{max} = \frac{U_N^2}{2X_e} \qquad Q_l^{max} = 0 \qquad U_l^{max} = \frac{U_N}{\sqrt{2}}
$$
\n
$$
\cos \phi = 0: \qquad P_l^{max} = 0 \qquad Q_l^{max} = \frac{U_N^2}{4X_e} \qquad U_l^{max} = \frac{U_N}{2}
$$

 \sim

- \bullet for given power (P_i)
	- 1 solution with "high" voltage and "low" current (normal operating point)
	- 1 solution with "low" voltage and "high" current
- compensating the load increases the maximum power but the "critical" voltage approaches normal values
- curves that provide similar information:
	- *Q* − *V* or *S* − *V* under constant tan ϕ , $Q - V$ under constant P , etc.

- o in real systems, much more complicated
	- no infinite bus, voltage control by generators (AVR)
	- multiple loads and generators
	- complex, meshed transmission system with resistive components as well
	- voltage sensitive loads and restorative behavior
	- etc.

- Pre-fault loadability curve of the system (Σ_1)
- Fault occurs in the system
	- **Loadability curve is shrunk to** Σ **₂**
	- **²** Post-fault consumption is decreased due to depressed voltages (voltage sensitive loads). If point *B* is outside Σ_2 then there is no solution and we have *short-term voltage instability*
- Loads try to restore consumption to pre-fault point *A* now outside the loadability curve
- *Long-term instability* leading to voltage collapse

- Pre-fault loadability curve of the system (Σ_1)
- Fault occurs in the system
	- Loadability curve is shrunk to Σ_2
	- **²** Post-fault consumption is decreased due to depressed voltages (voltage sensitive loads). If point *B* is outside Σ_2 then there is no solution and we have *short-term voltage instability*
- Loads try to restore consumption to pre-fault point *A* now outside the loadability curve
- *Long-term instability* leading to voltage collapse

- Pre-fault loadability curve of the system (Σ_1)
- Fault occurs in the system
	- Loadability curve is shrunk to Σ_2
	- **²** Post-fault consumption is decreased due to depressed voltages (voltage sensitive loads). If point *B* is outside Σ_2 then there is no solution and we have *short-term voltage instability*
- Loads try to restore consumption to pre-fault point *A* now outside the loadability curve
- *Long-term instability* leading to voltage collapse

- Pre-fault loadability curve of the system (Σ_1)
- Fault occurs in the system
	- Loadability curve is shrunk to Σ_2
	- **²** Post-fault consumption is decreased due to depressed voltages (voltage sensitive loads). If point *B* is outside Σ_2 then there is no solution and we have *short-term voltage instability*
- Loads try to restore consumption to pre-fault point *A* now outside the loadability curve
- *Long-term instability* leading to voltage collapse

2 Voltage instability: example (RAMSES with Nordic system)

- Series compensation: very effective but expensive
- Shunt compensation: cheapest mechanism
- SVC and STATCOM devices
- Adjustment of generator active power productions
- Adjustment of generator voltages
- Block load restoration (e.g., through load tap changers) : effective but sometimes too slow
- Undervoltage load shedding : effective but expensive, last resort

¹ [Introduction](#page-3-0)

² [Voltage Stability](#page-11-0)

³ [Rotor Angle Stability](#page-25-0)

- [Transient stability](#page-27-0)
- [Small-disturbance angle stability](#page-34-0)
- [Summary](#page-56-0)

⁴ [References](#page-58-0)

- most of the electrical energy today is generated by synchronous machines
- o in normal system operation:
	- all synchronous machines rotate at the same electrical speed $\omega_0 = 2\pi f_n$
	- the mechanical and electromagnetic torques acting on the rotating masses of each generator balance each other

 $\frac{20}{2H_i}(T_{mi}-T_{ei})$

the phase angle differences between the internal e.m.f.'s of the various machines are constant (synchronism)

following a disturbance, there is an imbalance between the two torques and the rotor speed varies

 $\dot{\omega}_i = \frac{\omega_0}{2D}$

rotor angle stability deals with the ability to keep/regain synchronism after being subject to a disturbance

- Transient (angle) stability deals with the ability of the system to keep synchronism after being subject to a **large** disturbance
- typical "large" disturbances:
	- short-circuit cleared by opening of circuit breakers
	- more complex sequences: backup protections, line autoreclosing, etc.
- \bullet the nonlinear behavior of the generator and its controllers must be taken into account
	- numerical integration of the differential-algebraic equations is used
- unacceptable consequences of transient instability:
	- generators tripped due to loss of synchronism (to avoid equipment damages)
	- long-lasting voltage dips created by large angle swings (disturb customers)

3.1 Transient (angle) stability

where in steady-state $P_{m0} = P_{e,max} \sin \theta_0$

Multiplying both sides of Eq. [\(3.1\)](#page-28-0) with $\dot{\theta}$ and integrating:

$$
\frac{1}{2}M\dot{\theta}^2-\int\limits_0^t\left(P_{m0}-P(\theta)\right)\dot{\theta}dt=C
$$

Changing the integration variable $(x = \theta(t))$

$$
\frac{1}{2}M\dot{\theta}^2+\int\limits_{\theta_0}^{\theta}(P(x)-P_{m0})\,dx=C
$$

"kinetic" energy + "potential" energy = Constant

 θ _e

The system is stable if there exists an angle θ *i ^p such that the areas are equal* $(A_{acc} = A_{dec})$

Or, for a given θ_e , $A_{acc} - A_{dec} < 0$

$$
A_{acc} = \int\limits_{\theta_u^0}^{\tilde{}} (P_d(x) - P_{m0}) dx
$$

$$
A_{dec} = \int\limits_{\theta_e}^{\theta_p^i} (P_p(x) - P_{m0}) dx
$$

The system is stable if there exists an angle θ *i ^p such that the areas are equal* $(A_{acc} = A_{dec})$

Or, for a given θ_e , $A_{acc} - A_{dec} < 0$

Curves:

- *during fault*: capability of evacuating power on the network decreased due to low voltages
- *post-fault*: system weaker owing to the fault clearing actions (e.g., line tripping)

Critical clearing time ($t_e = t_c$ **):**

- Maximum fault duration so that the system returns to equilibrium
- When the system is at the stability limit : $A_{acc} - A_{dec} = 0$ and $\theta_e = \theta_c = \theta(t_c)$

3.1 Transient (angle) stability: example (RAMSES with 5-bus system)

Disturbances:

- 6-cycle (120ms) short-circuit without impedance on line "1-3", next to bus 3, cleared by opening that line, when the generator produces 450 MW
- the same fault cleared without line opening, when the generator produces 450 MW
- \circ the same sequence as above, but with the generator producing 400 MW

- Modifying the pre-disturbance operating point:
	- reducing the active power generation
	- operating with higher excitation
- Automatic emergency controls:
	- actions on network: line auto-reclosing, fast series capacitor reinsertion, fast fault clearing - single pole breaker operation
	- actions in generators: (turbine) fast valving, generation shedding
	- action on "load": dynamic braking
- Other means:
	- \bullet equip generators with fast excitation system
	- control voltage at intermediate points in a long corridor: through synchronous condensers or static var compensators.

3.2 Small-disturbance angle stability

- Small-signal (or small-disturbance) angle stability deals with the ability of the system to **keep synchronism** after being subject to a "small disturbance"
- "small disturbances" are those for which the system equations can be **linearized** around an equilibrium point
	- tools from linear system theory can be used (in particular eigenvalue and eigenvector analysis)
- \bullet following a small disturbance, the variation in electromagnetic torque T_e can be decomposed into:

 $\triangle T_e = K_s \triangle \delta + K_d \triangle \omega$

 $K_s \triangle \delta$: synchronizing torque $K_d \triangle \omega$: damping torque

- **a decrease in synchronizing torque will eventually lead to aperiodic instability (machine "going out of step")**
- **a decrease in damping torque will eventually lead to oscillatory instability (growing oscillations)**

- A small "nudge" to the system (1 ms fault at bus 7) to excite the interarea modes.
- Oscillation of machines 1 and 2 against machines 3 and 4
- Period ∼ 2 s

Local modes (involve a small part of the system)

- rotor angle oscillations of a single generator or a single plant against the rest of the system: *local plant mode*
	- can be studied using a one-machine infinite-bus system
- oscillations between rotors of a few generators close to each other: *inter-machine or inter-plant mode oscillations*
- typical range of frequencies of local plant and inter-plant modes: *0.7 to 2 Hz*
- may also be associated with inappropriate tuning of a control equipment (excitation system, HVDC converter, SVC, etc.): *control mode*

Global modes (involve large areas of the system, widespread effects)

- \bullet oscillations of a large group of generators in one area swinging against a group of generators in another area: *interarea mode*
- usually, the larger the group of generators, the slower the oscillations
- typical range of frequencies of interarea modes: *0.1 to 0.7 Hz*
- more complex to analyze and to damp

Let's consider an autonomous system described by the differential equations: $\dot{x} = f(x)$

and
$$
x^*
$$
 is an equilibrium point: $f(x^*) = 0$

• If we linearize the system around the operating point and ignore higher order terms:

$$
\Delta \mathbf{x} = \dot{\mathbf{x}} = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mathbf{x}^*} \mathbf{x} = \mathbf{A} \mathbf{x}
$$

where $\frac{\partial \bm{f}}{\partial \bm{x}}$ is the Jacobian of \bm{f} with respect to \bm{x} , and $\bm{A} = \frac{\partial \bm{f}}{\partial \bm{x}}$ ∂*x x*=*x*∗ is the state matrix of the linearized system.

- \bullet Let λ be a real eigenvalue of matrix **A** :
	- λ < 0: The corresponding mode is stable (decaying exponential).
	- $\lambda > 0$: The corresponding mode is unstable (growing exponential).
	- $\lambda = 0$: The corresponding mode has integrating characteristics.
- \bullet Let $\lambda_{1,2} = \sigma \pm i\omega$ be a complex conjugate pair of eigenvalues of **A** : $\mathbb{R}(\lambda_1, \lambda_2)$ < 0: The corresponding mode is stable (decaying oscillation).
	- $\mathbb{R}(\lambda_1, \lambda_2) > 0$: The corresponding mode is unstable (growing oscillation).
	- $\mathcal{R}(\lambda_{1,2}) = 0$: The corresponding mode is critically stable (undamped oscillation).
	- The following dynamic properties can be established:

\n- Oscillation frequency:
$$
f = \frac{\omega}{2\pi}
$$
\n- Damping ratio: $\zeta = \frac{-\sigma}{\sqrt{\sigma^2 + \omega^2}}$
\n

3.2 Dynamic Analysis of the Heffron-Phillips Model

SMIB with classical generator model (mechanical damping torque $K_D = 0$

Eigenvalues, synchronizing and damping torque coefficients

Eigenvalues on imaginary axis → system is critically stable

SMIB including field circuit dynamics

Eigenvalues, synchronizing and damping torque coefficients

Eigenvalues moved to the left because field circuit adds damping torque

SMIB including excitation system

Eigenvalues, synchronizing and damping torque coefficients

Eigenvalues moved to the right by the excitation system $→$ **System is unstable!**

Let's assume again the linearized system with the state matrix \boldsymbol{A} ($n \times n$) and λ_i is one of its non-zero eigenvalues. Then:

 v_i is the right eigenvector of λ_i :

•
$$
w_i
$$
 is the left eigenvector of λ_i :

$$
\bullet
$$
 In matrix form:

\n- $$
w_n^T
$$
 \bigcup
\n- It can be shown that: $W = V^{-1}$ and $WAV = \text{diag}(\lambda_i) = \Lambda$
\n

 $V = [v_1 ... v_n]$ *W* =

$$
f_{\rm{max}}
$$

$$
Av_i = \lambda_i v_i
$$

$$
\mathbf{A}^T \mathbf{w}_i = \lambda_i \mathbf{w}_i
$$

 $\sqrt{ }$

1

 $\begin{array}{c} \n\downarrow \\ \n\downarrow \n\end{array}$

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ w_1^7
 \vdots Now, consider a system with state vector *x*, input vector *u* and a scalar output *z*:

$$
\dot{x} = Ax + Bu
$$

$$
z = Cx + Du
$$

 \bullet We change the variables ($\mathbf{y} = \mathbf{W}\mathbf{x}$)

$$
\dot{y} = WAVy + WBu = Ay + WBu
$$

$$
z = CVy + Du
$$

• For the *i*-th "mode" λ_i of the state matrix **A**: the larger $(\bm{WB})_i = \bm{w}_i^T\bm{B},$ the more the mode can be controlled by \bm{u} the larger $(\bm{C}\bm{V})_i=\bm{C}\bm{v}_i$, the more the mode can be observed in \bm{z}

3.2 Transfer function and residues

We can now build the transfer function of the system:

$$
H(s) = \frac{Z(s)}{U(s)}
$$

= $\mathbf{C}\mathbf{V}(s\mathbf{I} - \mathbf{\Lambda})^{-1}\mathbf{W}\mathbf{B} + \mathbf{D}$
= $[\mathbf{C}\mathbf{v}_1 ... \mathbf{C}\mathbf{v}_n]$ diag $(\frac{1}{s - \lambda_i})$ $\begin{bmatrix} \mathbf{w}_1^T \mathbf{B} \\ \vdots \\ \mathbf{w}_n^T \mathbf{B} \end{bmatrix} + \mathbf{D}$
= $\sum_{i=1}^n \frac{\mathbf{C}\mathbf{v}_i \mathbf{w}_i^T \mathbf{B}}{s - \lambda_i} + \mathbf{D} = \sum_{i=1}^n \frac{R_i}{s - \lambda_i} + \mathbf{D}$

The residue R_i relative to the *i*-th mode λ_i :

depends on both the observability and the controllability of the mode

would be zero in case of exact zero-pole cancellation

3.2 Synthesis of a stabilizing feedback using residues

Consider a compensator using *z* as input and acting on *u*:

Which condition should be satisfied by the transfer function of the PSS in order to stabilize the critical mode λ_c of the uncompensated system?

The closed-loop transfer function is:

H(*s*) 1 − *KPSSH*(*s*)*G*1(*s*)*G*2(*s*)

If \tilde{s} is one of the closed-loop poles:

$$
1 - K_{PSS}H(\tilde{s})G_1(\tilde{s})G_2(\tilde{s}) = 0 \Leftrightarrow 1 - K_{PSS}\left[\sum_{i=1}^n \frac{R_i}{\tilde{s} - \lambda_i} + \mathbf{D}\right]G_1(\tilde{s})G_2(\tilde{s}) = 0
$$

3.2 Synthesis of a stabilizing feedback using residues

Consider a compensator using *z* as input and acting on *u*:

Which condition should be satisfied by the transfer function of the PSS in order to stabilize the critical mode λ_c of the uncompensated system?

The closed-loop transfer function is:

$$
\frac{H(s)}{1-K_{\mathit{PSS}}H(s)G_1(s)G_2(s)}
$$

If \tilde{s} is one of the closed-loop poles:

$$
1 - K_{PSS}H(\tilde{s})G_1(\tilde{s})G_2(\tilde{s}) = 0 \Leftrightarrow 1 - K_{PSS}\left[\sum_{i=1}^n \frac{R_i}{\tilde{s} - \lambda_i} + \boldsymbol{D}\right]G_1(\tilde{s})G_2(\tilde{s}) = 0
$$

3.2 Synthesis of a stabilizing feedback using residues

Let's consider a closed-loop pole \tilde{s} lying on the branch of the root locus which starts from the open-loop pole λ_c . When the compensator gain K_{PSS} tends to zero, \tilde{s} tends to λ_c .

○ Keeping only the dominant terms:

$$
1-R_cG_1(\lambda_c)G_2(\lambda_c)\lim_{K_{PSS}\to 0}\frac{K_{PSS}}{\tilde{s}-\lambda_c}=0 \Leftrightarrow R_cG_1(\lambda_c)G_2(\lambda_c)=\lim_{K_{PSS}\to 0}\frac{\tilde{s}-\lambda_c}{K_{PSS}}
$$

- In the complex plane $\lim_{K_{PSS}\to 0}$ $\mathbf{\tilde{s}} - \lambda_c$ $\frac{1}{K_{PSS}}$ is a vector tangent to the branch of the root locus starting from λ*^c* .
- In order to shift the eigenvalue to the left:
	- \bullet the branch of the root locus should leave λ_c at an angle of 180 degrees. Thus, $G_1(\lambda_c)G_2(\lambda_c)$ must be such that $\angle G_1(i\omega_c)G_2(i\omega_c) = \pm 180 - \angle R_c$
	- \bullet *R_c* $G_1(\lambda_c)G_2(\lambda_c)$ should be a real negative number

Purpose:

Provide additional *damping torque* component in order to prevent the system from becoming unstable.

Approach:

Insert a feedback between *angular frequency* and *voltage setpoint* to "stabilize" a critical mode λ_c .

Block diagram:

Figure: Block diagram of a simple PSS

Phase Compensation *G*1**:**

 \bullet shifts λ_c to the left in the complex plane by bringing a phase compensation according to the residue method :

 $∠G_1(\lambda_c) ≈ ∠G_1(iω_c) = ±180 − ∠R_c$

- *G*₁(*s*)corresponds to one or several lead-lag filters
- \bullet the latter are "tuned" to provide their maximum phase shift ϕ_m at the frequency ω*^c*

Washout Filter G_2 :

- in steady state and for slow variations, the PSS must not affect voltage regulation
- \circ $G_2(s)$ is a high-pass filter
- \bullet T_w is taken large enough to not modify the phase angle of $G_1(s)$ for frequencies around ω*^c* . For instance:

$$
\frac{10}{T_w}\backsimeq \frac{\omega_c}{10}
$$

Gain *KPSS***:**

• adjusted until the corrected mode $\tilde{\lambda}_c$ has a damping ratio :

$$
\zeta = \frac{-\Re(\tilde{\lambda}_c)}{\sqrt{\Re(\tilde{\lambda}_c)^2+\Im(\tilde{\lambda}_c)^2}} \geq 0.05-0.10
$$

- \bullet while K_{PSS} is increased, the other eigenvalues are monitored since they might move to the right (*the residue method allows controlling a single mode*)
- \bullet for excessive values of K_{PSS} , the branch of the root locus that starts from λ*^c* might "bend" to the right (*the residue method focuses on a neighborhood of the mode to correct*)

Low-pass Filter G_3 (optional):

- in a thermal power plant, the turbine stages, the generator and the exciter are mounted on a relatively long shaft. The latter has torsional oscillation frequencies in the range 10 − 15 Hz and higher
- the PSS must not excite those frequencies
- \bullet the risk is higher for a PSS using the rotor speed as input signal
- \bullet in this case, G_3 is a low-pass filter so that the PSS contribution is negligible at the lowest torsional frequency and above.

3.2 Power System Stabilizer

Transient stability:

- depends on operating point and system parameters
- depends also on the disturbance
	- the system may be stable for disturbance 1 but not disturbance 2
	- if so, the system is insecure for 2, but as long as 2 does not happen, it can operate
	- usually, an N-1 security is required

Small-disturbance angle stability:

- depends on operating point and system parameters
- does not depend on the disturbance (assumed infinitesimal and arbitrary)
- is a necessary condition for operating a power system (small disturbances are **always** present)

[Introduction](#page-3-0)

- **[Voltage Stability](#page-11-0)**
- **[Rotor Angle Stability](#page-25-0)**

- [1] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, T. Van Cutsem, C. Canizares, N. Hatziargyriou, D. Hill, V. Vittal, A. Stankovic, and C. Taylor, "Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions," IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1387–1401, Aug. 2004.
- [2] M. J. Gibbard, P. Pourbeik, and D. J. Vowles, "Small-signal stability, control and dynamic performance of power systems", University of Adelaide Press, Adelaide, 2015.