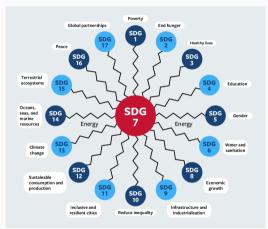
Planning tools for Rural Electrification

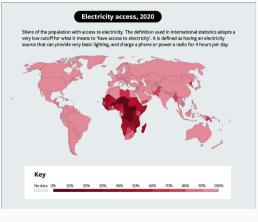
Dr. Petros Aristidou

Sustainable Power Systems Lab Department of Electrical Engineering, Computer Engineering & Informatics, Cyprus University of Technology https://sps.cut.ac.cy


(joint work with Dr. Agnes M. Nakiganda and Dr. Shahab Dehghan)

Motivation

How important is electricity in modern societies?


- People use electricity for lighting, heating, cooling, and refrigeration and for operating appliances, computers, electronics, machinery, and public transportation systems.
- Access to electricity impacts explicitly or implicitly poverty, health, education, gender equality, water and sanitation, economic growth, etc.
- UN Sustainable Development Goal 7: Ensure access to affordable, reliable, sustainable and modern energy for all

What is the current global access to electricity?

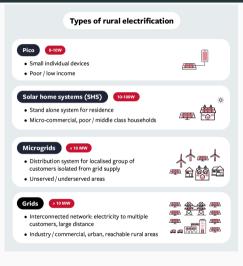
Current status

- 13% of the world's population, or about
 940 million people, do not have access to electricity
- Majority of these people are in sub-Saharan Africa, which is home to about two-thirds of those without electricity
- South Asia also has a significant number of people without electricity

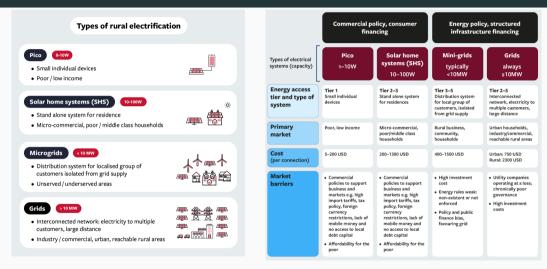
Is all electricity the same?

World Bank Multi-tier matrix

- Hundreds of millions of households have varying degrees of access due to poor and unreliable electricity supplies
- Six levels, or tiers, that describe different attributes of energy supply

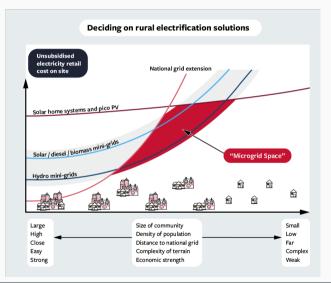

Tier 0	Tier 1	Tier 2
None	> 3 W	> 50 W
Tier 3	Tier 4	Tier 5

Multi-tier matrix for measuring access to household electricity services

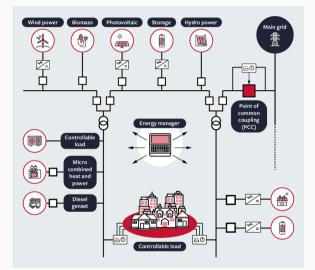


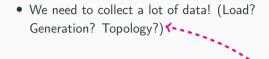
Bhatia, Mikul; Angelou, Niki. 2015. Beyond Connections: Energy Access Redefined. ESMAP Technical Report; 008/15. World Bank,

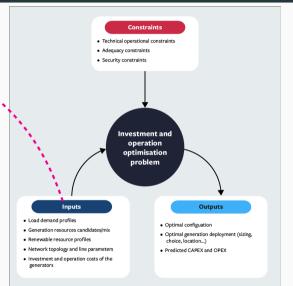
How can we electrify rural areas?


How can we electrify rural areas?

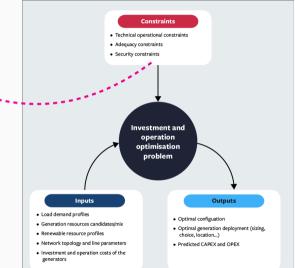
Rural electrification

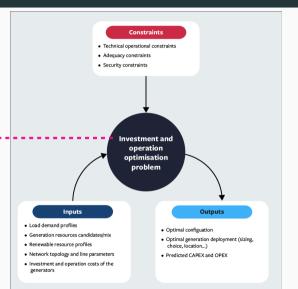

How do we decide?

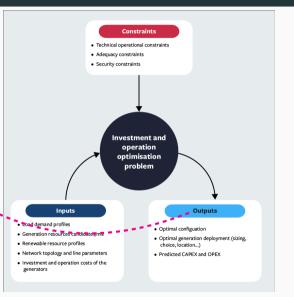

- The distance from the Main Grid.
- The size of the community and density of population.
- The complexity of terrain.
- The customer incomes and electricity uses.



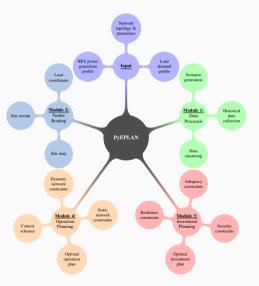
What are Microgrids?


- Low-voltage distribution network composed of various distributed local load demand and local energy resources
- Can operate in islanded (usual case in rural electrification) OR grid-interconnected modes (if connected to the Main grid)
- Includes structures to control and coordinate the different resources.




- We need to collect a lot of data! (Load? Generation? Topology?)
- Define the technical requirements and constraints (Tier? Grid Code?)

- We need to collect a lot of data! (Load? Generation? Topology?)
- Define the technical requirements and constraints (Tier? Grid Code?)
- Mathematical optimization! How do we make the optimal (best) decision?

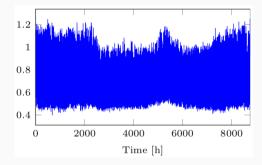


- We need to collect a lot of data! (Load? Generation? Topology?)
- Define the technical requirements and constraints (Tier? Grid Code?)
- Mathematical optimization! How do we make the optimal (best) decision?
- Get the best Microgrid design! (Network? Generation? Cost?)

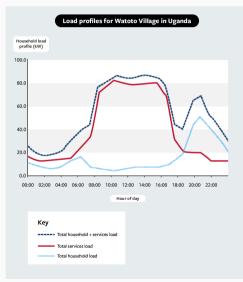
PyEPLAN: A Python-based Energy Planning tool

- Python-based, open-source tool for design and operation of optimised Microgrids
- Output of the CRESUM-HYRES research project
- Similar commercial programs cost > \$3000 (training and support charged extra)
- Based on well-known and robust mathematical optimization modelling and solving tools (e.g., Pyomo, CBC, GLPK)
- Able to execute online, using platforms like Google COLAB or Binder without the need for computational resources

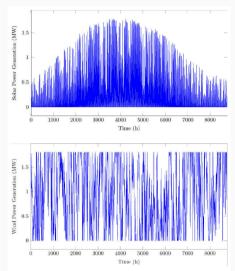
Data Requirements


Load demand requirments

• Load characteristics (residential, commercial, productive and flexible load).


Load demand requirments

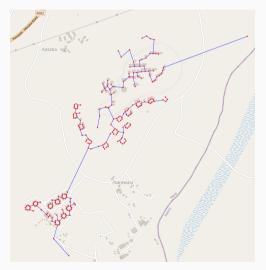
• Load characteristics (residential, commercial, productive and flexible load). Hard to estimate! High uncertainty!


Load demand requirments

- Load characteristics (residential, commercial, productive and flexible load). Hard to estimate! High uncertainty!
- Total expected hourly electricity consumption profile of **each load** and the **community profile**
- Location of potential customers (key to line mapping and distribution network design)
- Ability and willingness-to-pay (WTP) of potential consumers which is then applied during tariff design and return on investment

Generation profiles

- Detailed analysis of the resource availability based on historical solar irradiation, temperature and wind speed
- Data showing hourly, seasonal and annual variations
- Can be constructed based on satellite or public data sets


 Create map of the area with load locations. Usually, using a Geographic Information System (GIS) mapping tool.

 Create map of the area with load locations. Usually, using a Geographic Information System (GIS) mapping tool.

- Create map of the area with load locations. Usually, using a Geographic Information System (GIS) mapping tool.
- 2. Perform feeder routing (e.g., Random Search Algorithms, Mixed Integer Non-Linear/Linear Optimisation to Graph Theoretic)

- Create map of the area with load locations. Usually, using a Geographic Information System (GIS) mapping tool.
- 2. Perform feeder routing (e.g., Random Search Algorithms, Mixed Integer Non-Linear/Linear Optimisation to Graph Theoretic)
- Determine the line configuration (e.g., single-phase, split-phase, or three-phase) and conductor size to meet the expected load demand requirements across the network given the system constraints
- 4. Extract investment costs, line losses, reliability, thermal limits and voltage drop.

Financial information

Required costs

- Annualized cost of investment expenditures (I)
- Annual maintenance and operations expenditures (OM)
- Annual fuel expenditures (if applicable) (F)

Energy required

• Sum of all electricity generated (E)

O&M costs (% of Investment Investment Investment investment cost 2015 cost 2020 cost 2030 Plant type (\$/kW) (\$/kW) (\$/kW) cost/year) Efficiency Life Diesel Genset – Minigrid 721 721 721 10% 33% 15 Mini Hydro – Minigrid 4896 4751 2% 30 5000 Solar PV - Minigrid 5000 4341 3547 2% 20 Wind Turbines – Minigrid 3631 3523 3318 2% 20 Biogas Genset – Minigrid 1252 1324 1324 10% 33% 15 Diesel Genset - Stand Alone 938 938 938 10% 28% 10 Solar PV - Stand Alone 6000 5209 4256 2% 15

Sample costs for different technology approaches adopted in electrification

Financial information

Required costs

- Annualized cost of investment expenditures (I)
- Annual maintenance and operations expenditures (OM)
- Annual fuel expenditures (if applicable) (F)

Energy required

• Sum of all electricity generated (E)

Transmission and distribution costs

Parameter	Value	Unit
Life	30	Years
HV line cost (108 kV)	53,000	USD/km
HV line cost (69 kV)	28,000	USD/km
MV line cost (33 kV)	9000	USD/km
LV line cost (0.2 kV)	5000	USD/km
Transformers	125	USD/50 kVA
Additional connection cost per household connected to grid	125	USD/HH
Additional connection cost per household connected with minigrid	100	USD/HH
T&D losses	10%	USD/HH
O&M costs of distribution	2%	Of Capital Cost/year

Levelised Cost of Electricity (LCOE)

Required costs

- Annualized cost of investment expenditures (I)
- Annual maintenance and operations expenditures (OM)
- Annual fuel expenditures (if applicable) (F)
- **Energy required**
 - Sum of all electricity generated (E)

$$LCOE \approx rac{I + OM + F}{E}$$

Required costs

- Annualized cost of investment expenditures (I)
- Annual maintenance and operations expenditures (OM)
- Annual fuel expenditures (if applicable) (F)

Energy required

• Sum of all electricity generated (E)

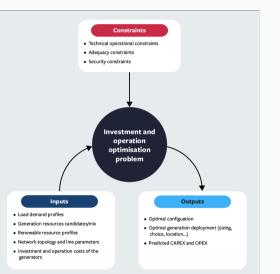
 $LCOE \approx rac{I + OM + F}{E}$

Levelised Cost of Electricity (LCOE)

Target LCOE

Const of Unsubsidized
Description (LCOE)... Compared with
Utilities in Afrea\$0.55/kWh
baseline today\$0.27/kWh average
across 39 utilities\$0.42/kWh with income-
generating machines to
achieve 40% load factor2 of 39 utilities with
cost-recovery tariffs\$0.22/kWh with income-
generating machines &
expected 2030 costs2 of 39 utilities with
cost-recovery tariffs

Microgrid planning methods

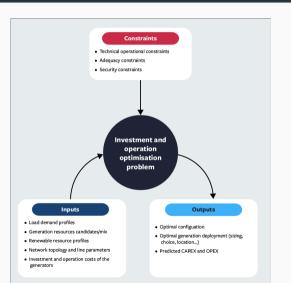

Microgrid planning problem

Objective:

Minimize: Investment + Operation costs

Subject to:

- Technical operational, adequacy, and security constraints
- Input data (load demand, system topology, generation profiles, costs)
- Output constraints (e.g., LCOE limits, etc.)
- Environmental constraints (e.g., *CO*₂ limits, limit in using fossil fuel, etc.)



Microgrid planning problem

Subject to:

- Technical operational, adequacy, and security constraints
- Input data (load demand, system topology, generation profiles, costs)
- Output constraints (e.g., LCOE limits, etc.)
- Environmental constraints (e.g., *CO*₂ limits, limit in using fossil fuel, etc.)

Objective:

Minimize: Investment + Operation costs

Subject to:

- Technical operational, adequacy, and security constraints
- Input data (load demand, system topology, generation profiles, costs)
- Output constraints (e.g., LCOE limits, etc.)
- Environmental constraints (e.g., *CO*₂ limits, limit in using fossil fuel, etc.)

 $\min_{\boldsymbol{\chi} \in \Omega^{\rm MG}} \Theta^{\rm inv}(\boldsymbol{\chi}^{\rm inv}) + \Theta^{\rm opr}(\boldsymbol{\chi}^{\rm inv}, \boldsymbol{\chi}^{\rm opr}) \qquad (1a)$

s.t.
$$\Phi(\chi^{\text{inv}},\chi^{\text{opr}}) = 0,$$
 (1b)

$$\Lambda(\chi^{\mathrm{inv}},\chi^{\mathrm{opr}}) \leq 0$$
 (1c)

Objective:

Minimize: Investment + Operation costs

Subject to:

- Technical operational, adequacy, and security constraints
- Input data (load demand, system topology, generation profiles, costs)
- Output constraints (e.g., LCOE limits, etc.)
- Environmental constraints (e.g., *CO*₂ limits, limit in using fossil fuel, etc.)

 $\min_{\boldsymbol{\chi} \in \Omega^{\rm MG}} \Theta^{\rm inv}(\boldsymbol{\chi}^{\rm inv}) + \Theta^{\rm opr}(\boldsymbol{\chi}^{\rm inv}, \boldsymbol{\chi}^{\rm opr}) \qquad (1a)$

s.t.
$$\Phi(\chi^{\text{inv}}, \chi^{\text{opr}}) = 0,$$
 (1b)

$$\Lambda(\chi^{\mathrm{inv}},\chi^{\mathrm{opr}}) \leq 0$$
 (1c)

- Investment (χ^{inv}) and Operation decision (χ^{opr}) variables
- Equality constraints (1b)
- Inequality constraints (1c)

Microgrid planning problem: Technical constraints

Dispatchable Generation Constraints \rightarrow Describe the behaviour of the generating units

$$\begin{split} 0 &\leq p_{sto} \leq \overline{p}_s \cdot z_s, \quad -\overline{q}_s \cdot z_s \leq q_{sto} \leq \overline{q}_s \cdot z_s, \quad -\mathrm{rp}_s^{\mathrm{dn}} \leq p_{sto} - p_{s(t-1)o} \leq \mathrm{rp}_s^{\mathrm{up}}, \qquad \forall s, t, o \\ 0 &\leq p_{rto} \leq \widetilde{p}_{rto} \cdot z_r, \quad -\tan \overline{\phi}_r \cdot \widetilde{p}_{rto} \cdot z_r \leq q_{rto} \leq \tan \overline{\phi}_r \cdot \widetilde{p}_{rto} \cdot z_r, \qquad \forall r, t, o \end{split}$$

Battery Behaviour and Constraints \rightarrow Describe the behaviour of the batteries

$$\begin{split} & 0 \leq p_{bto}^{\rm dch} \leq \overline{p}_b^{\rm dch} \cdot z_{bto}^{\rm dch}, \quad 0 \leq p_{bto}^{\rm ch} \leq \overline{p}_b^{\rm ch} \cdot z_{bto}^{\rm ch}, \quad z_{bto}^{\rm dch} + z_{bto}^{\rm ch} = z_b, \qquad \qquad \forall b, t, o \\ & \underline{e}_b \cdot z_b \leq e_{bo}^{\rm ini} + \sum_{\tau=1}^t \left(\xi_b^{\rm ch} \cdot p_{b\tau o}^{\rm ch} - \frac{1}{\xi_b^{\rm dch}} \cdot p_{b\tau o}^{\rm dch} \right) \leq \overline{e}_b \cdot z_b, \qquad \qquad \forall b, t, o \\ & \sum_{t \in \mathscr{T}} \left(\xi_b^{\rm ch} \cdot p_{bto}^{\rm ch} - \frac{1}{\xi_b^{\rm dch}} \cdot p_{bto}^{\rm dch} \right) = 0, \qquad \qquad \forall b, o \end{split}$$

Microgrid planning problem: Technical constraints

AC Power Flow Equations \rightarrow Dictate the loading of the lines, the currents, and voltages

$$s_{it}^{d} - s_{t|i=1}^{imp} + s_{t|i=1}^{exp} - \sum_{g \in \mathscr{G}^{i}} s_{gt} = \sum_{\eta(l^{+})=i} S_{l^{+}} + \sum_{\eta(l^{-})=i} S_{l^{-}}$$
 $\forall i, t$

$$S_{l^+} = V_{\eta(l^+)t}(I_{l^+})^*, \qquad S_{l^-} = V_{\eta(l^-)t}(I_{l^-})^*, \qquad orall l, t$$

$$I_{l^+} = y_l^s (V_{\eta(l^+)} - V_{\eta(l^-)}) + y_l^{sh} V_{\eta(l^+)}, \qquad \forall l, t$$

$$I_{l^{-}} = y_{l}^{s}(V_{\eta(l^{-})} - V_{\eta(l^{+})}) + y_{l}^{sh}V_{\eta(l^{-})}, \qquad \forall l, t$$

Thermal Loading and Voltage Constraints

$$\begin{split} P_{lto}^{2} + Q_{lto}^{2} &\leq \left(\overline{S}_{I}^{0}\right)^{2} \cdot z_{I}^{0} + \left(\overline{S}_{I}\right)^{2} \cdot z_{I}, & \forall I, t, o \\ z_{I}^{0} + z_{I} &= 1, & \forall I \\ \underline{v} &\leq v_{ito} \leq \overline{v}, \quad v_{to|i=1} = 1, & \forall i, t, o \end{split}$$

Large-scale, multi-period, mixed-integer, non-linear, stochastic, optimization problem

Large-scale, multi-period, mixed-integer, non-linear, stochastic, optimization problem

• Large-scale: It involves hundreds or thousands of decision variables even for a small Microgrid

- Large-scale: It involves hundreds or thousands of decision variables even for a small Microgrid
- **Multi-period**: The solution should be feasible **for all possible generation profiles and load demand inputs**. The decision we take at one point in time affects the following.

- Large-scale: It involves hundreds or thousands of decision variables even for a small Microgrid
- **Multi-period**: The solution should be feasible **for all possible generation profiles and load demand inputs**. The decision we take at one point in time affects the following.
- **Mixed-integer**: We have binary decision variables (installing a certain generator or not 0/1) and continuous (generator setpoints and operational decisions for each hour).

- Large-scale: It involves hundreds or thousands of decision variables even for a small Microgrid
- Multi-period: The solution should be feasible for all possible generation profiles and load demand inputs. The decision we take at one point in time affects the following.
- **Mixed-integer**: We have binary decision variables (installing a certain generator or not 0/1) and continuous (generator setpoints and operational decisions for each hour).
- **Non-linear**: Power-flow equations that define the physical network constraints are inherently non-linear (see Challenge 1 below).

- Large-scale: It involves hundreds or thousands of decision variables even for a small Microgrid
- Multi-period: The solution should be feasible for all possible generation profiles and load demand inputs. The decision we take at one point in time affects the following.
- **Mixed-integer**: We have binary decision variables (installing a certain generator or not 0/1) and continuous (generator setpoints and operational decisions for each hour).
- **Non-linear**: Power-flow equations that define the physical network constraints are inherently non-linear (see Challenge 1 below).
- **Stochastic**: The generation profiles and load demand inputs have inherent uncertainty (see Challenge 2 below).

- Large-scale: It involves hundreds or thousands of decision variables even for a small Microgrid
- Multi-period: The solution should be feasible for all possible generation profiles and load demand inputs. The decision we take at one point in time affects the following.
- **Mixed-integer**: We have binary decision variables (installing a certain generator or not 0/1) and continuous (generator setpoints and operational decisions for each hour).
- **Non-linear**: Power-flow equations that define the physical network constraints are inherently non-linear (see Challenge 1 below).
- **Stochastic**: The generation profiles and load demand inputs have inherent uncertainty (see Challenge 2 below).

Complex problems, hard to solve, computationally intensive!

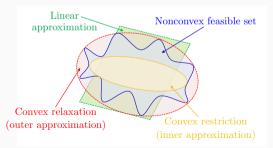
Challenge 1: Handling non-linear power-flow equations

Normal AC Power Flow Equations \rightarrow NLP \rightarrow Intractable

$$s_{it}^{d} - s_{t|i=1}^{imp} + s_{t|i=1}^{exp} - \sum_{g \in \mathscr{G}^{i}} s_{gt} = \sum_{\eta(l^{+})=i} S_{l^{+}} + \sum_{\eta(l^{-})=i} S_{l^{-}} \qquad \forall i, t$$
(2a)

$$S_{l^+} = V_{\eta(l^+)t}(I_{l^+})^*, \qquad S_{l^-} = V_{\eta(l^-)t}(I_{l^-})^*, \qquad \forall l, t$$
 (2b)

$$I_{l+} = y_l^s (V_{\eta(l^+)} - V_{\eta(l^-)}) + y_l^{sh} V_{\eta(l^+)}, \qquad \forall l, t \qquad (2c)$$


$$I_{l^{-}} = y_{l}^{s}(V_{\eta(l^{-})} - V_{\eta(l^{+})}) + y_{l}^{sh}V_{\eta(l^{-})}, \qquad \forall l, t$$
(2d)

A. Nakiganda, S. Dehghan, P. Aristidou, "Comparison of AC Optimal Power Flow Methods in Low-Voltage Distribution Networks", Proc. of the 2021 ISGT conf., 2021.

Challenge 1: Handling non-linear power-flow equations

$\textbf{Convex formulations/relaxations} \rightarrow \textbf{Second-Order Cone Programming} \rightarrow \textbf{Tractable}$

- i. Elimination of the voltage and current angles from (2). This is performed by the separation of the complex real and imaginary parts.
- ii. Convexification of the non-convex hyperbolic constraint (2b), this is achieved by relaxing the equality using SOCP to an inequality.

Challenge 1: Handling non-linear power-flow equations

$\textbf{Convex formulations/relaxations} \rightarrow \textbf{Second-Order Cone Programming} \rightarrow \textbf{Tractable}$

- Modified Lin-DistFlow Relaxation (LinDF)
- Adapted DistFlow Relaxation (DF)
- Extended DistFlow Relaxation with Line Shunts (ExDF)
- Augmented DistFlow with Line Shunts (ExAgDF)

	NLP	LinDF	DF	ExDF	ExAgDF
Computation Time [s]	727.34	0.18	2.04	2.86	171.52
Total Cost [\$]	38133	39088	41155	38122	38080
% $\delta_{V_i}^{\text{relax}}$	-	0.52	0.57	0.005	0.003
% $\delta_{p_i}^{relax}$	-	7.54	3.19	0.24	0.03
$% \delta_{q_i}^{relax}$	-	23.60	23.65	0.33	0.31

A. Nakiganda, S. Dehghan, P. Aristidou, "Comparison of AC Optimal Power Flow Methods in Low-Voltage Distribution Networks", Proc. of the 2021 ISGT conf., 2021.

- Uncertainty sources: Generation profiles (especially renewables), load demand, market prices, etc.
- **Uncertainty modelling:** Probability distribution(s), expected value(s), representative day(s) (neutral, risk seeker, risk averse), etc.

- Uncertainty sources: Generation profiles (especially renewables), load demand, market prices, etc.
- **Uncertainty modelling:** Probability distribution(s), expected value(s), representative day(s) (neutral, risk seeker, risk averse), etc.

Solution approaches:

1. Stochastic Optimisation \rightarrow Solve for the expected value of known PDF

$$\min_{\mathbf{x}\in\boldsymbol{\chi}}\left(\mathbb{E}_{\mathbb{P}}\left\{h(\boldsymbol{x},\tilde{\boldsymbol{u}})\right\}\right)$$

where x is a vector of decision variables, χ is the feasible set of the decision variables, \mathbb{P} is the probability distribution of the uncertain parameters \tilde{u} and h is the cost function.

A. Nakiganda, S. Dehghan, U. Markovic, G. Hug, P. Aristidou, "A Stochastic-Robust Approach for Resilient Microgrid Investment Planning Under Static and Transient Islanding Security Constraints", IEEE Transactions on Smart Grid, 2022

- Uncertainty sources: Generation profiles (especially renewables), load demand, market prices, etc.
- **Uncertainty modelling:** Probability distribution(s), expected value(s), representative day(s) (neutral, risk seeker, risk averse), etc.

Solution approaches:

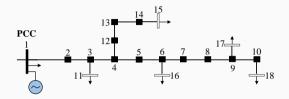
2. Robust Optimisation \rightarrow Solve for the worst-case cost over an uncertainty set

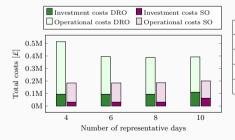
$$\min_{\boldsymbol{x}\in\boldsymbol{\chi}}\left(\max_{\boldsymbol{\tilde{u}}\in\boldsymbol{\mathscr{V}}}\left\{h(\boldsymbol{x},\boldsymbol{\tilde{u}})\right\}\right)$$

where $\mathscr V$ denotes the uncertainty set of the random parameters \widetilde{u} .

- Uncertainty sources: Generation profiles (especially renewables), load demand, market prices, etc.
- **Uncertainty modelling:** Probability distribution(s), expected value(s), representative day(s) (neutral, risk seeker, risk averse), etc.

Solution approaches:


3. Distributionally Robust Optimisation \rightarrow Solve for the worst-case expectation with respect to a family of probability distributions of the uncertain parameters


$$\min_{\boldsymbol{x}\in\boldsymbol{\chi}}\left(\max_{\mathbb{P}\in\boldsymbol{\mathscr{U}}}\left(\mathbb{E}_{\mathbb{P}}\left\{h(\boldsymbol{x},\tilde{\boldsymbol{u}})\right\}\right)\right)$$

where ${\mathscr U}$ defines the ambiguity set of PDFs.

A. Nakiganda, S. Dehghan, U. Markovic, G. Hug, P. Aristidou, "A Stochastic-Robust Approach for Resilient Microgrid Investment Planning Under Static and Transient Islanding Security Constraints", IEEE Transactions on Smart Grid, 2022

Challenge 2: Handling uncertainty

	DRO		SO	
Rep. Days	Decision	Comp. Time [s]	Decision	Comp. Time [s]
4	PV1, PV2, PV3	109	PV_1	44
6	PV1, PV2, PV3	333	PV_1	118
8	PV1, PV2, PV3	682	PV_1	217
10	PV1, PV2, PV3, SG3	1175	PV_1 , PV_2	476

A. M. Nakiganda, S Dehghan, P Aristidou, "A Data-Driven Optimization Model for Designing Islanded Microgrids", 2022 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), 2022

Challenge: How do we ensure that the system is secure against faults? E.g., N-1 secure.

- **Static security:** After the loss of a power infeed, the system should be able to feed the loads for a certain amount of time while complying with the security constraints.
- **Dynamic security:** The system should be able to survive the **transient** response immediately after the fault.

Challenge: How do we ensure that the system is secure against faults? E.g., N-1 secure.

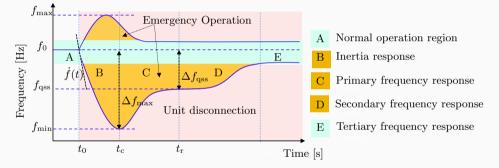
- **Static security:** After the loss of a power infeed, the system should be able to feed the loads for a certain amount of time while complying with the security constraints.
- **Dynamic security:** The system should be able to survive the **transient** response immediately after the fault.

Examples:

- Loss of a generator (conventional or renewable).
- Abrupt islanding in case of grid-connected Microgrid.
- Load disconnection.

Static security:

- For each fault we want to consider, we add a new set of security constraints with the faulted component missing.
- Investment decision variables are the same for both pre-fault and post-fault constraints.

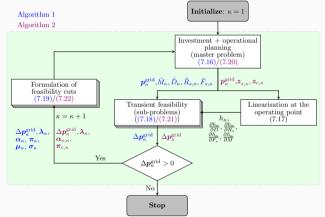

$$\Lambda(\chi^{\rm inv},\chi^{\rm prt,opr},\chi^{\rm pot,opr}) \le 0 \tag{3c}$$

Dynamic security: What happens during faults?

- Embedding **time-domain dynamics** inside an optimization problem is **extremely challenging**.
- We use linearizations and iterative decomposition methods.

$$\min_{\boldsymbol{\chi}\in\Omega^{MG}} \Theta^{\text{inv}}(\boldsymbol{\chi}^{\text{inv}}) + \Theta^{\text{prf,opr}}(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}) + ||\breve{\Theta}^{\text{pof,opr}}(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}})||_{\infty}$$
(4a)
s.t. $\Phi(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}}) = 0$ (4b)
 $\Lambda(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}}) \leq 0$ (4c)
 $\psi(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \dot{\boldsymbol{\chi}}^{\text{opr}}) = 0$ (4d)
 $\rho(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \dot{\boldsymbol{\chi}}^{\text{opr}}) \leq 0$ (4e)

$$\min_{\boldsymbol{\chi}\in\Omega^{MG}} \Theta^{\text{inv}}(\boldsymbol{\chi}^{\text{inv}}) + \Theta^{\text{prf,opr}}(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}) + ||\check{\Theta}^{\text{pof,opr}}(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}})||_{\infty}$$
(5a)
s.t. $\Phi(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}}) = 0$ (5b)
 $\Lambda(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}}) \leq 0$ (5c)
 $\psi(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \dot{\boldsymbol{\chi}}^{\text{opr}}) = 0$ (5d)
 $\rho(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \dot{\boldsymbol{\chi}}^{\text{opr}}) \leq 0$ (5e)



$$\min_{\boldsymbol{\chi}\in\Omega^{MG}} \Theta^{\text{inv}}(\boldsymbol{\chi}^{\text{inv}}) + \Theta^{\text{prf,opr}}(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}) + ||\check{\Theta}^{\text{pof,opr}}(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}})||_{\infty}$$
(6a)
s.t. $\Phi(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}}) = 0$ (6b)
 $\Lambda(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}}) \leq 0$ (6c)
 $\psi(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \dot{\boldsymbol{\chi}}^{\text{opr}}) = 0$ (6d)
 $\dot{f}^{\text{max}} \leq \overline{\dot{f}}^{\text{max}},$ (6e)
 $\Delta f^{\text{max}} \leq \overline{\Delta f}^{\text{max}},$ (6f)
 $\underline{\Delta f}^{\text{ss}} \leq \Delta f^{\text{ss}} \leq \overline{\Delta f}^{\text{ss}}$ (6g)

2

$$\min_{\boldsymbol{\chi} \in \Omega^{MG}} \Theta^{\text{inv}}(\boldsymbol{\chi}^{\text{inv}}) + \Theta^{\text{prf,opr}}(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}) + ||\check{\Theta}^{\text{pof,opr}}(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}})||_{\infty}$$
(6a)
s.t. $\Phi(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}}) = 0$ (6b)
 $\Lambda(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \boldsymbol{\chi}^{\text{pof,opr}}) \leq 0$ (6c)
 $\psi(\boldsymbol{\chi}^{\text{inv}}, \boldsymbol{\chi}^{\text{prf,opr}}, \dot{\boldsymbol{\chi}}^{\text{opr}}) = 0$ (6d)
 $\dot{f}^{\text{max}} \leq \overline{f}^{\text{max}},$ (6e)
 $\Delta f^{\text{max}} \leq \overline{\Delta f}^{\text{max}},$ Inear feasibility cuts, and iterate (6f)
 $\Delta \underline{f}^{\text{ss}} \leq \Delta f^{\text{ss}} \leq \overline{\Delta f}^{\text{ss}}$ between master and sub-problem (6g)

Dynamic security example: Transient frequency security in case of loss of generator or unscheduled islanding.

A. Nakiganda, P. Aristidou, "Resilient Microgrid Scheduling with Secure Frequency and Voltage Transient Response", IEEE Transactions on Power Systems, 2022.

	Only Static	Static & Dynamic			
Costs and decisions					
Total cost (\$)	223390	242740			
Investment cost (\$)	61000	131000			
Investment decisions	PV ₃	PV ₁ , PV ₃			
Operational cost (\$)	162390	111740			
Demand disconnection penalty	d disconnection penalty 14536				
Computational performance					
Number of iterations	er of iterations -				
Computation time (s)	612	3386			
Inertia support					
M (s)	7.84	17.64			
D (p.u)	0.50	1.13			

Real Case Study

Watoto Suubi Village (Uganda)

- Christian-founded orphanages set up by Watoto Child Care Ministries in Uganda
- home clusters that house the children and mothers (total 180 homes)
- Kindergarten, primary, secondary and vocation schools, a clinic, a church, fabrication workshops, a baby nursery (Baby Watoto), administrative offices, a goat farm, water pumping systems, staff housing, and multi-functional halls
- Intermittent supply of electric power from the main grid, of poor quality and high cost

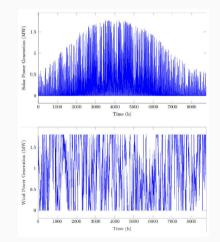
Watoto Suubi Village (Uganda)

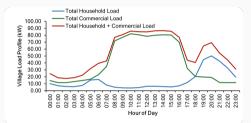
Homes Cluster

Primary School

Fabrication Workshop

Watoto Clinic




Solar and wind data

Routing

Load data

Design of a Resilient and Sustainable Microgrid for Watoto Suubi Village in Uganda as part of the UKRI GCRF project CRESUM-HYRES

Cost input

Investment	Capital Cost	Annualized Capital Cost	Operation Cost	Life Time
Candidate	(\$/kW)	(kW - yr)	(kWh)	(years)
Diesel	185	12	0.27	30
Solar	1672	109	0.00	30
Battery	3604	347	0.00	15

Design output

Diesel	Solar	Battery	Investment Cost	Operation Cost	Total Cost	LCOE (\$/kWh)
Unit	Unit	Unit	(\$-yr)	(\$-yr)	(\$-yr)	
50 kW	250 kW	100 kW	62,514.98	692.46	63,207.45	0.152

Watoto Suubi Village (Uganda): Google COLAB platform

Q	O Watoto_Village_Case_Study.ip File Edit View Insert Runtime Tools		Cannot save changes
	Table of contents	+ Co	de + Text 💩 Copy to Drive
Q	Designing a Sustainable Energy Solution for Watoto Suubi Village Using PyEPLAN	<u> [10</u>]	The following commands set the input arguments and perform the feeder routing. Show code
$\{x\}$	Preparing the platform to execute the PyEPLAN software		
D	Using the PyEPLAN Data Processing Module	š 0	Show code /usr/local/lib/python3.7/dist-packages/mplle#flet/mplexporter/exporter.py:263: MatplotlibOeprecationWarning:
	The PyEPLAN Data Processing Module was used to obtain the PV generation profiles at the village location		The get_offset_position function was deprecated in Matplotlib 3.3 and will be removed two minor releases later
	Using the PyEPLAN Feeder Routing Module		~ ⁷
	This module was used in designing the distribution network layout for the village.		a de la companya de la compan
	Using the PyEPLAN Investment and Operational Planning Module		a second s
	This module is used to determine the design an optimal energy generation solution for the village.		
	Watoto Village Optimal Design Solution		X .
	Total Investment and Operational Costs		
	Number and capacity of battery units installed		ing the PyEPLAN Investment and Operational Planning Module
	Number and capacity of solar units installed		
	Number and capacity of diesel units installed		s module is used to determine the design an optimal energy generation solution for the village. EPLAN solves the investment and operation planning problems simultaneously.

Concluding remarks

- Rural electrification is key to achieving the SDG7 set by UN and bringing electricity to almost 1 billion people
- Designing low-cost, secure, and resilient electrification solutions is **data-intensive**, **mathematically complex**, and **computationally challenging**
- There is a need for **easily accessible** and **free** planning tools that will allow for to reduction in the cost of energy and promote electrification efforts.
- There is a need for free and open training and education.

Further reading

Learn more about rural electrification and Microgrid planning

- Renewable Energy: Sustainable Electricity Supply with Microgrids, FutureLearn Online course, https://www.futurelearn.com/courses/ renewable-energy-sustainable-electricity-supply-with-microgrids
- S. Dehghan, A. Nakiganda, J. Lancaster, P. Aristidou, "Towards a Sustainable Microgrid on Alderney Island Using a Python-based Energy Planning Tool", Proc. of the 2020 MEDPOWER, 2020.

Dive into the techniques and maths behind it

- A. Nakiganda, S. Dehghan, U. Markovic, G. Hug, P. Aristidou, "A Stochastic-Robust Approach for Resilient Microgrid Investment Planning Under Static and Transient Islanding Security Constraints", IEEE Transactions on Smart Grid, 2022.
- A. Nakiganda, P. Aristidou, "Resilient Microgrid Scheduling with Secure Frequency and Voltage Transient Response", IEEE Transactions on Power Systems, 2022.
- A. Nakiganda, S. Dehghan, P. Aristidou, "Comparison of AC Optimal Power Flow Methods in Low-Voltage Distribution Networks", Proc. of the 2021 ISGT conf., 2021.
- S. Dehghan, A. Nakiganda, P. Aristidou, "A Data-Driven Two-Stage Distributionally Robust Planning Tool for Sustainable Microgrids", Proc. of the 2020 IEEE General Meeting, 2020

Dr. Petros Aristidou Department of Electrical Engineering, Computer Engineering & Informatics Cyprus University of Technology petros.aristidou@cut.ac.cy https://sps.cut.ac.cy