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ACADEMIC PUBLIC LICENSE FOR THE USE OF STEPSS

1. Definitions related to the software

“Software” means a copy of STEPSS, which is distributed under this Academic Public License.
“Work based on the Software” means either the Software or any derivative work under copyright
law: that is to say, a work containing the Software or a portion of it, either verbatim or with modi-
fications. “Using the Software” means any act of creating executables that contain or directly use
libraries that are part of the Software, running any of the tools that are part of the Software, or
creating works based on the Software. “You” refers to each licensee.

2. Authors

STEPSS has been developed by Dr Petros Aristidou (email: petros.aristidou@cut.ac.cy) and
Dr Thierry Van Cutsem (email: thierry.h.van.cutsem@gmail.com), hereafter referred to as the
“Authors”.

3. Intellectual property rights

STEPSS is made up of three modules: PFC (for power flow computations), RAMSES (the solver
of differential-algebraic equations), and CODEGEN (a tool to develop models).

PFC and CODEGEN are the property of the Authors. RAMSES is the property of the University of
Liège, Belgium, which has granted to both Authors a personal, royalty-free, limited, non-exclusive,
non-transferable and non-assignable license to distribute free of charge an executable version of
RAMSES in accordance with the terms detailed under Articles 4, 5 and 6 below.

4. License terms

Permission is hereby granted to use the Software free of charge for any non-commercial pur-
pose, including teaching and research at universities, colleges and other educational institutions,
research at non-profit research institutions, and personal non-profit purposes. For using the Soft-
ware for commercial purposes, including but not restricted to consulting activities, design of com-
mercial hardware or software products, or if you are a commercial entity participating in research
projects, you have to contact the Authors.

You are not required to accept this License. Nothing else grants you permission to use the Soft-
ware; the law prohibits this action if you do not accept this License. Therefore, by using the
Software (or any work based on the Software), you indicate your acceptance of this License and
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all its terms and conditions.

5. Warranty

The Software is provided “as is”, without warranty of any kind, express or implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose and non-infringement.
In no event shall the Authors nor the Intellectual property owners be liable for any claim, damages
or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the Software.

6. Limited version of the Software

This free-of-charge version of the software is limited to power system models up to 1000 buses
(or nodes) and can be executed with parallelization using no more than two cores. For extensions
to larger models or execution using more than two cores, you have to contact the Authors.
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14 CHAPTER 1. A QUICK OVERVIEW OF STEPSS

1.1 The three modules of STEPSS

STEPSS includes three modules:

• PFC (for Power Flow Computation) performs a power flow computation in order to determine
the initial operating point of a dynamic simulation;
• RAMSES (for RApid Multiprocessor Simulation of Electric power Systems) simulates the

dynamic evolution of the power system in response to disturbances/actions specified by the
user;
• CODEGEN (for CODE GENerator) translates a model described by the user in a text file into

its equivalent in FORTRAN 2003 language. The latter has to be compiled and linked to a
user-defined executable version RAMSES.

network data

power flow data

computation

parameters

PFC

RAMSES

dynamic
components data

initial
bus voltages

& transformer
ratios

default
simulator

user-defined
simulator

text file
of model

FORTRAN file
of model

CODEGEN

INTEL©

FORTRAN
compiler

disturbances
or actions

control

computation

parameters
control

Figure 1.1: STEPSS: Overview of modules and data files. The files shown in blue are provided by the user,
those in black are produced internally. The Intel© FORTRAN compiler is not part of STEPSS

The three modules, their relationships and their input/ouput data files are shown graphically in
Fig. 1.1.

Note that each of the three modules can be used separately. Here are examples of such uses:

• PFC alone: a power flow computation is run to inspect the power system state and/or save
the corresponding power flow solution for use by RAMSES;
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• PFC alone: a sequence of power flow computations is performed until obtaining the desired
power system state. The corresponding power flow solution is saved for use by RAMSES;
• RAMSES alone: with the initial power flow solution produced by PFC, several dynamic sim-

ulations are run starting from that initial state, i.e. without invoking PFC each time;
• CODEGEN alone: a model is built and saved for future incorporation in a user-defined ver-

sion of RAMSES.

1.2 PFC module

The power flow computation resorts to the well-known Newton(-Raphson) method. Polar coordi-
nates are used.

As shown in Fig. 1.1, the input information consists of:

• network data relative to buses, lines, transformers, etc.
• power flow data specified at PV, PQ and slack buses, respectively
• PFC control parameters. These are settings such as: tolerances on final power mismatches,

thresholds to enforce reactive power limits of generators, etc. These are optional data; if they
are not provided, default values (listed in this documentation) are used.

Optionally PFC also adjusts the ratios of some transformers, with the objective:

• for an in-phase transformer: to bring the voltage magnitude at a bus inside a specified dead-
band
• for a phase-shifting transformer: to bring the active power flow in a network branch inside a

specified deadband.

PFC produces an output file including:

• the voltage magnitudes and phase angles at all buses of the network
• the adjustable transformer data with updated values of their ratios.

1.3 RAMSES module

RAMSES is aimed at simulating the dynamic response of power system models derived under the
phasor approximation (also known as RMS approximation).

It takes as input (see Fig. 1.1):
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• the network data, which are shared with PFC1

• the data pertaining to the dynamics of the components connected to the network
• RAMSES control parameters. These are settings such as: tolerances for solving the equa-

tions, variation of state variables to identify the Jacobians, time steps of plots, reference
angular speed, etc.
• the sequence of actions and/or disturbances imposed during the simulation.

The mathematical model involves both differential and algebraic equations. Three algebraization
methods are available to integrate the differential equations:

• Backward Euler:
xk+1 = xk + h ẋk+1

• Trapezoidal method:

xk+1 = xk +
h

2
(ẋk+1 + ẋk)

• Second-order Backward Differentiation Formula (BDF2):

xk+1 =
4

3
xk −

1

3
xk−1 +

2 h

3
ẋk+1

where h is the time step size. The three methods are implicit, which contributes to numerical
robustness. BDF2 is a stiff-decay (or L1-stable) integration scheme allowing to somewhat increase
the time step size when fast transients are not of interest.

The resulting algebraized and the original algebraic equations are solved all together using a
Newton method. Some more information follows.

1.3.1 About the solver

The solver was developed in response to the growing demand for simulations that last longer
(e.g. long-term stability studies) or involve larger models (e.g. to account for the impact of ac-
tive distribution networks). A high computational efficiency is made possible by two acceleration
techniques: parallel processing and localization.

Parallel processing is based, first, on the decomposition of the power system model into respec-
tively the network, the “injectors” and the “two-ports”. Injectors and two-ports are solved indepen-
dently of each other. However, by resorting to the Schur-complement for the network equations,
RAMSES yields the exact same solution as a non-decomposed scheme2.

Next, the tasks pertaining to injectors and two-ports are assigned to a number of threads. Exam-
ples of tasks are:

1with a few exceptions (detailed in this document)
2The solution scheme is thus of the simultaneous type while offering some advantages of a partitioned scheme
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• the update and factorization of injector and two-port Jacobians
• the computation of the mismatch vector of Newton method
• the computation of injector contributions to the Schur-complement matrix
• the solution of local linear systems.

The threads can be executed each on a separate processor, the computational load being bal-
anced among the available processors. The freeware version of STEPSS allows exploiting two
processors.

The solver in RAMSES has been developed using a shared-memory parallel programming model
with the help of the OpenMP Application Programming Interface. The implementation is general:
there is no “hand-crafted” optimization particular to the computer system, the power system or the
disturbance.

Localization is based on the fact that, after a disturbance, the various components of a (large
enough) system exhibit different levels of dynamic activity.

This property is exploited at each time step:

• to accelerate the Newton scheme: thanks to the decomposed solution scheme, Newton
iterations are skipped on injectors and two-ports that have already converged
• to exploit component “latency”: injectors with high dynamic activity are classified as active,

the others as latent. Active injectors have their original model simulated, while latent in-
jectors are replaced by automatically calculated, sensitivity-based models to accelerate the
simulation. A fast to compute metrics is used to classify the injectors, which seamlessly
switch between categories according to their activity.

More information on the solver can be found in the following references:

• D. Fabozzi, A. Chieh, B. Haut, and T. Van Cutsem, “Accelerated and localized newton
schemes for faster dynamic simulation of large power systems,” IEEE Trans. on Power Sys-
tems, Vol. 28, No 4, pp. 4936-4947, Dec. 2013
doi: 10.1109/TPWRS.2013.2251915
• P. Aristidou, D. Fabozzi, and T. Van Cutsem, “Dynamic simulation of large-scale power sys-

tems using a parallel Schur-complement-based decomposition method,” IEEE Trans. on
Parallel and Distributed Systems, Vol. 25, No 10, pp. 2561-2570, Sept. 2014,
doi:10.1109/TPDS.2013.252

1.4 CODEGEN module

CODEGEN allows incorporating user-defined models in RAMSES. Different versions of the RAM-
SES executable can be loaded and executed. This involves a translation of the user model speci-



18 CHAPTER 1. A QUICK OVERVIEW OF STEPSS

fied in a text file into FORTRAN 2003 code to be compiled and linked to the rest of the executable.
The FORTRAN 2003 language can produce very effcient number crunching code.

Don’t panic: in the vast majority of cases, the user does not need to even open the FORTRAN file.
The user concentrates on the text file describing his/her model, which is rather easy to read.

Thus, the user model is not interpreted but executed.

There are four types of user-defined models:

• excitation controller of synchronous machine: typically the excitation system and the auto-
matic voltage regulator
• torque controller of synchronous machine: typically the turbine and the speed governor
• injector: a component connected to a single AC bus
• two-port: a component connecting two buses.

While the code of the solver is not made public, the models are expected to be freely shared
by users. This feature makes STEPSS an open-source simulation software, at least for the
modelling part. That is what matters to the user, isn’t it ?
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The material of this chapter is specific to the Windows 64-bit version of STEPSS, to its Java-
based Graphic User Interface (GUI) and the Intel oneAPI Fortran Compiler.

Before going any further, you have to read and accept the legal terms detailed at the begin-
ning of this document.

All needed files can be downloaded from the following Google drive:
https://drive.google.com/drive/folders/1HcUSD-FOx6192HURJnxltYJuKuNA8Vwz?usp=drive link

Note that the Java, Visual Studio and OneAPI files are not part of STEPSS. They are provided
only to ease the installation procedure, avoiding navigation through the Oracle, Windows and Intel
Web pages.

2.1 Installing JAVA

STEPSS comes with a Java-based Graphical User Interface (GUI). Everything is packed in a Java
archive containing a (legal) copy of all executables and libraries required to run the simulations
and display the results.

Using that GUI requires to have Java Version 20 installed on your computer. To check if you have
Java installed, and if so, which version it is:

1. open a Windows Command prompt
2. in the latter, enter the command:

java -version

It should display a message similar to the one shown in Fig. 2.1.
3. close the command prompt.

Figure 2.1: Checking the presence of the Java environment

If you have a previous version installed on your computer, it must be uninstalled following the
standard Windows procedure:

1. click on Parameters
2. select Applications
3. locate Java
4. click on uninstall.
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Then, install Java Version 20 as follows:

1. download the Java SE Development Kit Version 20 (for 64-bit) from the Google drive. The
164-MB file is named jdk-20 windows-x64 bin.exe

2. install by double-clicking on that file and following the instructions
3. for an easy execution, associate stepss.jar with Java following the standard Windows proce-

dure:
(a) right-click on the stepss.jar icon
(b) select open with
(c) choose always use this application.

Apart from the Java machine, STEPSS does not require any installation in the usual meaning of
the term. Just download the STEPSS.jar file from the Google drive and drop it in any convenient
place of the computer. The Windows desktop is a very convenient location.

Leave the archive intact; in particular do not uncompress it !

STEPSS is launched by merely double-clicking on STEPSS.jar (or a shortcut to the latter).

When STEPSS is launched it creates a temporary working folder and copies all needed executa-
bles and libraries into that folder.

To remove STEPSS from your computer, just delete the archive file. STEPSS does not leave
anything in your computer !

2.2 Installing Visual Studio

This step can be skipped if you do not plan to develop new models for RAMSES.

The Intel OneAPI compiler relies on the Microsoft Visual Studio environnement as well as some
associated C++ libraries.

The Community 2022 version is required. If you have a previous version installed on your com-
puter, it must be uninstalled following the standard Windows procedure.

The installation steps are as follows:

1. download from the Google drive the launcher named
vs community e942d3d4864d4a80b72975352289d007.exe

2. execute by double-clicking
3. during the installation, under the “Workloads” view, select the checkbox to install the “Desk-

top development with C++” component of Visual Studio as shown in Fig. 2.2. This component
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is not installed by default.

Figure 2.2: Selecting the “Desktop development with C++” component when installing Visual Studio

2.3 Installing the Fortran Compiler

This step can be skipped if you do not plan to develop new models for RAMSES.

There are three packages to download and install.

1. download from the Google drive the OneApi Basekit. The file is named:
w BaseKit p 2023.1.0.47256 offline.exe

2. download from the Google drive the Fortran Compiler Classic package. The file is named:
w ifort runtime p 2023.1.0.46319.exe

3. download from the Google drive the HPC toolkit. The file is named:
w HPCKit p 2023.1.0.46357 offline.exe

4. install each of the three packages, in the above order, by double-clicking on the .exe files
5. restart your computer.
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Data files are organised into records and comments, whose syntax is detailed next.

3.1 Records

Each record includes:

• a leading keyword, which identifies the information provided in the record
• a number of fields. A field is either a real number (numeric field) or a string of characters

(character field). There is at least one field
• a terminating semicolumn (;), which indicates the end of the record.

¬ The following record, with keyword LINE, specifies a transmission line:
LINE A-B BUS A BUS B 3.0 30.0 150.0 1400.0 1 ;

Inside the record, the keyword, the fields and the terminating semicolon are separated by (at least
one) space(s). Anything after the semicolumn is ignored. The next record (or comment) starts
with the next line.

¬ Two incorrect versions of the above sample record, owing to missing spaces:
LINE A-B BUS ABUS B 3.0 30.0 150.0 1400.0 1 ;

LINE A-B BUS A BUS B 3.030.0 150.0 1400.0 1 ;

Inside a data file, a record may span over multiple lines; the semicolumn indicates the end of the
record. Spanning over several lines is highly recommended for records that include many fields.
Note that, depending upon the text editor and its settings, a long record could appear truncated
when displayed.

¬ An example of long record spanning over two lines:
INJEC GFOL VSC1 A 1.0 1.0 0.0 0.0 0.005 0.15 1.00 1044.0 0.005 0.15 33.3

10.0 0.002 -999.0 10.0 0.1667 50.0 0.10 0.4 0.5 1.0 0.95 0.5 99.0 1 ;

The nature of each field, and the total number of fields are specified in this documentation. Some
records have optional fields, which are always located at the end of the record.
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3.1.1 Constraints on numeric fields

There is almost no constraint on numeric fields. They are written in free format. The notation
is that of floating-point numbers in MATLAB: with or without a dot, with or without an exponent,
exponent denoted by E or D.

¬ Different valid formats of the same number: 30 30. 30.0 3E01 3.E01 3.0E01 3.E1 3.e1

3.1.2 Constraints on character fields

Character fields are limited to 20 characters. Only the first 20 characters are read; the remaining of
the string is just ignored, without warning. It is thus discouraged to have more than 20 characters
in a field.

Furthermore, some character fields are limited to eight characters; the remaining of the string is
just ignored.

Uppercase letters are significant within a character field. Thus, two fields that differ by the upper-
case/lowercase spelling are different.

If a character field includes a space or a slash (/), it must be enclosed with quotes ( ’ or ” ). In
between the two quotes, the leading spaces are significant while the trailing ones are ignored.
Keywords do not include spaces; hence, the use of quotes is useless.

Because the semi-column (;) is a special character (used to indicate the end of a record), it must
not be included in any character field, even within quotes.

3.2 Comments

There are three ways to insert comments in the data files:

1. a line in which the first non blank character is an exclamation mark (!). At most the first 130
characters after the ! are memorised and reproduced on output files

2. a line in which the first non blank character is the sharp character (#): this line is simply
ignored by the program

3. anything written after the semicolon that terminates a record is also ignored. This is conve-
nient to store (short) comments next to a record, without interfering with the latter.

¬ Comments starting with # can be used to identify the fields of a record:
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# name bus FP FQ P Q SNOM RS LLS LSR RR LLR

INJEC INDMACH1 SM 2 0.2 0.2 0. 0. 0. 0.031 0.1 3.2 0.018 0.180

# H A B LF

0.7 0.5 0.0 0.6 ;

Comments do not span over several lines. If several lines are needed, each of them must start
with a ! or a #.

Empty lines are just ignored.

3.3 Sharing data between files

Records may be distributed over an arbitrary number of data files, which will be read sequentially.
The order in which the records are placed inside the data files does not matter. The order in which
the files are read does not matter either.

For instance, a first data file may be devoted to network data, a second one to data for the initial
power flow computation, a third one to the dynamic data of the components connected to the
network and a last one to simulation control parameters. The second and third files, for instance,
may be swapped in the list without any effect.
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The network model includes buses, lines, cables, transformers and shunts. Their models and data
are described in the present chapter.

4.1 Buses

In dynamic simulations with RAMSES the only parameter associated with a bus is its nominal
voltage (more precisely, the RMS value of the nominal line-to-line voltage). This is used as base
voltage to convert parameters from physical to per unit values.

If two buses have different nominal voltages they cannot be connected through a path made up
of lines or switches (see next sections). This causes the software to issue an error message and
stop.

4.1.1 Data format

The record, with keyword BUS, includes the following fields:

BUS NAME VNOM ;

where:

• NAME is the name of the bus. This is a string of at most 8 characters
• VNOM is the nominal voltage, in kV.

Only one BUS record per bus is allowed.

All buses must be declared through BUS records. If the software finds (in other than BUS records)
a bus name not defined through a BUS record, it issues an error message and stops.

Caveat. The above record is used in the RAMSES module. For the initial power flow computation
with PFC, an extended version of the BUS record is used with six fields instead of two. Please
refer to Section 5.1. Thus, when RAMSES is initialized, if a BUS record has six fields, only the first
two are read, the others are ignored.
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4.2 Lines and cables

4.2.1 Modelling

Lines and cables both have the same pi-equivalent model, which is shown in Fig. 4.1. Note that
shunt conductances are neglected.

Under the phasor approximation, series capacitors can also be modelled with this pi-equivalent,
by setting R and C to zero and X to a negative value.

RX

ωC/2 ωC/2

BUS1 BUS2

Figure 4.1: Pi-equivalent of lines and cables

4.2.2 Data format

The record, with keyword LINE, includes the following fields:

LINE NAME BUS1 BUS2 R X WC2 SNOM BR ;

where:

• NAME is the name of the line or cable. This is a string of at most 20 characters
• BUS1 is the name of the first bus. This is a string of at most 8 characters defined in a BUS

record
• BUS2 is the name of the second bus. This is a string of at most 8 characters defined in a

BUS record
• R is the series resistance R, in Ω

• X is the series reactance X, in Ω

• WC2 is the half shunt susceptance ωC/2, in µS (microSiemens)
• SNOM is the nominal apparent power, in MVA. This value is used to display the line loading,

or possibly in user-defined models. If not used, it may be set to zero; this will be interpreted
as an infinite power
• BR is the on/off status of the line breakers. A zero value indicates that the breakers are open

at both ends (line out of service); any other value (e.g. 1) means that both breakers are
closed (line in service).
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The orientation of the line is arbitrary: BUS1 and BUS2 may be swapped.

Only one LINE record per line is allowed.

All lines are memorized, even those that are out of service. A line out of service is not involved (it
appears in the output results with a zero power flow) but it can be put into service in the dynamic
simulation.

As mentioned in Section 4.1, a line must not connect two buses with different nominal voltages.

To have a line connected through a single end, add a bus at the open end and set BR to a nonzero
value.

4.3 Switches

4.3.1 Modelling

A switch is a connection without impedance between two buses. It is treated as a very short line,
more precisely a line with R = 0, ωC/2 = 0 and X set to a very low value. Thus it has no active
power losses and negligible reactive power losses.

4.3.2 Data format

The record, with keyword SWITCH, includes the following fields:

SWITCH NAME BUS1 BUS2 BR ;

where:

• NAME is the name of the switch. This is a string of at most 20 characters
• BUS1 is the name of the first bus. This is a string of at most 8 characters defined in a BUS

record
• BUS2 is the name of the second bus. This is a string of at most 8 characters defined in a

BUS record
• BR is the on/off status of the switch. A zero value indicates that the switch is open; any other

value means that it is closed.

The orientation of the switch is arbitrary: BUS1 and BUS2 may be swapped.
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Only one SWITCH record per switch is allowed.

All switches are memorized, even those which are open. An open switch is not involved (it appears
in the output results with a zero power flow) but it can put into service in the dynamic simulation.

As mentioned in Section 4.1, it is not allowed to have a switch connecting two buses with different
nominal voltages.

4.4 Transformers

4.4.1 Modelling

Transformers are represented by the two-port shown in Fig. 4.2. Note that R, X, B1 and B2 are
specified on the “from” side of the transformer.

R corresponds to the copper losses. The iron losses are neglected (no shunt resistance). X is
the leakage reactance. B1 or B2 are the magnetizing susceptances, which have negative values.
Usually one of them is zero. n (resp. ϕ) is the magnitude (resp. the phase angle) of the transformer
ratio. A phase-shifting transformer is characterized by a nonzero value of ϕ.

RX
“FROM” bus “TO” bus

B1 B2

1 n6 φ

Figure 4.2: Two-port model of transformers

It may be of interest to recall how the values of R, X, B1 and B2 relate to the following character-
istics, easily obtained from manufacturer data:

• Snom the nominal apparent power
• VN1 (resp. VN2) the nominal voltage on the “from” (resp. “to”) side (see Fig. 4.2)
• RbaseVN1

(resp. XbaseVN1
) the series resistance (resp. leakage reactance) in per unit on the

(Snom, VN1) base
• B1 baseVN1

and B2 baseVN1
the shunt susceptances in per unit on the (Snom, VN1) base

• Vo1 and Vo2 the open-circuit voltages corresponding to the transformer ratio1.

1Very often the open-circuit voltages coincide with the nominal voltages, i.e. Vo1 = VN1 and Vo2 = VN2
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Let VB1 and VB2 be the nominal voltages of respectively the “from” and the “to” buses, as specified
in their BUS records (see Section 4.1).

In STEPSS R, X, B1 and B2 are in percent on the (Snom, VB1) base. The following changes of
base have to be used:

R = 100 RbaseVN1
(
VN1

VB1
)2 X = 100 XbaseVN1

(
VN1

VB1
)2

B1 = 100 B1 baseVN1
(
VB1

VN1
)2 B2 = 100 B2 baseVN1

(
VB1

VN1
)2

n is in percent on the (VB1, VB2) base. Its value is given by:

n = 100
Vo2 VB1

Vo1 VB2

A second transformer model is available. It is a simplified version with B2 = 0 and ϕ = 0 in Fig. 4.2
and and includes data for PFC to adjust the transformer ratio (see Section 5.5). This model cannot
be used for phase-shifting transformers.

4.4.2 Data format

The record, with keyword TRANSFO, includes the following fields:

TRANSFO NAME FROMBUS TOBUS R X B1 B2 N PHI SNOM BR ;

where:

• NAME is the name of the transformer. This is a string of at most 20 characters
• FROMBUS is the name of the “from” bus (see Fig. 4.2). This is a string of at most 8 characters

defined in a BUS record
• TOBUS is the name of the “to” bus (see Fig. 4.2). This is a string of at most 8 characters

defined in a BUS record
• R is the series resistance, in % on the base detailed above
• X is the leakage reactance, in % on the base detailed above
• B1 is the shunt suceptance, in % on the base detailed above
• B2 is the shunt suceptance, in % on the base detailed above
• N is the magnitude of the transformer ratio in % (dimensionless)
• PHI is the phase angle of the transformer ratio, in degree
• SNOM is the nominal apparent power of the transformer, in MVA. This value must not be zero
• BR is the on/off status of the transformer breakers. A zero value indicates that the breakers

are open at both ends (transformer out of service); any other value means that both breakers
are closed (transformer in service).
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The second transformer model is described by the record with keyword TRFO:

TRFO NAME FROMBUS TOBUS CONBUS R X B N SNOM NFIRST NLAST NBPOS TOLV VDES BR ;

where:

• NAME is the name of the transformer. This is a string of at most 20 characters
• FROMBUS is the name of the “from” bus (see Fig. 4.2). This is a string of at most 8 characters

defined in a BUS record
• TOBUS is the name of the “to” bus (see Fig. 4.2). This is a string of at most 8 characters

defined in a BUS record
• CONBUS is used by PFC for adjusting n: see Section 5.5. It is not used by RAMSES, but a

(dummy) name must be provided
• R is the series resistance, in % on the base detailed above
• X is the leakage reactance, in % on the base detailed above
• B is the shunt suceptance, in % on the base detailed above
• N is the magnitude of the transformer ratio in % (dimensionless)
• SNOM is the nominal apparent power of the transformer, in MVA. This value must not be zero
• NFIRST is used by PFC for adjusting n: see Section 5.5.
• NLAST: same as for NFIRST
• NBPOS: same as for NFIRST
• TOLV: same as for NFIRST
• VDES: same as for NFIRST
• BR is the on/off status of the transformer breakers. A zero value indicates that the breakers

are open at both ends (transformer out of service); any other value means that both breakers
are closed (transformer in service).

The following remarks apply to both TRANSFO and TRFO records.

The orientation of the transformer is not arbitrary: FROMBUS and TOBUS cannot be swapped.

Only one TRANSFO or TRFO record per transformer is allowed.

All transformers are memorized, even those that are out of service. A transformer out of service is
not involved (it appears in the output results with a zero power flow) but it can be put into service
in the dynamic simulation.

To have a transformer connected through a single end, add a bus at the open end and set BR to
a nonzero value.
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4.5 Non-reciprocal two-ports

4.5.1 Modelling

A non-reciprocal two-port is a two-port with a non-symmetric nodal admittance matrix of the form:

Y =

[
(Gsi + jBsi) + (Gij + jBij) −(Gij + jBij)

−(Gji + jBji) (Gji + jBji) + (Gsj + jBsj)

]

with:
Gij ̸= Gji and Bij ̸= Bji

where i and j relate to the terminal nodes of the two-port, as shown in Fig. 4.3.

Typically, two-ports are produced when reducing a network that includes phase-shifting transform-
ers, the purpose being to obtain an equivalent.

Y
i j

Figure 4.3: A two-port connecting buses i and j

4.5.2 Data format

The record, with keyword NRTP, includes the following fields:

NRTP NAME FROMBUS TOBUS GIJ BIJ GJI BJI GSI BSI GSJ BSJ BR ;

where:

• NAME is the name of the two-port. This is a string of at most 20 characters
• FROMBUS is the name of bus i in Fig. 4.3. This is a string of at most 8 characters defined in

a BUS record
• TOBUS is the name of bus j in Fig. 4.3. This is a string of at most 8 characters defined in a

BUS record
• GIJ is the Gij conductance, in pu
• BIJ is the Bij susceptance, in pu
• GJI is the Gji conductance, in pu
• BJI is the Bji susceptance, in pu
• GSI is the Gsi conductance, in pu
• BSI is the Bsi susceptance, in pu
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• GSJ is the Gsj conductance, in pu
• BSJ is the Bsj susceptance, in pu
• BR is the on/off status of the two-port breakers. A zero value indicates that the breakers are

open at both ends (two-port out of service); any other value means that both breakers are
closed (two-port in service).

The parameters of the two-port are given in per unit on the following base: nominal bus voltages,
system base power. By default a value of 100 MVA is used2 but it can be changed: see Section 5.9.

It is allowed for a non-reciprocal two-port to connect two buses with different nominal voltages.

The orientation of the two-port is not arbitrary: FROMBUS and TOBUS cannot be swapped.

Only one NRTP record per two-port is allowed.

A non-reciprocal two-port is treated as a piece of equipment; hence, the presence of the BR field.
All non-reciprocal two-ports are memorized, even those which are out of service. A non-reciprocal
two-port out of service is not involved (it appears in the output results with a zero power flow) but
it can be put into service in the dynamic simulation.

4.6 Shunts

4.6.1 Modelling

The shunt element is treated as a purely reactive, constant shunt admittance. Hence, the reactive
power Q it produces varies with the square of the voltage V according to:

Q = B V 2

where B is the susceptance. The element may correspond to either a capacitor (B > 0) or a
reactor (B < 0).

4.6.2 Data format

The record, with keyword SHUNT, includes the following fields:

SHUNT NAME BUS NAME QNOM BR ;

where:
2a typical value for transmisstion systems
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• NAME is the name of the shunt. This is a string of at most 20 characters
• BUS NAME is the name of the bus to which the shunt is connected. This is a string of at most

8 characters defined in a BUS record
• QNOM is the nominal reactive power of the shunt, in Mvar. This is the reactive power produced

by the shunt under the nominal voltage of the bus, specified in its BUS record. QNOM is
positive (resp. negative) for a shunt capacitor (resp. inductor)
• BR is the on/off status of the shunt. A zero value indicates that the shunt is not connected;

any other value means that it is in service.

Only one SHUNT record per named shunt is allowed. Multiple shunts at the same bus are allowed,
but each with its own name. In this case, the susceptances are added (taking signs into account).

All shunts are memorized, even those which are disconnected. A disconnected shunt is not in-
volved (it appears in the output results with a zero power flow) but it can be put into service in the
dynamic simulation.

Caveat. The above record is used in the RAMSES module. However, for the initial power flow
computation with PFC, the shunt data are attached to a bus and are specified in an extended
version of the BUS record. Please refer to Section 5.1.



Part II

Power Flow Computation with PFC

37





Chapter 5

PFC data

39



40 CHAPTER 5. PFC DATA

The following records, documented in Chapter 4 are used by PFC:

BUS
LINE
SWITCH
TRANSFO
TRFO
NRTP.

The additional (mandatory or optional) records only used in power flow computations are docu-
mented in this chapter.

5.1 Load and shunt data

Load and shunt data are attached to buses. They are specified in an extended version of the BUS
record, as follows:

BUS NAME VNOM PLOAD QLOAD BSHUNT QSHUNT ;

where:

• NAME is the name of the bus. This is a string of at most 8 characters
• VNOM is the nominal voltage, in kV
• PLOAD is the total active power load at the bus, in MW. A positive value corresponds to power

drawn from the network
• QLOAD is the total reactive power load at the bus, in Mvar. A positive value corresponds to

power drawn from the network
• BSHUNT is the nominal reactive power of the shunt modelled as constant susceptance, in

Mvar. This is the reactive power produced by the shunt under the nominal voltage of the bus,
specified in its BUS record. BSHUNT is positive (resp. negative) for a shunt capacitor (resp.
inductor)
• QSHUNT is the reactive power produced by the shunt modelled as constant power, in Mvar.

QSHUNT is positive (resp. negative) for a shunt capacitor (resp. inductor).

The total reactive power Q produced by the two shunt components is given, in Mvar, by:

Q = BSHUNT (
V

Vnom
)2 +QSHUNT

where V is the bus voltage and Vnom the corresponding nominal voltage.

If no shunt is connected to the bus, BSHUNT and QSHUNT are set to zero.
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If no load is connected to the bus, PLOAD and QLOAD are set to zero.

Let us recall that the PLOAD, QLOAD, BSHUNT and QSHUNT fields are ignored by RAMSES.

5.2 Generator data

Generators are specified by GENER records, as follows:

GENER NAME BUS P Q VIMP SNOM QMIN QMAX BR ;

where:

• NAME is the name of the generator. This is a string of a most 20 characters
• BUS is the name of the bus which the generator is connected to. This is a string of at most 8

characters
• P is the active power produced by the generator, in MW
• Q is the reactive power produced by the generator, in Mvar. This value is ignored if the VIMP

field is nonzero
• VIMP is the voltage imposed by the generator, in pu. If VIMP is zero, the bus is treated as a

PQ bus with the reactive power production set to Q; if VIMP is nonzero, the bus is treated as
a PV bus and the Q field is ignored
• SNOM is the nominal apparent power of the generator, in MVA
• QMIN is the lower reactive power limit, in Mvar. It is used only if V is nonzero
• QMAX is the upper reactive power limit, in Mvar. It is used only if V is nonzero
• BR is the on/off status of the generator breaker. A zero value indicates that the breaker is

open; any other value means that the breaker is closed.

For all generators with a nonzero value of VIMP, the connection bus is initially assumed of the PV
type.

If this entails exceeding the generator upper reactive power limit QMAX, the bus switches to PQ
type, the QMAX limit is enforced, and Newton iterations continue. If subsequently the bus voltage
gets larger than VIMP, the bus switches back to PV type with the voltage imposed at the VIMP

value.

Similarly, if the generator lower reactive power limit QMIN is exceeded, the bus switches to PQ
type, the QMIN limit is enforced, and Newton iterations continue. If subsequently the bus voltage
gets smaller than VIMP, the bus switches back to PV type with the voltage imposed at the VIMP

value.

Only one generator is allowed per bus.
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All generators are memorized, even those which are disconnected. A disconnected generator is
not involved (it appears in the output results with a zero power output) but it can be put into service
in the dynamic simulation.

Remark 1. For simplicity, a generator producing constant active and reactive powers can be
modelled as a negative load using the BUS and no GENER record.

Remark 2. There exists a variant of the GENER record with the following syntax:

GENER NAME BUS P Q V SNOM QMIN QMAX PMIN PMAX BR ;

where PMIN (resp. PMAX) is the minimum (resp. maximum) active power that the generator can
produce, in MW. If this record is present in the data, the PMIN and PMAX fields are ignored by
STEPSS.

5.3 Slack-bus specification

The presence of a slack-bus is mandatory in power flow computations: indeed, not all buses can
be of the PV or PQ type, since this would entail specifying the active power losses in the network,
which are not known before performing the power flow calculation.

A generator of the PV type must be connected to the slack-bus. Its voltage magnitude, specified
in its GENER record, is imposed at the bus, while the voltage phase angle is set to zero.

PFC can handle only one connected network (or island). If the network graph is not connected,
only the connected sub-network including the slack-bus is treated; the rest of the network is ignored
with a warning message.

The SLACK record allows specifying which bus is the slack-bus. The syntax is as follows:

SLACK NAME ;

where NAME is the name of the bus. This is a string of at most 8 characters.

There must be exactly one SLACK record in the whole set of data.
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5.4 Static Var Compensators

5.4.1 Modelling

The Static Var Compensator (SVC) is modelled as shown in Fig. 5.1. j is the monitored bus,
whose voltage is regulated, while i is the controlled bus, where the shunt susceptance B is varied.
i and j can be any two buses but usually j is the transmission bus on the high-voltage side of the
SVC step-up transformer, while the SVC is connected to bus i.

IQi

Vi

Vj

i

j

G

Bmax

Bmin

×
−

+
V o
j IPi = 0

B

Figure 5.1: Block-diagram of the static var compensator

The SVC being assumed lossless, the active current injected at bus i is zero (IPi = 0), while the
reactive current takes on one of the following forms:

IQi = BVi = G(V o
j − Vj)Vi under voltage control (5.1)

IQi = BmaxVi under upper susceptance limit (5.2)

IQi = BminVi under lower susceptance limit. (5.3)

Although reference is made to an SVC, the model can be used in general for a component con-
trolling voltage with a droop.

5.4.2 Data format

The record, with keyword SVC, includes the following fields:

SVC NAME CON BUS MON BUS V0 Q0 SNOM BMAX BMIN G BR ;

where:

• NAME is the name of the compensator. This is a string of a most 20 characters
• CON BUS is the name of the controlled bus. This is a string of a most 8 characters
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• MON BUS is the name of the monitored bus. This is a string of a most 8 characters
• V0 is the voltage setpoint V o

j , in pu (see Fig. 5.1)
• Q0 is the reactive power setpoint, in Mvar. If V0 is set to zero, the SVC is treated under

constant power, with P = 0 and Q = Q0, and no limit is tested. If V0 is nonzero, the Q0 field
is ignored
• SNOM is the nominal reactive power of the SVC, in Mvar
• BMAX is the maximal nominal reactive power, in Mvar. This is the reactive power produced

by the compensator under Vi = 1 pu, when B is at the maximal value Bmax.
• BMIN is the minimal nominal reactive power, in Mvar. This is the reactive produced by the

compensator under Vi = 1 pu, when B is at the minimal value Bmin.
• G is the gain G, in pu on the (VB, SNOM) base, where VB is the nominal voltage at the

controlled bus, as given by its BUS record
• BR is the on/off status of the SVC breaker. A zero value indicates that the breaker is open,

any other value means that it is closed.

It is common for BMAX to be positive and BMIN negative but other combinations are allowed.

For all SVCs with a nonzero value of V0, Eq. (5.1) is solved initially.

If this entails exceeding the susceptance upper reactive power limit BMAX, Eq. (5.2) is substituted,
the BMAX limit is enforced, and Newton iterations continue. If subsequently G(V o

j − Vj) < Bmax,
the program reverts to Eq. 5.1 and keeps on iterating.

Similarly, if the SVC lower suscepance limit BMIN is exceeded, Eq. (5.3) is substituted, the BMIN

limit is enforced, and Newton iterations continue. If subsequently G(V o
j −Vj) > Bmin, the program

reverts to Eq. (5.1) and keeps on iterating.

Only one SVC is allowed per bus.

It is not allowed to connect both a generator and an SVC to the same bus.

All SVCs are memorized, even those which are disconnected. A disconnected SVC is not involved
(it appears in the output results with a zero power output) but it can be put into service in the
dynamic simulation.

5.5 Transformer ratio adjustment for voltage control

5.5.1 Modelling

PFC can adjust the ratio of a designated transformer with the objective of bringing a controlled
voltage inside a deadband [Vdes−ϵ Vdes+ϵ], where Vdes is the desired voltage and ϵ is a tolerance.
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The ratio is changed in discrete steps (as in the real life), between a minimum and a maximum
value. During the computation, the ratio is changed by one step at a time, after which Newton
iterations are performed until convergence is achieved. The process is repeated until the controlled
voltage falls in the deadband. When multiple transformers are adjusted, some may reach their
deadbands before others.

5.5.2 First data format

The first way to specify ratio adjustement is through the TRFO record. The following refers to the
material presented in Section 4.4.2.

The controlled bus is CONBUS. This must be one of the two ending buses of the transformer.
An empty or blank string enclosed within quotes indicates that the transformer ratio is not to be
adjusted. In this case, however, dummy values must be provided for each of the fields listed below.

The fields of concern are:

• NFIRST: the ratio in % corresponding to the first tap position. This is the lower bound on the
transformer ratio
• NLAST: the ratio in % corresponding to the last tap position. This is the upper bound on the

transformer ratio
• NBPOS: the total number of tap positions including the first and the last
• TOLV: the voltage tolerance ϵ, in pu
• VDES: the desired voltage Vdes, in pu.

The transformer ratio n corresponding to position p (1 ≤ p ≤ NBPOS) of the tap changer is given by:

n =
NFIRST

100
+

p− 1

NBPOS− 1

NLAST− NFIRST

100
(5.4)

The value of p is increased or decreased by one at each adjustment iteration.

An initial value of the transformer ratio is given by the N field of the TRFO record. If the transformer
is to be adjusted, before starting the power flow computation that value is adjusted to coincide with
the nearest tap position, in accordance with Eq. (5.4).

5.5.3 Second data format

The second way to specify ratio adjustement is through a separate record with keyword LTC-V.
The syntax is as follows:

LTC-V NAME CON BUS NFIRST NLAST NBPOS TOLV VDES ;



46 CHAPTER 5. PFC DATA

where NAME is the name of the controlled transformer (a string of at most 20 characters) and all
the other fields have the same meaning as for the TRFO record.

A transformer can be controlled by a single tap changer only. It is more natural to use the LTC-V
record in association with a TRANSFO record. Hovever, the LTC-V record can be associated with
a TRFO record, provided that no adjustment is specified in the latter.

5.6 Phase-shifting transformer ratio adjustment for power control

5.6.1 Modelling

PFC can also adjust the phase angle of a transformer with the objective of bringing the active
power flow in a branch inside a deadband [Pdes− ϵ Pdes + ϵ], where Pdes is the desired power flow
and ϵ is a tolerance.

The adjustment is very similar to that of in-phase transformers for voltage control detailed in Sec-
tion 5.5.

5.6.2 Data format

The record, with keyword PSHIFT-P, includes the following fields:

PSHIFT-P CONTRFO MONBRANCH PHAFIRST PHALAST NBPOS SIGN PDES TOLP ;

where:

• CONTRFO is the name for the transformer whose phase angle is to be adjusted. This is a
string of at most 20 characters, defined in either a TRFO or a TRANSFO record. If the
transformer does not exist, the whole record is ignored with a warning message
• MONBRANCH is the name of the branch in which the active power flow P is monitored. This is

a string of at most 20 characters, defined in either a LINE, a TRFO or a TRANSFO record.
The sign convention is the following: P is the active power flow leaving the first bus specified
in the LINE, TRFO or TRANSFO record and entering the branch of concern
• PHAFIRST is the phase angle ϕ, in degrees, corresponding to the first tap position. This is

the lower bound on ϕ

• PHALAST is the phase angle ϕ, in degrees, corresponding to the last tap position. This is the
upper bound on ϕ

• NBPOS is the number of tap positions
• SIGN is an indication of the direction in which the phase angle ϕ must be adjusted to reach
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the objective. A value of 1 indicates that ϕ must be increased to increase the active power
flow in the monitored branch. A value of −1 indicates that it must be decreased. Any other
value is invalid and causes the program to stop
• PDES is the desired active power flow, in MW
• TOLP is the tolerance ϵ, in MW.

The phase angle ϕ corresponding to position p (1 ≤ p ≤ NBPOS) of the tap changer is given by:

ϕ = PHAFIRST+
p− 1

NBPOS− 1
(NLAST− NFIRST) (5.5)

The value of p is increased or decreased by one at each adjustment iteration.

PFC performs a sensitivity analysis to determine whether the phase angle should be increased or
decreased. If this analysis indicates a direction opposite to what is specified in SIGN, a warning
is issued and the value of SIGN is ignored. On output, when it produces a file with the records
updated, PFC sets SIGN to the value corresponding to its sensitivity analysis.

An initial value of the phase angle is given by the PHI field of the TRANSFO record. If the trans-
former is to be adjusted, before starting the power flow computation, that value is adjusted to
coincide with the nearest tap position, in accordance with Eq. (5.5).

A transformer cannot be controlled by both an LTC-V and a PSHIFT-P record.

Only one PSHIFT-P record per transformer is allowed. The PSHIFT-P record is intended to be
used in association with a TRANSFO record. However, it is allowed to associate it with a TRFO
record in spite of the fact that the latter assumes a zero phase angle. In this case, the angle will
be initialized to zero and will be controlled as specified in the PSHIFT-P record.

5.7 Bus voltages: initial values and results

On output, PFC produces a file with the computed bus voltage magnitudes and phase angles. The
latter are specified in records with keyword LFRESV. The syntax is as follows:

LFRESV BUS MODV PHASV ;

where:

• BUS is the name of the bus. This is a string of a most 8 characters defined in a BUS record
• MODV is the bus voltage magnitude, in pu
• PHAV is the bus voltage phase angle, in radian, the slack bus being the reference.

If LFRESV records are provided on input, they are used as initial voltages of the Newton iterations,
at the specified buses.
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If no LFRESV record is specified at a bus:

• the voltage magnitude is initialized to 1 pu if the bus is of the PQ type or to the value imposed
by the generator in case of a PV bus
• the phase angle is initialized to 0 degree.

Thus, if the LFRESV records obtained from a first run of PFC are added to the data files, the other
data being unchanged, no Newton iteration is going to be performed since we are already at the
solution. This is an easy way to check that system data come with their corresponding voltages.

5.8 Share of records beween PFC and RAMSES

A summary of the records used by respectively PFC and RAMSES is given in Table 5.1.

Table 5.1: records used by PFC and RAMSES, respectively
record in PFC in RAMSES

BUS all 6 fields used only first two fields used
LINE used used

SWITCH used used
NRTP used used

TRANSFO used used
TRFO used only fields 1 to 9 and 15 used

SHUNT ignored used
GENER used ignored

SVC used ignored
SLACK used used
LFRESV used used
LTC-V used ignored

PHSHIFT-P used ignored

5.9 Computation control parameters

5.9.1 Parameters

PFC performs Newton(-Raphson) iterations to solve the power flow equations. At the k-th iteration,
the following indices are computed:

ϵP = max
i
|fi(v(k),θ(k))− P o

i | the largest absolute mismatch of the active power equations
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ϵQ = max
i
|gi(v(k),θ(k))−Qo

i | the largest absolute mismatch of the reactive power equations

ϵS = max
i

√
(fi(v(k),θ(k))− P o

i )
2 + (gi(v(k),θ(k))−Qo

i )
2 the largest apparent power mis-

match.

Convergence is achieved once :

• both ϵP and ϵQ are below specified thresholds
• all controls on transformer ratios and phase shifts are satisfied, and
• all generators and SVCs are within their reactive limits.

ϵS is used to check that the solution is accurate enough to :

• “freeze” the Jacobian matrix (in order to save some computing time)
• check the generator and SVC reactive power limits and enforce the latter if needed
• adjust the transformer ratios and phase shifs to control voltage magnitudes and active power

flows, if specified in the data.

Finally, the iterations stop as soon as divergence is detected. To this purpose the quadratic index:

φ(k) =
∑
i

√
(fi(v(k),θ(k))− P o

i )
2 + (gi(v(k),θ(k))−Qo

i )
2

is monitored. Under normal convergence conditions, φ decreases from one iteration to the next.
Therefore, the increase in φ is used to detect divergence. The algorithm stops at the iteration k

such that :
φ(k) > 1.1 φ(k − 1)

However, this test is skipped at any iteration k that follows the switching of generators or SVCs
under limit, or the adjustment of transformer ratios and phase shifts1.

5.9.2 Records

The records detailed herafter are used to control the computation. They all start with a $ to
distinguish them from the other records. They all have a single field, as detailed in Table 5.2. The
default value assigned in the absence of the record is given in the fourth column.

1indeed, these adjustments cause increases in φ that have nothing to do with divergence
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Table 5.2: Computation control parameters
record meaning of field unit default value

$SBASE base power MVA 100
(on which pu values are expressed)

$TOLAC ϵP MW 0.1
$TOLREAC ϵQ Mvar 0.1
$NBITMA max number of iterations - 20
$MISQLIM value of ϵS below which the reactive MVA 20

power limits are checked and enforced.
Set to 0 to skip the limit check

$MISBLOC value of ϵS below which MVA 10
the Jabobian is kept constant.

$MISADJ value of ϵS below which MVA 10
transformers are adjusted.
Set to 0 to skip adjustment

$DIVDET set to 1 to activate divergence - 0
test during iterations.
Set to 0 to skip test
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6.1 Phasor approximation and reference frames

Under the phasor approximation, the network equations can be written in compact form as:

Ī = YV̄ (6.1)

where:

Ī is the vector of complex currents injected into the network at the various buses
V̄ is the vector of complex voltages at the various buses
Y is the bus (or nodal) admittance matrix.

Which frequency consider for the phasors and the admittance matrix ? In dynamic regime, each
synchronous machine defines a local frequency. In most cases, those various frequencies remain
close to the nominal frequency fN . For large deviations with respect to the nominal value fN , it
can be envisaged to update the entries of the Y matrix using the average system frequency, for
instance. Otherwise, the admittances are simply computed at frequency fN .

Under the phasor approximation, the voltage at the i-th bus takes on the form:

vi(t) =
√
2Vi(t) cos(ωN t+ ϕi(t)) =

√
2 re

[
Vi(t)e

j ϕi(t)e j ωN t
]

=
√
2 re

[
(vxi(t) + jvyi(t)) e

j ωN t
]

(6.2)

where vxi(t) + j vyi(t) is the voltage phasor, in rectangular coordinates, expressed with respect to
(x, y) axes rotating at the angular speed ωN = 2πfN , as illustrated in Fig. 6.1.

re

im

x

y

ωN t

φi

Vie
jφiejωN t

vxi

vyi

Figure 6.1: Reference axes and voltage phasor

Equations similar to (6.2) can be written for the currents injected into the network, the currents
flowing into the network branches, etc.

Instead of determining the “full wave” evolution of voltages or currents, dynamic simulation in
phasor mode aims at rendering the time evolution of vxi and vyi

1.

1In RAMSES the rectangular components have been preferred to the polar components Vi and ϕi
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The (x, y) axes rotating at angular speed ωN make up a synchronous reference.

Although simple, this reference frame suffers from a significant limitation. Indeed, assuming that
the power system initially operates at the nominal franquency fN

2, after a disturbance, it will settle
at a different frequency f , unless its model includes an infinite bus imposing the frequency fN .
From there on, the various voltage and current phasors rotate at the angular speed 2πf ̸= ωN .
Hence, phasor components such as vxi and vyi will oscillate at a frequency |f − fN |, although the
system is at equilibrium from a practical viewpoint. For that reason, the synchronous reference is
not suitable for long-term simulations, since tracking the oscillations at frequency |f −fN | requires
using a small enough time step size. The synchronous reference frame is suited to short-term
simulations (where frequency has not yet returned to steady state) or when the model includes an
infinite bus driving the frequency back to fN .

In fact, any (more convenient) speed can be considered for the reference axes (x, y). The only
constraint is that all voltage and current phasors refer to the same axes.

In the Center Of Inertia (COI) reference frame, the (x, y) axes rotate at the angular frequency:

ωcoi =

∑m
i=1Miωi∑m
i=1Mi

(6.3)

where:

m is the total number of synchronous machines
ωi is the rotor speed of i-th synchronous machine (i = 1, . . . ,m)
Mi is the inertia coefficient of the i-th machine (i = 1, . . . ,m).

The Mi values relate to the inertia constants Hi (in s) of the individual machines, expressed on a
common base power SB (in MVA):

Mi = 2Hi
SNi

SB

where SNi is the nominal apparent power of the i-th machine (in MVA).

The COI reference frame does not suffer from the above mentioned drawback. Indeed, when the
system settles at a frequency f , all synchronous machines rotate at the angular speed 2πf , and
so do the reference axes (ωcoi = 2πf ). Hence, phasor components such as vxi and vyi tend to
constant values, a larger time step size can be used and the simulation is computationally less
demanding. The COI reference frame is well suited long-term simulations.

The COI frequency can be used as an average system frequency in injector and two-port models:
see Section 11.4.4.

2This is a common assumption in power system simulation software
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6.1.1 Specifying the reference frame

The reference to be used is specified in the simulation settings: see Chapter 9.

The presence of a Thévenin equivalent (involving a constant frequency voltage source) among the
components causes the simulation to use the synchronous reference frame.

6.1.2 Implementation of COI reference frame

To preserve the “sparsity” of the model in spite of Eq. (6.3), which embeds the rotor speeds of all
synchronous machines, the value of ωcoi at the previous time step is used. See:

D. Fabozzi and T. Van Cutsem “On angle references in long-term time-domain simulations”,
IEEE Transactions on Power Systems, Vol. 26, No 1, pp. 483-484, Feb. 2011

for a more detailed presentation of this technique.

6.2 Network equations

With all voltage and current phasors referred to the (x, y) axes, the network equations can be
decomposed into:

ix + j iy = Y (vx + j vy) = (G+ jB) (vx + j vy) (6.4)

with:

vx =

 vx1
...

vxN

 vy =

 vy1
...

vyN

 ix =

 ix1
...

ixN

 iy =

 iy1
...

iyN

 (6.5)

where G is the conductance matrix and B the susceptance matrix.

Decomposing into real and imaginary parts and assembling into a single equation yields:[
ix
iy

]
=

[
G −B
B G

][
vx

vy

]
(6.6)

Thus, for a network with N buses, there are 2N equations (6.6) involving 4N variables.
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6.3 Initialization procedure

The dynamic simulation is initialized according to the procedure detailed next.

1. The starting point is the vector of initial bus voltages, as detailed in Section 5.7
2. setting the bus voltages to those values, the active and reactive power flows in the network

branches and shunts are computed
3. by summing the power flows in incident branches, the bus power injections are determined.

This is illustrated in Fig. 6.2, where P inj
i (resp. Qinj

i ) is the active (resp. reactive) power
injected into the i-th bus. A positive value corresponds to power entering the network

4. at each bus, the bus power injection is shared among the various components (generators,
loads, injectors, etc.) connected to that bus.
There are two ways of assigning power to the j-th component:

(i) by specifying the active and reactive powers injected into the network by that compo-
nent:

P c
j = P c0

j Qc
j = Qc0

j (6.7)

(ii) by specifying the fraction of the bus power injection taken by that component :

P c
j = fPj P

inj
i Qc

j = fQj Q
inj
i (6.8)

where fPj (resp. fQj) denotes the fraction relative to active (resp. reactive) power.
5. the remaining power, not taken by the components at bus i, i.e.

P r
i = P inj

i −
n∑

j=1

P c
j Qr

i = Qinj
i −

n∑
j=1

Qc
j

is checked. If larger than an internal tolerance, the power is assigned to an impedance load3,
as shown in Fig. 6.2. The load admittance is such that the power balance is satisfied at t = 0:

(Gr
i − j Br

i ) Vi(0)
2 = −(P r

i + jQr
i ) (6.9)

where Vi(0) is the initial bus voltage magnitude4. Note that the sign of Gr
i is opposite to that

of P r
i , while the sign of Br

i is the same as that of Qr
i .

The two ways mentioned under items (i) and (ii) above are mutually exclusive, i.e. either a nonzero
power or a nonzero fraction is specified, but not both. In mathematical terms:

fPj × P c0
j = 0 fQj ×Qc0

j = 0 (6.10)

Although they are typically in the interval [0 1], the values of the fPj ’s and fQj ’s may be negative
or larger than one.

3to be more precise a constant shunt impedance, or equivalently a constant shunt admittance load
4the left-hand side of Eq. (6.9) is the complex power consumed by the admittance, while P r

i + jQr
i is counted positive when

the power is injected into the network. Hence, the minus sign in the right hand side of the equation
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Pi1, Qi1 Pi2, Qi2

P inj
i = Pi1 + Pi2

i

Qinj
i = Qi1 +Qi2P c

j , Q
c
j

Gr
i , B

r
i

n components connected to bus i

Figure 6.2: initial powers at bus i

In the quite common case when a single component is connected to a bus, and it takes the whole
power consumed or produced at that bus, it is convenient to specify:

fPj = 1 P c0
j = 0 fQj = 1 Qc0

j = 0

With fractions instead of powers, the data can be re-used at another initial operating point5.

The constant admittance (or impedance) loads corresponding to Eq. (6.9) are created automati-
cally at system initialization. They are given names of the type M bus, where M stands for “mis-
match” and bus is the name of the bus to which the admittance is connected. Names starting with
M are reserved and must not be used when defining constant admittance loads.

A large value of Gr
i (resp. Br

i ) may be intentional, when a load is to be modelled as a constant
shunt admittance and the task is left to RAMSES. However, it may also result from a mistake in
the initial power balance. It is recommended to check the values of the M loads through the menu
“Load Initialization” in the STEPSS interface.

¬ Here is an example of output produced by RAMSES at initialization.
NUMBER OF IMPEDANCE LOADS : 3 (M_ type: 3 )

load name bus name P Q

M_2 2 90.002 17.997

M_3 3 0.013 -0.011

M_4 4 -0.017 -0.022

In this example, three M loads have been produced at initialization, respectively at
buses 2, 3 and 4. The one at bus 3 consumes 0.013 MW and produces 0.011 Mvar.
This load was created because it is larger than the internal tolerance but, for a trans-
mission system, this is a negligible value. The same holds true for the M load at bus

5i.e. when another set of initial voltages is used
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4. On the other hand, the M load at bus 2 is non negligible. This could be due to
forgetting to specify a load at bus 2.

6.4 Data format

The way to specify the values of fPj , P
c0
j , fQj and Qc0

j is detailed in the following subsequent
sections of this documentation:

• for a synchronous machine: Section ??
• for a Thévenin equivalent: Section ??
• for a constant impedance load: Section ??
• for an injector with user-defined model: Section 11.6.1
• for a two-port with user-defined model: Section 11.6.2
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7.1 Synchronous Machines and Controls

7.1.1 Synchronous Machine

SYNC MACH Sync Mach Name BUS NAME FP FQ P Q Snom Pnom H D ibratio XT/RL Xl Xd
X’d X”d Xq X’q X”q m n Ra T’do T”do T’qo T”qo

EXC EXC TYPE parameters passed to EXC

TOR TOR TYPE parameters passed to TOR ;

7.2 Injectors

INJEC INJ TYPE NAME BUS NAME FP FQ P Q parameters passed to INJ ;

7.3 Infinite Bus

INJEC THEVEQ INJEC NAME BUS NAME FP FQ P Q MVA ;

7.4 Impedance Load

IMPLOAD loadname BUS NAME FP FQ P Q ;
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Disturbances need to have a continuity.

8.1 Continue Solver

time(s) CONTINUE SOLVER disc meth max h(s) min h(s) latency(pu) upd over

Discretization method (disc meth):

• TR: Trapezoidal
• BE: Backward Euler
• BD: BDF2

Jacobian update override (upd over):

• ALL: Update all injectors and network
• NET: Update only network
• ABL: Update only injectors
• IBL: Update all injectors and network
• NOT: Do not override

It is mainly used to modify the settings of the solver and has to exist at the first line. For example:

0.000 CONTINUE SOLVER BD 0.0200 0.001 0. ALL

8.2 Set stopping criteria for voltage

Define in the data files the following record:

DCTL SIM MINMAXVOLT CTRL Name VMAX(pu) VMIN(pu) DEADTIME(s) Stop Simulation(T/F)
;

8.3 Set stopping criteria for machine speed

Define in the data files the following record:

DCTL SIM MINMAXVOLT CTRL Name MAX SYNC SPEED(pu) MIN SYNC SPEED(pu) DEAD-
TIME(s) Stop Simulation(T/F) ;
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8.4 Stop

time(s) STOP

It is used to signal the end of the simulation and has to exist at the last line.

For example:

100.000 STOP

8.5 Trip line

time(s) BREAKER BRANCH name of line orig break(0/1) extrem break(0/1)

Used to open/close the breakers of a line.

For example, opening both ends of a line:

10.000 BREAKER BRANCH 1044-4032 0 0

8.6 Trip synchronous machine / injector

time(s) BREAKER SYNC MACH/INJ name of synch mach/name of injector breaker(0/1)

Used to open/close the breaker (trip) of a synchronous machine or injector.

For example:

10.000 BREAKER INJ L 11 0

8.7 Three phase short-circuit (with use of resistance to ground)

This demands two commands:

time(s) FAULT BUS name of bus rfault [xfault]
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time(s) CLEAR BUS name of bus

The first line is used to declare the starting of the short-circuit. The fault has a resistance of
rfault+j*xfault to the ground where the values of rfault and xfault are in Ohm. If xfault is not defined,
a fully resistive fault is assumed.

Example of a 100ms short-circuit directly to ground:

10.000 FAULT BUS 1044 0. 0.
10.100 CLEAR BUS 1044

8.8 Three phase short-circuit (with use of voltage reached after fault)

This demands two commands:

time(s) VFAULT BUS name of bus Voltage reached after fault

time(s) CLEAR BUS name of bus

The first line is used to declare the starting of the short-circuit. The fault has an unknown resis-
tance (j*xfault) to the ground. Based on the value of the voltage reached after the fault (declared
in pu), xfault is computed and used for simulating the fault.

Example of a 100ms short-circuit where the voltage at the faulted bus reached 0.5 pu after the
fault:

10.000 VFAULT BUS 1044 0.5
10.100 CLEAR BUS 1044

Supported: Version 3.13 and above.

8.9 Change parameters

Used to change the parameters of a model during the simulation.

8.9.1 BRANCH

time(s) CHGPRM BRANCH name of line MAGN/PHAN ±increment
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8.9.2 SHUNT

time(s) CHGPRM SHUNT name of shunt QNOM ±increment

The increment should be expressed in MVAr and it is per unitized internally by RAMSES.

8.9.3 EXC

time(s) CHGPRM EXC name of equipment name of parameter ±increment (MVAr/%) duration(s)

The units is not obligatory. If nothing is given then the parameter is modified in absolute value.
If MVAr is given, then the increment is per unitized using Snom of the machine before applying
the change. If % is given, then the parameter is changed as a percentage of the original value. If
duration = 0 then a step change is applied, otherwise the change is applied as a ramp over the
given duration (in seconds).

For example:

10.000 CHGPRM EXC g1 V0 +10 % 10

This means the parameter V0 of the exciter of synchronous machine g1 is ramped by +10%
between 10 and 20 seconds.

8.9.4 TOR

time(s) CHGPRM TOR name of equipment name of parameter ±increment (MW/%) duration(s)

The units is not obligatory. If nothing is given then the parameter is modified in absolute value. If
MW is given, then the increment is per unitized using Pnom of the machine before applying the
change. If % is given, then the parameter is changed as a percentage of the original value. If
duration = 0 then a step change is applied, otherwise the change is applied as a ramp over the
given duration (in seconds).

For example:

10.000 CHGPRM TOR g1 P0 +1 MW 10

This means the parameter P0 of the torque controller of synchronous machine g1 is ramped by
+1 MW between 10 and 20 seconds.
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8.9.5 INJ/TWOP/DCTL

time(s) CHGPRM INJ/TWOP/DCTL name of equipment name of parameter±increment (MW/MVAr/%/SETP)
duration(s)

The units is not obligatory. If nothing is given then the parameter is modified in absolute value.
If MW or MVAr is given, then the increment is per unitized using system’s Sbase before applying
the change. If % is given, then the parameter is changed as a percentage of the original value. IF
SETP is given then the value increment is actually the new setpoint. If duration = 0 then a step
change is applied, otherwise the change is applied as a ramp over the given duration (in seconds).

For example:

10.000 CHGPRM INJ L 11 P0 +50 % 60
10.000 CHGPRM INJ L 11 Q0 +30 % 60

This means the parameter P0 (resp. Q0) of the injector L 11 is ramped by +50% (resp. 30%)
between 10 and 70 seconds. In this case, if L 11 is a load model, it can be used to simulate a load
increase.

8.10 Export Jacobian matrix

time(s) JAC ’name of filename’

Also, make sure to add these to your settings:

$OMEGA REF SYN ;

$SCHEME IN;

8.11 Export load flow

Takes a snapshot of the system and exports the load flow at a specific time.

time(s) LFRESV ’name of filename’
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9.1 Sampling time for observed variables

$PLOT STEP time(s) ;

9.2 Display Profiling Results

$DISP PROF T/F ;

9.3 Run-time observables refresh interval

$GP REFRESH RATE time interval(s) ;

9.4 Time constant of load restoration

$T LOAD REST time(s) ;

9.5 Omega Reference

$OMEGA REF SYN/COI ;

Synchronous reference frame or center of inertia reference frame.

9.6 Maximum Fault Value

$MAX FAULT value ;

9.7 Base Power

Sets the global base power of the system.
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$S BASE BASE(MVA) ;

9.8 Nominal Frequency

FNOM Frequency(Hz) ;

9.9 Newton Tolerance

$NEWTON TOLER NETWORK TOLERANCE INJ RELATIVE TOLERANCE INJ ABSOLUTE TOLERANCE
;

Set’s the solver Newton iteration tolerance for stopping. Default values are: 1e-03, 5e-04, 5e-04.

9.10 Finite Difference Values

$FIN DIFFER proportional value absolute value ;

Values used to calculate numerically Jacobian matrices of injectors.

9.11 Full Jacobian Update

$FULL UPDATE T/F ;

Disable partial Jacobian updates.

9.12 Skip Converged Blocks

$SKIP CONV T/F ;

Activate/Deactivate stopping to solve converged injectors.
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9.13 Latency Tolerance

$LATENCY OBS TIME WINDOW(s) EARLY STOP(T/F) ;

9.14 Solution Scheme

$SCHEME DE/IN ;

Integrated or Decomposed solution scheme.

9.15 Number of Threads for parallel computing

$NB THREADS Number ;

9.16 Way of injector distribution over parallel threads

$OMP STA/DYN/GUI chunk ;

STA is for static assignment (better for NUMA architecture computers), DYN is for dynamic as-
signment (better for UMA architecture computers) and GUI is for guided. Chunk is the number of
consecutive injectors assigned to each thread.

9.17 Update network elements with frequency

$NET FREQ UPD T/F ;

Check Network update with frequency.
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10.1 Discrete Controllers

10.1.1 LTC

DCTL LTC CTLNAME TRFONAME BUS NAME DIR NMIN NMAX NBPOS TOL DELAY1 DELAY2
;

10.1.2 Real-time synchronizer

DCTL RT CTLNAME ratio to rt ;

If ratio to rt is set to 1.0, the simulation will be slowed down when it’s faster than RT to synchronize.
The moments it is slower, nothing will be done. Setting ratio to rt to 2.0, means twice faster than
RT (if possible), etc.

10.2 Two-port Injectors
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11.1 States and equations

11.1.1 States

The four categories of user-defined models and their acronyms are as follows:

EXC excitation controller of synchronous machine: typically the excitation system and the Auto-
matic Voltage Regulator (AVR), including the Power System Stabilizer (PSS)

TOR torque controller of synchronous machine: typically the turbine and the speed governor
INJ injector: a component connected to a single AC bus

TWOP two-port: a component connecting two buses.

Whichever its type, any model has input states (grouped in xIN ), internal states (in xITL) and
output states (in xOUT ) as sketched in Fig. 11.1. Note that states can be indifferently differential
or algebraic states.

internal states
xITL

input states
xIN

output states
xOUT

operating-point
dependent parameters

u

model

Figure 11.1: Outline of a model

The input and output states pertaining to each category of model are detailed in Table 11.1. The
notation is as follows:

For an excitation controller:

V terminal voltage of the machine, in pu
P active power produced, in pu on the machine rated apparent power (MVA)
Q reactive power produced, in pu on the machine rated apparent power (MVA)
ω rotor speed, in pu
if field current, in pu on the exciter base current
vf field voltage, in pu on the exciter base voltage.

For a torque controller:

ω rotor speed, in pu
P active power produced, in pu on the turbine rated power (MW)

Tm mechanical torque applied to rotor, in pu on the turbine rated torque.
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Table 11.1: Input and output states
type of model input states output states

excitation controller of V, P,Q, ω, if of machine vf of machine
synchronous machine
torque controller of P, ω of machine Tm of machine

synchronous machine
injector vx, vy at bus ix, iy into bus

ωcoi

two-port vx1, vy1, vx2, vy2 at buses ix1, iy1, ix2, iy2 into buses
ωcoi

For an injector:

vx, vy rectangular components of phasor of voltage at the connection bus (the (x, y) reference axes
have been defined in Section 6.1)

ix, iy rectangular components of phasor of current injected into the connection bus
ωcoi angular frequency of center of inertia, in pu1.

For a two-port:

vx1, vy1 rectangular components of phasor of voltage at bus 1
vx2, vy2 rectangular components of phasor of voltage at bus 2
ix1, iy1 rectangular components of phasor of current injected into bus 1
ix2, iy2 rectangular components of phasor of current injected into bus 2

ωcoi angular frequency of center of inertia, in pu.

The models also include operating-point dependent parameters (grouped in u).

The three categories of states are treated as follows:

• at the initialization of the model:
– the input states are given. They are obtained from the synchronous machine states

(see Section ???) or the initial power injected into buses (see Section 6.1)
– the output states are also given, using the same information2

– the internal states are initialized either explicitly by the user or automatically by RAM-
SES

– the operating-point dependent parameters are initialized by the user, in agreement with
the initial values of the states

1This can be used as an average system frequency. One of the modelling blocks (see next Chapter) offers the possibility to
estimate the “local” frequency at the connection bus

2at first glance, specifying both the input and the output states would lead to an overdetermined system with more equations
than states; this is not the case since the excess equations are used to initialize the operating-point dependent parameters u. The
number of the latter is equal to the number of output states
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• during the simulation:
– the input, the internal and the output states are computed together with the other system

states
– the operating-point dependent parameters remain constant, unless they are modified

by a user action (see Section ??).

Note that the model must have a number of equations at least equal to the number of output states,
otherwise it is not correctly formulated.

Note also that not all input states need be used.

¬ Consider the very simple excitation system shown in Fig. 11.2. The following equations are
easily derived:

0 = V o − V − dV (11.1)

T
dvf
dt

= −vf +G dV (11.2)

The model has a single input (V ), a single internal state (dV ) and the requested output state
(vf ). dV is an algebraic state, while vf is a differential one. V o is the single component of the
u vector.

At initialization, the system is assumed in steady state:
dvf
dt

= 0. Hence, dV (0) =
vf (0)

G
,

where (0) denotes values at t = 0. V o is obtained from Eq. (11.1) as: V o = V (0) + dV (0).

G
1+sT

V o

V
+

−
dV

vf

Figure 11.2: A very simple model of excitation system

11.1.2 Equations

As they are determined from the machine and the network equations, the input states are not part
of the user model state vector, which thus takes on the form:

x =

[
xITL

xOUT

]
(11.3)

The differential-algebraic equations can be written in compact form as:

Tẋ = f(x,xIN ,u, z) (11.4)

where x and f have the same dimension. The i-th row of matrix T includes:
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• only zeros if the i-th equation is algebraic
• a single nonzero term Tij if the i-th equation is differential with:

Tij ẋj = fi(x,xIN ,u, z)

where i and j may be different.

The nonzero components of T are time constants, typically.

z is a vector of discrete variables whose role is detailed in the next section.

11.2 Discrete transitions

The material of this section is provided for information in so far as the corresponding treatment
is performed automatically by STEPSS. Nevertheless, it may help interpreting the output curves
and/or some execution messages.

11.2.1 Formulation

¬ Consider now a little more detailed version of the model in Fig. 11.2, including non-windup
limits on the integrator embedded in the first-order transfer function, as shown in Fig. 11.3.

G

V o

V
+

−
dV

vf+

−

1
s T

vmax
f

vmin
f

Figure 11.3: A little more detailed version of the system in Fig 11.2

The system is modelled by one of the following three sets of equations:

• if the integrator is not at any of its limits (z = 0):

0 = V o − V − dV (11.5)

T
dvf
dt

= −vf +G dV (11.6)

• if the integrator is at its upper limit (z = 1):

0 = V o − V − dV (11.7)

0 = vmax
f − vf (11.8)
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• if the integrator is at its lower limit (z = −1):

0 = V o − V − dV (11.9)

0 = vmin
f − vf (11.10)

As shown in the above example, a discrete variable z is used to identify which set of equations
must be solved at any given time of the simulation. The values assigned to z are completely
arbitrary. Changing z from one value to another corresponds to substituting one set of equations
to another. Such “discrete transitions” take place when some inequality constraints are violated.
A typical example is when a state exceeds its prescribed limit.

Note incidentally that differential equations can be changed into algebraic ones, and conversely.
This is a feature offered by RAMSES.

¬ In the example of Eqs. (11.5-11.10), here is the pseudo-code performing the discrete transi-
tions relative to the non-windup integrator:

if z = 0 then
if vf > vmax

f then
z ← 1

else if vf < vmin
f then

z ← −1
end if

else if z = 1 then
if (−vf +G dV )/T < 0 then
z ← 0

end if
else if z = −1 then

if (−vf +G dV )/T > 0 then
z ← 0

end if
end if

The z variables are initialized at the beginning of the simulation, as for the states.

¬ In the example of Eqs. (11.5-11.10), here is the pseudo-code initializing the z variable
relative to the non-windup integrator:

if vf > vmax
f then

z ← 1

else if vf < vmin
f then

z ← −1
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else
z ← 0

end if

In the above example, at t = 0, if vf violates one of its limits, it is brought back to that limit. This
means that a discrete transition will take place right away at t = 0.

11.2.2 Discrete transition identification and treatment scheme

This section deals with the handling of discrete transitions when passing from time t to time t+ h,
where h is the time step size. It is assumed that the system equations have been irrevocably
solved until time t.

When the solver detects that the condition for a discrete transition has been satisfied in the time
interval [t t+ h], it does not attempt to identify the exact time t′ (t < t′ ≤ t+ h) when the condition
became satisfied. Instead, the following ex post solution scheme is used:

1. for the value of the discrete variables z prevailing at time t, Eqs. (11.4) are integrated from t

to t+ h with full accuracy3

2. at the resulting point, the inequality constraints associated with discrete transitions are checked.
If needed, z is changed, i.e. Eqs. (11.4) are changed

3. the integration step from t to t + h is canceled, all states are reset to their values at time t,
and the new equations (11.4) are integrated from t to t+ h with full accuracy

4. if needed, steps 2 and 3 are repeated until no change in z takes place. As the solver could
be trapped in a limit cycle of discrete transitions, a maximum number of z changes at the
same time is allowed. If that number is reached, the integration time step size is temporarily
decreased from h to its minimum value hmin (see Section ???). If the limit cycle problem
persists with the minimum step size, the simulation stops; the model should be adjusted with
respect to the sequence of discrete transitions.

The solution scheme is presented in greater detail in:

D. Fabozzi, A. S. Chieh, P. Panciatici and T. Van Cutsem “On simplified handling of state events
in time-domain simulation”, Proc. of the 17th Power System Computation Conference (PSCC),
2011

It is illustrated graphically in Fig. 11.4, for a single state x and a single discrete variable z. The
numbers refer to the above steps and times are shown in parentheses.

3solving them with less accuracy, to the purpose of gaining time, might lead to wrong identification of the discrete transitions
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x

z

(t) (t+ h)

(t+ h)

1
2

3

Figure 11.4: Graphical representation of the solution scheme to handle discrete transitions

11.3 Model assembly

In order for CODEGEN to generate the differential-algebraic equations of an arbitrarily complex
user model, the latter is decomposed into a set of simple, interconnected modelling blocks. The
latter correspond to time constants, integrators, PID controllers, non-linearities, etc. The library of
available modelling blocks is documented in Chapter 12.

The EXC, TOR, INJ or TWOP model is thus handled as a set of interconnected modelling blocks,
as illustrated in Fig. 11.5.

modelling
block

modelling
block

modelling
block

xi xj xl xm

[xITL]

Figure 11.5: A user model made up of interconnected modelling blocks

Each block contributes with its algebraic and/or differential equations. Equations (11.4) are ob-
tained by gathering the equations of all the blocks.

The blocks are interconnected through links. A distinct internal state (contributing to xITL) is
associated with each link. It can be differential or algebraic. Each of these states must be given
by the user a unique name as well as an initial value.

Most of the modelling blocks also involve internal states (contributing to xITL). Unlike the states
associated with links between the blocks, the user does not need to name them, nor to initialize
them; this is done automatically by the code generated by CODEGEN.

Finally, some modelling blocks involve discrete variables z.

¬ Example. The modelling block tf1p1z is an example of block with one internal state. It
implements the transfer function with one pole and one zero shown in Fig. 11.6.

xi is either an input or an internal state, while xj is either an internal or an output state. The
model requires three data: G, Tz and Tp.
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xi xjG1+sTz
1+sTp

Figure 11.6: The tf1p1z modelling block

CODEGEN generates the following equations:

ẋ1 = G xi − xj (11.11)

0 = Tp xj −G Tz xi − x1 (11.12)

where x1 is an internal state. The latter is automatically initialized to :

x1(0) = G (Tp − Tz)xi(0)

which is obtained by setting the derivative of x1 to zero in the above equations.

11.4 Syntax of the model description

A model is specified in a text file with the contents and structure shown in Fig. 11.7. The name of
the file can be freely chosen.

The file is made up of six sections, which are detailed hereafter. All sections must be present and
in the order shown in Fig. 11.7.

All keywords must be written exactly as specified in this documentation. In particular the up-
per/lowercase must be the same and no blank must be inserted or skipped.

11.4.1 Header

The header includes two lines in which:
<type of model> specifies the type of model. It can be exc, tor, inj or twop, as explained in
Section 11.1.1
<name of model> specifies the name of the model. This is a string of at most 16 characters

If a model type abc and a model name xyz are specified, the complete name of the model will
be abc xyz.f90. This name has to be used in the data files (see Section ???). CODEGEN will
correspondingly produce a file named abc xyz.f90 with the FORTRAN code of the model.
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<type of model>
<name of model>
%data
<name of data 1>
<name of data 2>

...
%parameters
<name of parameter 1>=<mathematical expression 1>
<name of parameter 2>=<mathematical expression 2>

...
%states
<name of internal state 1>=<mathematical expression of initial value 1>
<name of internal state 2>=<mathematical expression of initial value 2>

...
%observables
<name of state, data or parameter 1>
<name of state, data or parameter 2>

...
%models
& <name of modelling block 1>
<name of state 1>
<name of state 2>

...
<name of data 1, name of parameter 1 or mathematical expression 1>
<name of data 2, name of parameter 2 or mathematical expression 2>

...
& <name of modelling block 2>
<name of state 1>
<name of state 2>

...
<name of data 1, name of parameter 1 or mathematical expression 1>
<name of data 2, name of parameter 2 or mathematical expression 2>

...

Figure 11.7: Syntax of model files

11.4.2 Data section

The data section starts with the keyword %data.
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Table 11.2: Base powers that can be used in models (reserved names)
model type name meaning

exc - -
tor - -
inj {sbase} base power used for per unit values in the network (MVA)

twop {sbase1} base power used for per unit values in the subnetwork including bus 1 (MVA)
{sbase2} base power used for per unit values in the subnetwork including bus 2 (MVA)

Each data must be given a unique name. That name, enclosed with braces {}, is used in the rest
of the model description.

The braces must not be used when a data is first defined, i.e. before the = symbol4. If used, the
brace(s) will be treated as part of the data name, which most likely will lead to an error and the
failure to compile the model.

Each name can be followed by a comment, on the same line, starting with an exclamation mark !.

At the initialization of a simulation, RAMSES maps the data present in the input file with those
declared in the data section of the model. The data are read from the data file in the order
specified in the data section.

The base power used for per unit values in the network is a data available by default in the inj

and twop models, as detailed in Table 11.2. The names are enclosed with braces, as for other
data. The names are reserved and must not be used for another data.

11.4.3 Parameter section

The parameter section starts with the keyword %parameters.

Each parameter must be given a unique name. That name, enclosed with braces { }, is used in
the rest of the model description.

The braces must not be used when a parameter is first defined, i.e. before the = symbol5. If used,
the brace(s) will be treated as part of the parameter name, which most likely will lead to an error
and the failure to compile the model.

Each name can be followed by a comment, on the same line, starting with an exclamation mark !.

A data and a parameter cannot be given the same name.

4since CODEGEN expects to find a data, there is no ambiguity
5since CODEGEN expects to find a parameter, there is no ambiguity
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At initialization of the simulation, each parameter is given the value specified by the mathematical
expression after the = symbol. This expression usually involves data but it can also involve param-
eters which have been previously defined6. It may involve standard mathematical functions such
as cos, ∗∗, sqrt, etc. The syntax is that of the FORTRAN language. It can be found for instance at:

https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-0/categories-
of-intrinsic-functions.html

Attention is drawn on the following syntactic items:

• the exponent is denoted with ∗∗, not ˆ (as with MATLAB)
• the operators in boolean expressions are denoted as follows: .lt. (smaller than), .le. (smaller

or equal to), .gt. (greater than), .ge. (greater or equal to), .eq. (equal to), .ne. (not equal to).

11.4.4 State section

The state section starts with the keyword %states.

Each internal state must be given a unique name. That name, enclosed with brackets [ ], is used
in most places of the model description.

The brackets must not be used when a state is first defined, i.e. before the = symbol7. If used, the
bracket(s) will be treated as part of the state name, which most likely will lead to an error and the
failure to compile the model.

Similarly, brackets must not be used when specifying the input and/or output states of a block.

Each state declaration can be followed by a comment, on the same line, starting with an exclama-
tion mark !.

A state cannot have the same name as a data or a parameter.

Input and output states have their own, reserved names that cannot be used for internal states.
They are listed in Table 11.3. All values are in pu on the bases detailed in Section 11.1.1. As for
other states, their names must be enclosed with brackets.

Each internal state is initialized at the value specified by the mathematical expression after the =
symbol. This expression may involve data, parameters or states (the initial values of those states,
to be precise) that have been previously defined or are listed in Table 11.3. The mathematical
expression may involve standard mathematical functions: see previous section.

6the names of those parameters must be enclosed in braces
7since CODEGEN expects to find a state, there is no ambiguity
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Table 11.3: Reserved names that must not be used for internal states
model type reserved names meaning of state

exc [v] terminal voltage of machine
[p] active power produced by machine
[q] reactive power produced by machine

[omega] rotor speed of machine
[if] field current of machine
[vf] field voltage of machine

tor [p] mechanical power produced by turbine
[omega] rotor speed of machine

[tm] mechanical torque of turbine
inj [vx] x component of bus voltage

[vy] y component of bus voltage
[omega] angular speed of center of inertia

[ix] x component of current injected into network
[iy] y component of current injected into network

twop [vx1] x component of voltage at bus 1
[vy1] y component of voltage at bus 1
[vx2] x component of voltage at bus 2
[vy2] y component of voltage at bus 2

[omega1] angular speed of center of inertia of subsystem including bus 1
[omega2] angular speed of center of inertia of subsystem including bus 2

[ix1] x component of current injected into network at bus 1
[iy1] y component of current injected into network at bus 1
[ix2] x component of current injected into network at bus 2
[iy2] y component of current injected into network at bus 2

Only internal states are declared, input and output states are not. Let us recall that their initial
values are known.

11.4.5 Observable section

The observable section starts with the keyword %observables.

Observables are quantities candidate to be plotted as functions of time at the end of the simulation.
They are usually (input, output or internal) states but data or parameters are also allowed8.

The data and the parameter names must not be enclosed with braces. Similarly, the state names
must not be enclosed with brackets.

8this allows displaying the time evolution of a controller setpoint, for instance
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11.4.6 Model section

The model section starts with the keyword %models.

The modelling blocks and their data are enumerated sequentially. The order does not matter.
Each modelling block is identified by the & symbol, followed by a space, followed by the name of
the block. The information required by each block is detailed in the next chapter.

Each name can be followed by a comment, on the same line, starting with an exclamation mark !.

The end of the section coincides with the end of the file.

11.4.7 An example

Here is the code of the simple excitation system shown in Fig. 11.3. The name of the model is
“simple avr”. There are three observables: one parameter, one internal state and one output state

exc

simple_avr

%data

G ! gain of exciter

T ! time constant of the exciter

vfmin ! lower fielf voltage

vfmax ! upper field voltage

%parameters

Vo = [v]+ [vf]/{G} ! voltage setpoint of AVR

%states

dv = [vf]/{G} ! voltage error

%observables

Vo

dv

vf

%models

& algeq ! calculation of voltage error

{Vo}-[v]-[dv]

& tf1plim ! exciter transfer function

dv

vf

{G}

{T}

{vfmin}
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{vfmax}

Here is the trace of execution, showing the counts of equations and states, respectively, as the
modelling blocks are assembled.

WELCOME TO CODEGEN v5

the model generator of STEPSS

Input file with model description: simple_avr.txt

MODEL NAME : exc_simple_avr

Processing data...

prm( 1)= G ! gain of exciter

prm( 2)= T ! time constant of the exciter

prm( 3)= vfmin ! lower fielf voltage

prm( 4)= vfmax ! upper field voltage

Processing parameters...

prm( 5)= Vo voltage setpoint of AVR

Processing states...

Output states

x( 1)= vf field voltage

Internal states defined by user

x( 2)= dv voltage error

Processing observables...

Vo

dv

vf

Number of user-defined and output d/a states : 2

Processing models...

& algeq ! calculation of voltage error

1 d/a eqs 2 d/a states 0 disc states

& tf1plim ! exciter transfer function

2 d/a eqs 2 d/a states 1 disc states

Merging temporary files...

com.tmp

head.tmp

obs.tmp

init.tmp

evalf.tmp

updz.tmp
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11.4.8 What about time ?

Time is neither a data, nor a parameter, nor a state. Although this is infrequent, time may appear
explicitely in some models. It is denoted t (without brackets).

11.5 Error detection

CODEGEN performs some “sanity checks” to detect mistakes such as:

• unbalanced braces or brackets
• missing keyword %data, %parameters, %states, %observables or %models
• multiply defined data, states or parameters
• usage of a reserved name for an internal state
• typo leading to an unknown name of state or modelling block
• ouput variable not appearing in any equation of the model
• number of states different from number of equations (differential or algebraic).

However, not all mistakes are flagged by CODEGEN. Typos or syntax errors may not be detected,
leading to error messages by the compiler when the .f90 file is compiled. Some examples are:

• typos in the name of a mathematical function. For instance, “cus([delta])” instead of “cos([delta])”,
exponent denoted by ˆ instead of **
• forgotten braces { } enclosing the name of a data or a parameter
• forgotten brackets [ ] enclosing the name of a state.

11.6 Data format

11.6.1 Injectors

The data of an injector are defined in the Data section of the user-defined model, see Sec-
tion 11.4.2. The corresponding values are to be provided in an INJEC record with the following
syntax:

INJEC MODEL NAME INJ NAME BUS FP FQ P Q DATA1 DATA2 ...;
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where:

• MODEL NAME is the name of injector model, as defined in the header of the model description,
see Section 11.4.1. This is a string of at most 20 characters
• INJ NAME is the name of the injector (a particular instance of the model). This is a string of

at most 20 characters
• BUS is the name of the bus to which the injector is connected. This is a string of at most 8

characters
• FP is the fraction fPj defined by Eq. (6.8)
• FQ is the fraction fQj defined by Eq. (6.8)
• P is the initial active power defined by Eq. (6.7). Let us recall that FP and P must obey

Eq. (6.10)
• Q is the initial reactive power defined by Eq. 6.7. Let us recall that FQ and Q must obey

Eq. 6.10
• DATA1 DATA2 ... are the successive values of the data, as defined in the Data section of

the user-defined model. In particular they appear in the order defined in that section.

11.6.2 Two-ports

The data of a two-port are defined in the Data section of the user-defined model, see Sec-
tion 11.4.2. The corresponding values are to be provided in an TWOP record with the following
syntax:

TWOP MODEL NAME TWOP NAME BUS1 BUS2 IND FP1 FQ1 P2 Q2 DATA1 DATA2 ...;

where:

• MODEL NAME is the name of two-port model, as defined in the header of the model descrip-
tion, see Section 11.4.1. This is a string of at most 20 characters
• INJ NAME is the name of the two-port (a particular instance of the model). This is a string of

at most 20 characters
• BUS1 is the name of the first bus to which the two-port is connected. This is a string of at

most 8 characters
• BUS2 is the name of the second bus to which the two-port is connected. This is a string of

at most 8 characters
• IND is a “synchronization” indicator:

– if it is set to “S”, the two-port causes the subnetworks of BUS1 and BUS2 to be “syn-
chronous”, i.e. to operate at the same frequency, as for an AC transmission line, for
instance

– if it is set to “A”, the two sub-networks are left “asynchronous”, i.e. they operate at
different frequencies, as for an HDVC link, for instance.

Other values of IND are incorrect.
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• FP1 is the fraction fPj defined by Eq. (6.8), relative to BUS1

• FQ1 is the fraction fQj defined by Eq. (6.8), relative to BUS1

• P1 is the initial active power defined by Eq. (6.7) relative to BUS1. Let us recall that FP1 and
P1 must obey Eq. (6.10)
• Q1 is the initial reactive power defined by Eq. 6.7 relative to BUS1. Let us recall that FQ1 and
Q1 must obey Eq. 6.10
• FP2 is the fraction fPj defined by Eq. (6.8), relative to BUS2

• FQ2 is the fraction fQj defined by Eq. (6.8), relative to BUS2

• P2 is the initial active power defined by Eq. (6.7) relative to BUS2. Let us recall that FP2 and
P2 must obey Eq. (6.10)
• Q2 is the initial reactive power defined by Eq. 6.7 relative to BUS2. Let us recall that FQ2 and
Q2 must obey Eq. 6.10
• DATA1 DATA2 ... are the successive values of the data, as defined in the Data section of

the user-defined model. In particular they appear in the order defined in that section.
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12.1 List of modelling blocks

The list of modelling blocks is given in the table below, together with a brief description.

Table 12.1: List of modelling blocks
abs Absolute value of input

algeq Algebraic equation
db Deadband

f inj Estimate of frequency at bus of injector
ftwop bus1 Estimate of frequency at first bus of two-port
ftwop bus2 Estimate of frequency at second bus of two-port

fsa Finite State Automaton
hyst Hysteresis

int Integrator with time constant
inlim Integrator with time constant and non-windup limits on output

invlim Integrator with time constant and non-windup variable limits on output
lim Limiter with constant bounds

limvb Limiter with variable bounds
max1v1c Maximum between a state and a constant

max2v Maximum between two states
min1v1c Minimum between a state and a constant

min2v Minimum between two states
nint Integer nearest to the input shifted by a constant
pictl Proportional-Integral (PI) controller

pictllim Proportional-Integral (PI) controller with non-windup limit on integral term
pictl2lim PI controller with non-windup limit on integral term and limit on proportional term
pictlieee PI controller with non-windup limit on integral term, compliant with IEEE standards

pwlin Piece-wise linear function of input
switch Set output to one among n inputs, based on value of a controlling state
swsign Switch between two input states, based on sign of a third input state

tf1p Transfer function between input and output: one time constant
tf1plim same as tf1p with non-windup limits on output

tf1pvlim same as tf1p with variable non-windup limits on output
tf1p2lim same as tf1p with limits on rate of change of output and non-windup limits on output

tfder1p Transfer function: derivative with one time constant
tf1p1z Transfer function between input and output: one zero and one pole
tf2p2z Transfer function between input and output: two real zeros and two real poles
timer Timer with delay varying piecewise linearly with monitored variable

timersc Timer with delay varying as a staircase function of monitored variable
tsa Two-state automaton with transitions based on signs of two inputs
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12.2 Information provided for each block

Most blocks have input and output states. The names of those states must not be enclosed with
backets1. If used, the brackets will be treated as part of the state name, which most likely will to a
wrong reference and the failure to compile the model.

Most (but not all) blocks require parameters. Each of them is either a data (enclosed with braces)
or a parameter in the sense defined in the previous chapter (also enclosed with braces) or a
mathematical expression involving data and/or parameters.

¬ Here are three examples of information that can be specified for a time constant:

2.
{T}
1/{omegac}

12.3 Library

1since CODEGEN expects to find a state name, there is no ambiguity
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abs

Absolute value of input.

xi xj xj = |xi|

Syntax : & abs
name of state xi
name of state xj

Internal states : none

Discrete variable : z ∈ {−1, 1}

Equations :

0 =

{
xj − xi if z = 1

xj + xi if z = −1

Discrete transitions :

if z = 1 then
if xi < 0 then
z ← −1

end if
else

if xi > 0 then
z ← 1

end if
end if

Initialization of discrete variables:

if xi > 0 then
z ← 1

else
z ← 0

end if
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The model having a discontinuous derivative at xi = 0, it is implemented internally with a small
hysteresis; see model hyst with xI = ϵ, yIB = −ϵ, yIA = ϵ, xD = −ϵ, yDB = −ϵ, yDA = ϵ, where ϵ is
the absolute accuracy used to solve the algebraic equations in RAMSES.
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algeq

algebraic equation

Syntax : & algeq
math expression

Internal states : none

Discrete variables : none

This block forces an algebraic constraint (or equation) involving one of several states :

f(x1, x2, . . . , xn) = 0

where n is the number of states (n ≥ 1)

Note that this blocks does not really have “inputs” and “outputs”. The latter stem from the rest of
the model involving the algebraic constraint.
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db

Deadband.

xi xj

xi

xj

z = −1

z = 1

z = 0

δ2

a2

a1

s2
δ1

s1

Syntax : & db
name of variable xi
name of variable xj
data name, parameter name or math expression for δ1
data name, parameter name or math expression for s1
data name, parameter name or math expression for a1
data name, parameter name or math expression for δ2
data name, parameter name or math expression for s2
data name, parameter name or math expression for a2

Internal states : none

Discrete variables : z ∈ {0, 1,−1}

Equations :

0 =


xj if z = 0

xj − s2 − a2(xi − δ2) if z = 1

xj − s1 − a1(xi − δ1) if z = −1
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Discrete transitions :

if z ∈ {0, 1} then
if xi < δ1 then
z ← −1

end if
else if z ∈ {−1, 0} then

if xi > δ2 then
z ← 1

end if
else if z ∈ {−1, 1} then

if δ1 < xi < δ2 then
z ← 0

end if
end if

Initialization of discrete variables :

if xi > δ2 then
z ← 1

else if xi < δ1 then
z ← −1

else
z ← 0

end if

The data must obey δ1 < δ2, a1 ≥ 0 and a2 ≥ 0 (see for instance the diagram above).

A particular case is s1 = s2 = 0 and a1 = a2 = 1 (but all values are allowed for these four
parameters).

The pwlin4, pwlin5 or pwlin6 block can be used as an alternative to this block.
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f inj

Computes f , an estimate of the frequency (in per unit) at a given bus, from the evolution of the rectangular
components vx and vy of the bus voltage. A measurement time constant T is involved. Can be used in the
model of an injector only.

Syntax : & f inj
name of variable f

data name, parameter name or math expression for T

Internal states : vxm and vym.

Discrete variables : none

Equations :

v̇xm =
vx − vxm

T
(12.1)

v̇ym =
vy − vym

T
(12.2)

0 = ωref,pu +
(vy − vym)vxm − (vx − vxm)vym

2πfNT (v2xm + v2ym)
− f (12.3)

Initialization of internal states : vxm = vx and vym = vy.

Explanation of model

The model uses vx and vy as inputs but these variables are automatically inherited and must not
be declared. Only the name given to the estimated frequency and the time constant T must be
provided.

As shown in the figure below, vx and vy are the projections of the bus voltage phasor on the
references axes x and y rotating at the angular speed ωref (rad/s). The latter is known from the
settings of the simulation. The angular frequency of the corresponding rotating vector is given by :

ω = ωref +
dϕ

dt

with:
ϕ = arctan

vy
vx
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ωref

x

y

vx

vy
φ

V̄

ωref

The frequency in per unit is given by :

f =
ω

2πfN
=

ωref

2πfN
+

1

2πfN

dϕ

dt
= ωref,pu +

1

2πfN

d

dt

(
arctan

vy
vx

)
where fN is the nominal frequency (known from the system data).

By developing the last term, it is easily found that:

f = ωref,pu +
1

2πfN

v̇yvx − v̇xvy
v2x + v2y

(12.4)

To filter the transients affecting vx and vy, a measurement device with a time constant T is sim-
ulated. The “measured” values, denoted vxm and vym, evolve according to (12.1, 12.2). These
measured values and their derivatives are then used in (12.4), which becomes:

f = ωref,pu +
1

2πfN

v̇ymvxm − v̇xmvym
v2xm + v2ym

Replacing v̇xm and v̇ym by their expressions (12.1,12.2) yields Eq. (12.3).

A recommended value for T is in the order to 0.05− 0.10 s. A zero value for T is not allowed. If too
small a value is specified for T , the solver may encounter a singularity and the simulation may not
proceed.
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f twop bus1

Similar to f inj, computes f , an estimate of the frequency (in per unit) at the first bus of a given two-port.
Can be used in the model of a two-port only.

Syntax : & f twop bus1
name of variable f

data name, parameter name or math expression for T

Please refer to f inj.
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f twop bus2

Similar to f inj, computes f , an estimate of the frequency (in per unit) at the second bus of a given two-port.
Can be used in the model of a two-port only.

Syntax : & f twop bus2
name of variable f

data name, parameter name or math expression for T

Please refer to f inj.
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fsa

Finite State Automaton

This block forces a set of n algebraic equations. There are s possible sets, each of them corre-
sponding to a value of the discrete state z. The change form one set to another takes place when
boolean expressions are true.

Syntax : see example below

Internal states : none

Discrete variables: z, the number of the state currently active

Example. Consider the example below with three states (s = 3). n = 2 is assumed.

State 1 State 2

State 3

C1

C2 C3

C4

C5

z = 1 z = 2

z = 3

& fsa
initial state of the system
# 1
algebraic constraint No. 1
algebraic constraint No. 2
-> 2
boolean expression C1
# 2
algebraic constraint No. 3
algebraic constraint No. 4
-> 1
boolean expression C2
-> 3
boolean expression C3
-> 3
boolean expression C4
# 3
algebraic constraint No. 5
algebraic constraint No. 6
-> 1
boolean expression C5
##

The # symbol indicates the start of the section relative to a state. It is followed by the number of
the state. The states must be numbered consecutively from 1 to s, and they must be listed by
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increasing order. The ## symbol indicates the end of the list of states.

The initial state is specified as an integer in the second line.

The number n of algebraic constraints must be the same in all states.

The -> symbol indicates a transition. It is followed by the number of the state reached after the
transition has taken place. The next line is the corresponding boolean expression, involving states
and possibly parameters.

In the example above, there are two possible transitions from State 2 to State 3. Alternatively a
single transition can be specified with the combined condition “C3 or C4”.
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hyst

Hysteresis

xi xj

xi

xj

z = −1

z = 1

xD xI

yDA

yIB

yDB

yIA D stands for “Decreasing”
I stands for “Increasing”
B stands for “Before jumping”
A stands for “After jumping”

Syntax : & hyst
name of variable xi
name of variable xj
data name, parameter name or math expression for xI
data name, parameter name or math expression for yIB
data name, parameter name or math expression for yIA
data name, parameter name or math expression for xD
data name, parameter name or math expression for yDB

data name, parameter name or math expression for yDA

data name, parameter name or math expression for z0

Internal states : none

Discrete variables : z ∈ {−1, 1}

Equations :

0 =


xj − yIA −

yIA − yDB

xI − xD
(xi − xI) if z = 1

xj − yDA −
yIB − yDA

xI − xD
(xi − xD) if z = −1
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Discrete transitions :

if z = −1 then
if xi > xI then
z ← 1

end if
else

if xi < xD then
z ← −1

end if
end if

Initialization of discrete variables :

if xi > xI then
z ← 1

else if xi < xD then
z ← −1

else
if z0 ≥ 0 then
z ← 1

else
z ← 0

end if
end if

At t = 0, if xD < xi(0) < xI the initial state of the system is indeterminate, since it could operate
on the (yIA, yDB) line (i.e. with an initial value of z equal to 1) as well as on the (yDA, yIB) line (i.e.
with an initial value of z equal to −1). Hence, the user must specify z0, the initial value of z.

If xi(0) < xD (resp. xi(0) > xI ) the initial value is z = −1 (resp. z = 1) and z0 is not used.

The data must obey xD < xI , otherwise the model would not correspond to hysteresis. The case
xD = xI is not allowed either, but it can be handled with the pwlin4 model.
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int

Integrator with (positive) time constant T

xi xj1
sT

Syntax : & int
name of variable xi
name of variable xj
data name, parameter name or math expression for T

Internal states : none

Discrete variables : none

Equations :
T ẋj = xi (12.5)

A zero value for T is not allowed. If too small a value is specified for T , the solver may encounter
a singularity and the simulation may not proceed.
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inlim

Integrator with (positive) time constant T and non-windup limits on output

xi xj1
sT

xmax

xmin

Syntax : & inlim
name of variable xi
name of variable xj
data name, parameter name or math expression for T
data name, parameter name or math expression for xmin

data name, parameter name or math expression for xmax

Internal states : none

Discrete variables : z ∈ {0, 1,−1}

Equations :

T ẋj = xi if z = 0 (12.6)

0 = xj − xmin if z = −1
0 = xj − xmax if z = 1
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Discrete transitions :

if z = 0 then
if xj > xmax then

z ← 1

else if xj < xmin then
z ← −1

end if
else if z = 1 then

if xi < 0 then
z ← 0

end if
else if z = −1 then

if xi > 0 then
z ← 0

end if
end if

Initialization of discrete variables :

if xj > xmax then
z ← 1

else if xj < xmin then
z ← −1

else
z ← 0

end if

A zero value for T is not allowed. If too small a value is specified for T , the solver may encounter
a singularity and the simulation may not proceed.
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invlim

Integrator with (positive) time constant T and non-windup limits on output. The lower and upper limits are
variables.

xi xj1
sT

xmax

xmin

Syntax : & invlim
name of variable xi
name of variable xmin

name of variable xmax

name of variable xj
data name, parameter name or math expression for T

Internal states : none

Discrete variables : z ∈ {0, 1,−1}

Equations :

T ẋj = xi if z = 0 (12.7)

0 = xj − xmin if z = −1
0 = xj − xmax if z = 1
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Discrete transitions :

if z = 0 then
if xj > xmax then

z ← 1

else if xj < xmin then
z ← −1

end if
else if z = 1 then

if xi < 0 then
z ← 0

end if
else if z = −1 then

if xi > 0 then
z ← 0

end if
end if

Initialization of discrete variables :

if xj > xmax then
z ← 1

else if xj < xmin then
z ← −1

else
z ← 0

end if

A zero value for T is not allowed. If too small a value is specified for T , the solver may encounter
a singularity and the simulation may not proceed.
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lim

Limiter with constant bounds

xj

xmax

xmin

xi

Syntax : & lim
name of variable xi
name of variable xj
data name, parameter name or math expression for xmin

data name, parameter name or math expression for xmax

Internal states : none

Discrete variables : z ∈ {−1, 0, 1}

Equations :

0 =


xj − xi if z = 0

xj − xmax if z = 1

xj − xmin if z = −1
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Discrete transitions :

if z = 0 then
if xi > xmax then
z ← 1

else if xi < xmin then
z ← −1

end if
else if z = 1 then

if xi < xmax then
z ← 0

end if
else if z = −1 then

if xi > xmin then
z ← 0

end if
end if

Initialization of discrete variables :

if xj > xmax then
z ← 1

else if xj < xmin then
z ← −1

else
z ← 0

end if
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limvb

Limiter with variable bounds

xj
xmax

xmin

xi

Syntax : & limvb
name of variable xi
name of variable xmin

name of variable xmax

name of variable xj

Internal states : none

Discrete variables : z ∈ {−1, 0, 1}

Equations :

0 =


xj − xi if z = 0

xj − xmax if z = 1

xj − xmin if z = −1
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Discrete transitions :

if z = 0 then
if xi > xmax then
z ← 1

else if xi < xmin then
z ← −1

end if
else if z = 1 then

if xi < xmax then
z ← 0

end if
else if z = −1 then

if xi > xmin then
z ← 0

end if
end if

Initialization of discrete variables :

if xi > xmax then
z ← 1

else if xi < xmin then
z ← −1

else
z ← 0

end if
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max1v1c

Maximum between a state and a constant

xi xj
C

max

Syntax : & max1v1c
name of variable xi
name of variable xj
data name, parameter name or math expression for C

Internal states : none

Discrete variables : z ∈ {1, 2}

Equations :

0 =

{
xj − C if z = 1

xj − xi if z = 2

Discrete transitions :

if z = 1 then
if xi > C then
z ← 2

end if
else if z = 2 then

if xi <= C then
z ← 1

end if
end if
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Initialization of discrete variables :

if xi < C then
z ← 1

else
z ← 2

end if
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max2v

Maximum between two states

xi xk
xj

max

Syntax : & max2v
name of variable xi
name of variable xj
name of variable xk

Internal states : none

Discrete variables : z ∈ {1, 2}

Equations :

0 =

{
xi − xk if z = 1

xj − xk if z = 2

Discrete transitions :

if z = 1 then
if xi < xj then
z ← 2

end if
else if z = 2 then

if xj ≤ xi then
z ← 1

end if
end if

Initialization of discrete variables :

if xi > xj then
z ← 1

else
z ← 2

end if
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min1v1c

Minimum between a state and a constant

xi xj
C

min

Syntax : & min1v1c
name of variable xi
name of variable xj
data name, parameter name or math expression for C

Internal states : none

Discrete variables : z ∈ {1, 2}

Equations :

0 =

{
xj − xi if z = 1

xj − C if z = 2

Discrete transitions :

if z = 1 then
if xi > C then
z ← 2

end if
else if z = 2 then

if xi <= C then
z ← 1

end if
end if
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Initialization of discrete variables :

if xi < C then
z ← 1

else
z ← 2

end if
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min2v

Minimum between two states

xi xk
xj

min

Syntax : & min2v
name of variable xi
name of variable xj
name of variable xk

Internal states : none

Discrete variables : z ∈ {1, 2}

Equations :

0 =

{
xi − xk if z = 1

xj − xk if z = 2

Discrete transitions :

if z = 1 then
if xi > xj then
z ← 2

end if
else if z = 2 then

if xj ≥ xi then
z ← 1

end if
end if

Initialization of discrete variables :

if xi < xj then
z ← 1

else
z ← 2

end if
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nint

Integer nearest to the input shifted by a constant c.

xi xj

xj

xi + c1 2 3

1

2

Syntax : & nint
name of variable xi
name of variable xj
data name, parameter name or math expression for c

Internal states : none

Discrete variables : z ∈ I

Equations :
0 = xj − z

Discrete transitions :

if nint(xi + c) ̸= z then
z ← nint(xi + c)

end if

where the nint function returns the nearest integer.

Particular cases:

• with c = 0, the output is the integer nearest to xi;
• with c = −0.5, the output is the “floor” integer of xi, i.e. the largest integer smaller or equal

to xi;
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• with c = 0.5, the output is the “ceiling” integer of xi, i.e. the smallest integer larger or equal
to xi.

Initialization of discrete variables :
z ← nint(xi + c)
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pictl

Proportional-Integral (PI) controller

xk xj

Ki
s

Kp

+

+

xi

Syntax : & pictl
name of variable xk
name of variable xj
data name, parameter name or math expression for Ki

data name, parameter name or math expression for Kp

Internal states : xi

Discrete variables: none

Equations :

ẋi = Ki xk

0 = Kp xk + xi − xj

Initialization of internal states: xi = xj
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pictllim

Proportional-Integral (PI) controller with non-windup limit on the integral term.

xk xj

Ki
s

Kp

+

+

xi

xmax
i

xmin
i

Syntax : & pictllim
name of variable xk
name of variable xj
data name, parameter name or math expression for Ki

data name, parameter name or math expression for Kp

data name, parameter name or math expression for xmin
i

data name, parameter name or math expression for xmax
i

Internal states: xi

Discrete variables : z ∈ {−1, 0, 1}

Equations :


ẋi = Kixk if z = 0

0 = xi − xmin
i if z = −1

0 = xi − xmax
i if z = 1

0 = Kpxk + xi − xj
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Discrete transitions :

if z = 0 then
if xi > xmax

i then
z ← 1

else if xi < xmin
i then

z ← −1
end if

else if z = 1 then
if Kixk < 0 then

z ← 0

end if
else if z = −1 then

if Kixk > 0 then
z ← 0

end if
end if

Initialization of the internal state and the discrete variable:

if Kixk > 0 then
z ← 1

xi ← xmax
i

else if Kixk < 0 then
z ← −1
xi ← xmin

i

else
z ← 0

xi ← xj
end if
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pictl2lim

Proportional-Integral (PI) controller with non-windup limit on the integral term and limit on the propor-
tional term.

xk xj

Ki
s

Kp

+

+

xi

xmax
i

xmin
i

xmax
p

xmin
p

xp

Syntax : & pictl2lim
name of variable xk
name of variable xj
data name, parameter name or math expression for Ki

data name, parameter name or math expression for Kp

data name, parameter name or math expression for xmin
i

data name, parameter name or math expression for xmax
i

data name, parameter name or math expression for xmin
p

data name, parameter name or math expression for xmax
p

Internal states : xi and xp

Discrete variables : z1 ∈ {−1, 0, 1} and z2 ∈ {−1, 0, 1}

Equations : 
0 = Kpxk − xp if z1 = 0

0 = xp − xmin
p if z1 = −1

0 = xp − xmax
p if z1 = 1


ẋi = Kixk if z2 = 0

0 = xi − xmin
i if z2 = −1

0 = xi − xmax
i if z2 = 1

0 = xp + xi − xj
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if z1 = 0 then

if xp > xmax
p then

z1 ← 1

else if xp < xmin
p then

z1 ← −1
end if

else if z1 = 1 then
if Kpxk < xmax

p then
z1 ← 0

end if
else if z1 = −1 then

if Kpxk > xmin
p then

z1 ← 0

end if
end if
if z2 = 0 then

if xi > xmax
i then

z2 ← 1

else if xi < xmin
i then

z2 ← −1
end if

else if z2 = 1 then
if Kixk < 0 then

z2 ← 0

end if
else if z2 = −1 then

if Kixk > 0 then
z2 ← 0

end if
end if
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Initialization of the internal state xp: xp = min
(
xmax
p ,max(xmin

p ,Kpxk)
)

Initialization of internal state xi and the discrete variables:
if Kpxk > xmax

p then
z1 ← 1

else if Kpxk < xmin
p then

z1 ← −1
else

z1 ← 0

end if
if Kixk > 0 then

z2 ← 1

xi ← xmax
i

else if Kixk < 0 then
z2 ← −1
xi ← xmin

i

else
z2 ← 0

xi ← xj − xp
end if
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pictlieee

Proportional-Integral (PI) controller with non-windup limit on the integral term, compliant with IEEE stan-
dards.

xk xj

Ki
s

Kp

+

+

x1

xmin
j

xmax
j

Ki
s

x2

0

0

This PI controller involves a limiter and a non-windup integrator compliant with the IEEE specifica-
tions in:

• IEEE recommended practice for excitation system models for power system stability studies,
IEEE Std 421.5-1992
• IEEE recommended practice for excitation system models for power system stability studies,

IEEE Std 421.5-2005 (Revision of IEEE Std 421.5-1992)
• IEEE recommended practice for excitation system models for power system stability studies,

IEEE Std 421.5-2016 (Revision of IEEE Std 421.5-2005)

The IEEE standard specfies that the x1 variable is frozen as soon as xj reaches its (lower or
upper) limit. This is done by merely setting the input of the integrator to zero.

However, the standard does not specify the condition under which x1 is let to vary again, i.e. when
the integrator is put back into service. A simple way would be to re-activate the integrator as soon
xj gets back within its limits. However, at that time instant, the xk variable may have a value such
that xj = Kpxk+x1 is pushed again to its (lower or upper) limit. The system would then be trapped
into a limit cycle (which would not match the behaviour of the system to model !).

With the implementation shown in the above block diagram, the limit cycle is avoided by relying on
the upper integrator to decide when the lower integrator can be released. The upper integrator is
used to observe what the evolution of the system would be with x1 free to vary: the lower integrator
is re-activated only when Kpxk+x2 is in [xmin

j xmax
j ]. As it is in “open loop”, the additional integrator

does not interact with the rest of the system.
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Syntax : & pictlieee
name of variable xk
name of variable xj
data name, parameter name or math expression for Ki

data name, parameter name or math expression for Kp

data name, parameter name or math expression for xmin
j

data name, parameter name or math expression for xmax
j

Internal states: x1 and x2

Discrete variables : z ∈ {−2,−1, 0, 1, 2}

Equations :

if z = 0 :


0 = Kpxk + x1 − xj

ẋ1 = Ki xk

0 = x2 − x1

if z = 2 :


0 = xmax

j − xj

ẋ1 = 0

0 = x2 − x1

if z = 1 :


0 = xmax

j − xj

ẋ1 = 0

ẋ2 = Ki xk

if z = −2 :


0 = xmin

j − xj

ẋ1 = 0

0 = x2 − x1

if z = −1 :


0 = xmin

j − xj

ẋ1 = 0

ẋ2 = Ki xk
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Discrete transitions (note the use of x2 in the tests marked with (*) ):

if z = 0 then
if xj > xmax

j then
z ← 2

else if xj < xmin
j then

z ← −2
end if

else if z = 2 then
if Kpxk + x1 < xmax

j then
z ← 1

end if
else if z = 1 then

if Kpxk + x1 > xmax
j then

z ← 2

else if Kpxk + x2 < xmax
j (*) then

z ← 0

end if
else if z = −2 then

if Kpxk + x1 > xmin
j then

z ← −1
end if

else if z = −1 then
if Kpxk + x1 < xmin

j then
z ← −2

else if Kpxk + x2 > xmin
j (*) then

z ← 0

end if
end if

Initialization of the internal state and the discrete variable:



12.3. LIBRARY 137

if xj ≥ xmax
j then

z ← 2

x1 ← xmax
j −Kpxk

x2 ← x1
else if xj ≤ xmin

j then
z ← −2
x1 ← xmin

j −Kpxk
x2 ← x1

else
z ← 0

x1 ← xj
x2 ← x1

end if
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pwlin*

Piece-wise linear function of input, defined by n points.

Separate blocks exist for n = 3, 4, 5 and 6.

xi xjsee
diagram

xi

xj

vx(1)vx(2)
= vx(3)

vx(4) vx(5)

vy(1)
vy(2)

vy(3) = vy(4)

vy(5)

Example for n = 5

z = 1

z = 1

z = 3

z = 4

z = 4

Syntax : & pwlin3
name of variable xi
name of variable xj
data name, parameter name or math expression for vx(1)
data name, parameter name or math expression for vy(1)
data name, parameter name or math expression for vx(2)
data name, parameter name or math expression for vy(2)
data name, parameter name or math expression for vx(3)
data name, parameter name or math expression for vy(3)

& pwlin4
name of variable xi
name of variable xj
data name, parameter name or math expression for vx(1)
data name, parameter name or math expression for vy(1)
data name, parameter name or math expression for vx(2)
data name, parameter name or math expression for vy(2)
data name, parameter name or math expression for vx(3)
data name, parameter name or math expression for vy(3)
data name, parameter name or math expression for vx(4)
data name, parameter name or math expression for vy(4)
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& pwlin5
name of variable xi
name of variable xj
data name, parameter name or math expression for vx(1)
data name, parameter name or math expression for vy(1)
data name, parameter name or math expression for vx(2)
data name, parameter name or math expression for vy(2)
data name, parameter name or math expression for vx(3)
data name, parameter name or math expression for vy(3)
data name, parameter name or math expression for vx(4)
data name, parameter name or math expression for vy(4)
data name, parameter name or math expression for vx(5)
data name, parameter name or math expression for vy(5)

& pwlin6
name of variable xi
name of variable xj
data name, parameter name or math expression for vx(1)
data name, parameter name or math expression for vy(1)
data name, parameter name or math expression for vx(2)
data name, parameter name or math expression for vy(2)
data name, parameter name or math expression for vx(3)
data name, parameter name or math expression for vy(3)
data name, parameter name or math expression for vx(4)
data name, parameter name or math expression for vy(4)
data name, parameter name or math expression for vx(5)
data name, parameter name or math expression for vy(5)
data name, parameter name or math expression for vx(6)
data name, parameter name or math expression for vy(6)

Internal states : none

Discrete variables : z ∈ {1, . . . , n− 1}

Equations :

0 = vy(z) +
vy(z + 1)− vy(z)

vx(z + 1)− vx(z)
(xi − vx(z)) − xj
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Discrete transitions :

if xi < vx(1) then
z ← 1

else if xi ≥ vx(n) then
z ← n− 1

else
for k = 1 to n− 1 do

if vx(k) ≤ xi and xi < vx(k + 1) then
z ← k

end if
end for

end if

Initialization of discrete variables : same code as for the discrete transitions

The vx values must be increasing, i.e. vx(1) < vx(2) ≤ vx(3) ≤ . . . ≤ vx(n− 1) < vx(n).

For xi values smaller than vx(1) (resp. larger than vx(n)), xj is obtained by linear extrapolation
based on the first two (resp. the last two) points. Hence, the data must be such that vx(1) ̸= vx(2)

and vx(n− 1) ̸= vx(n).
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switch*

Set the output state to one among n input states, based on the value of a controlling state.

Separate blocks exist for n = 2, 3, 4 and 5.

xi(1)
xjxi(2)

xi(3)

xk example for n = 3

Syntax : & switch2
name of variable xi(1)

name of variable xi(2)

name of variable xk
name of variable xj

& switch3
name of variable xi(1)

name of variable xi(2)

name of variable xi(3)

name of variable xk
name of variable xj

& switch4
name of variable xi(1)

name of variable xi(2)

name of variable xi(3)

name of variable xi(4)

name of variable xk
name of variable xj

& switch5
name of variable xi(1)

name of variable xi(2)

name of variable xi(3)

name of variable xi(4)

name of variable xi(5)

name of variable xk
name of variable xj

Internal states : none

Discrete variables : z ∈ {1, 2, . . . , n}

Equations :

0 = xj − xi(z)

Discrete transitions :

z ← max (1,min(n, nint(xk)))
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where the nint function returns the nearest integer.

Initialization of discrete variables : same code as for the discrete transitions
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swsign

Switch between two input states, based on the sign of a third input state

xl
xi

xj

xk

xk ≥ 0

xk < 0

Syntax : & swsign
name of variable xi
name of variable xj
name of variable xk
name of variable xl

Internal states : none

Discrete variables : z ∈ {1, 2}

Equations :

0 =

{
xl − xi if z = 1

xl − xj if z = 2

Discrete transitions :

if z = 1 then
if xk < 0 then
z ← 2

end if
else if z = 2 then

if xk ≥ 0 then
z ← 1

end if
end if

Initialization of discrete variables :
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if xk < 0 then
z ← 2

else
z ← 1

end if
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tf1p

Transfer function between input and output: one time constant

xi xjG
1+sT

Syntax : & tf1p
name of variable xi
name of variable xj
data name, parameter name or math expression for G
data name, parameter name or math expression for T

Internal states : none

Discrete variables : none

Equations :
T ẋj = −xj +G xi

The time constant T can be zero.
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tf1plim

Transfer function between input and output: one time constant with non-windup limits on output.

xi xjG 1
T

+

−

1
s

xmax

xmin

Syntax : & tf1plim
name of variable xi
name of variable xj
data name, parameter name or math expression for G
data name, parameter name or math expression for T
data name, parameter name or math expression for xmin

data name, parameter name or math expression for xmax

Internal states : none

Discrete variables : z ∈ {−1, 0, 1}

Equations :


T ẋj = G xi − xj if z = 0

0 = xj − xmax if z = 1

0 = xj − xmin if z = −1
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Discrete transitions :

if z = 0 then
if xj > xmax then

z ← 1

else if xj < xmin then
z ← −1

end if
else if z = 1 then

if G xi − xj < 0 then
z ← 0

end if
else if z = −1 then

if G xi − xj > 0 then
z ← 0

end if
end if

The time constant T can be zero. In this case:

• the block behaves like a gain: xj = Gxi
• the limits xmin and xmax remain in effect.

Initialization of discrete variables :

if xj ≥ xmax then
z ← 1

else if xj ≤ xmin then
z ← −1

else
z ← 0

end if
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tf1pvlim

Transfer function between input and output: one time constant with non-windup limits on output. The limits
are variables.

xi xjG 1
T

+

−

1
s

xmax

xmin

Syntax : & tf1plim
name of variable xi
name of variable xj
name of variable xmin

name of variable xmax

data name, parameter name or math expression for G
data name, parameter name or math expression for T

Internal states : none

Discrete variables : z ∈ {−1, 0, 1}

Equations :


T ẋj = G xi − xj if z = 0

0 = xj − xmax if z = 1

0 = xj − xmin if z = −1

Discrete transitions :
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if z = 0 then
if xj > xmax then

z ← 1

else if xj < xmin then
z ← −1

end if
else if z = 1 then

if G xi − xj < 0 then
z ← 0

end if
else if z = −1 then

if G xi − xj > 0 then
z ← 0

end if
end if

The time constant T can be zero. In this case:

• the block behaves like a gain: xj = Gxi
• the limits xmin and xmax remain in effect.

Initialization of discrete variables :

if xj ≥ xmax then
z ← 1

else if xj ≤ xmin then
z ← −1

else
z ← 0

end if
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tf1p2lim

Transfer function between input and output: one time constant, with limits on rate of change of output and
non-windup limits on output

xi xjG 1
T

+

−

1
s

xmax

xmin

T ẋmax

T ẋmin

x1

Syntax : & tf1p2lim
name of variable xi
name of variable xj
data name, parameter name or math expression for G
data name, parameter name or math expression for T
data name, parameter name or math expression for xmin

data name, parameter name or math expression for xmax

data name, parameter name or math expression for ẋmin

data name, parameter name or math expression for ẋmax

One internal state : x1 initialized at min[max(0, T ẋmin), T ẋmax]

Two discrete variables : z1 ∈ {−1, 0, 1} and z2 ∈ {−1, 0, 1}

Two equations : 
0 = x1 −G xi + xj if z1 = 0

0 = x1 − T ẋmax if z1 = 1

0 = x1 − T ẋmin if z1 = −1
T ẋj = x1 if z2 = 0

0 = xj − xmax if z2 = 1

0 = xj − xmin if z2 = −1

ẋmax (resp. ẋmin) is the maximum (resp. minimum) rate of change of x with time.

The time constant T can be zero. In this case:



12.3. LIBRARY 151

• x1 = 0 throughout the whole simulation
• the block behaves like a gain: xj = Gxi
• both limiters are ignored: xmax →∞, xmin → −∞, T ẋmax →∞, T ẋmin → −∞.

Discrete transitions :

if z1 = 0 then
if x1 > T ẋmax then
z1 ← 1

else if x1 < T ẋmin then
z1 ← −1

end if
else if z1 = 1 then

if Gxi − xj < T ẋmax then
z1 ← 0

end if
else if z1 = −1 then

if Gxi − xj > T ẋmin then
z1 ← 0

end if
end if
if z2 = 0 then

if xj > xmax then
z2 ← 1

else if xj < xmin then
z2 ← −1

end if
else if z2 = 1 then

if x1 < 0 then
z2 ← 0

end if
else if z2 = −1 then

if x1 > 0 then
z2 ← 0

end if
end if
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Initialization of discrete variables :

if Gxi − xj > T ẋmax then
z1 ← 1

else if Gxi − xj < T ẋmin then
z1 ← −1

else
z1 ← 0

end if
if xj > xmax then
z2 ← 1

else if xj < xmin then
z2 ← −1

else
z2 ← 0

end if
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tfder1p

Transfer function: derivative with one time constant

xi xjG
sT

1 + sT

Syntax : & tfder1p
name of variable xi
name of variable xj
data name, parameter name or math expression for G
data name, parameter name or math expression for T

Internal states : x1

Discrete variables : none

Equations :

T ẋ1 = xj (12.1)

0 = G xi − x1 − xj (12.2)

Initialization of internal states: x1 = G xi

The model allows T = 0. In this case:

• xj = 0 as expected;
• Eq. (12.2) is useless but is integrated with the rest of the model.
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tf1p1z

Transfer function between input and output: one zero and one pole

xi xjG1+sTz
1+sTp

Syntax : & tf1p1z
name of variable xi
name of variable xj
data name, parameter name or math expression for G
data name, parameter name or math expression for Tz

data name, parameter name or math expression for Tp

Internal states : x1

Discrete variables : none

Equations :

ẋ1 = G xi − xj (12.3)

0 = Tp xj −G Tz xi − x1 (12.4)

Initialization of internal states : x1 = G (Tp − Tz)xi

The model allows Tz = 0. In this case, simplifying Eq. (12.4) and combining it with Eq. (12.3) yields

Tp ẋj = −xj +G xi, which corresponds to xj =
G

1 + sTp
xi as expected.

Formally, the model also allows Tp = 0. However, in this case, the transfer function between xi and
xj becomes G (1 + sTz). This involves a pure derivator. Hence, the solver may produce undesired
transients when xi or ẋi undergoes a discontinuity.

The model allows Tp = Tz = T . In this case, Equation (12.4) becomes xj − G xi =
x1
T

, and

replacing this result in Eq. (12.3) yields ẋ1 = −x1
T

, showing that x1 evolves independently of xi
and xj . Furthermore, when Tz = Tp, x1 is initialized to zero; hence, it remains equal to zero for the
whole simulation. Replacing x1 = 0 yields xj = G xi as expected.
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tf2p2z

Transfer function between input and output: two real zeros and two real poles

xi xjG1+n1s+n2s
2

1+d1s+d2s2

Syntax : & tf2p2z
name of variable xi
name of variable xj
data name, parameter name or math expression for G
data name, parameter name or math expression for n1

data name, parameter name or math expression for n2

data name, parameter name or math expression for d1
data name, parameter name or math expression for d2

Internal states : x1 and x2

Discrete variables : none

Equations : correspond to a second-order state space model with controllable canonical form:

ẋ1 = x2 (12.1)

d2 ẋ2 = −x1 − d1x2 + d2xi (12.2)

0 = G(d2 − n2)x1 +G(n1d2 − d1n2)x2 +Gn2d2xi − d22xj (12.3)

Initialization of internal states : x2 = 0 and x1 = d2xi

Exception. If a small value is specified for d2, namely if d2 < 0.005, both d2 and n2 are set to zero
and the transfer function becomes:

G
1 + n1s

1 + d1s

as considered in the tf1p1z block.

If, in addition, a small value is specified for d1, namely if d1 < 0.005, both d1 and n1 are set to zero
and the block behaves as a simple gain:

xj = Gxi
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timer*

Timer with varying delay. The latter is a piecewise linear function of the monitored variable

If xi is smaller than a threshold v1, the output xj is equal to zero. Otherwise, xj changes from zero to one at
time t⋆ + τ(xi) where t⋆ is the time at which the input xi became larger than v1 and the delay τ(xi) varies
with xi according to a piecewise linear characteristic involving n points (see diagram below).

Separate blocks exist for n = 1, 2, 3, 4 and 5.

xi xj ∈ {0, 1}see
diagram

xi

τ(xi)

v1 v2 v3 v4

T2

T1

T4

Example for n = 4∞

T3

Syntax : & timer1
name of variable xi
name of variable xj
data name, parameter name or math expression for v1
data name, parameter name or math expression for T1

& timer2
name of variable xi
name of variable xj
data name, parameter name or math expression for v1
data name, parameter name or math expression for T1

data name, parameter name or math expression for v2
data name, parameter name or math expression for T2

& timer3
name of variable xi
name of variable xj
data name, parameter name or math expression for v1
data name, parameter name or math expression for T1

data name, parameter name or math expression for v2
data name, parameter name or math expression for T2

data name, parameter name or math expression for v3
data name, parameter name or math expression for T3
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& timer4
name of variable xi
name of variable xj
data name, parameter name or math expression for v1
data name, parameter name or math expression for T1

data name, parameter name or math expression for v2
data name, parameter name or math expression for T2

data name, parameter name or math expression for v3
data name, parameter name or math expression for T3

data name, parameter name or math expression for v4
data name, parameter name or math expression for T4

& timer5
name of variable xi
name of variable xj
data name, parameter name or math expression for v1
data name, parameter name or math expression for T1

data name, parameter name or math expression for v2
data name, parameter name or math expression for T2

data name, parameter name or math expression for v3
data name, parameter name or math expression for T3

data name, parameter name or math expression for v4
data name, parameter name or math expression for T4

data name, parameter name or math expression for v5
data name, parameter name or math expression for T5

Internal states : x1

Discrete variables : z ∈ {−1, 0, 1}

Equations :

0 =

{
xj if z ∈ {−1, 0}
xj − 1 if z = 1


0 = x1 if z = −1
ẋ1 = 1 if z = 0

ẋ1 = 0 if z = 1
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Discrete transitions :

if z = −1 then
if xi ≥ v1 then
z ← 0

end if
else

if xi < v1 then
z ← −1

end if
end if
if z = 0 then

if x1 ≥ τ(xi) then
z ← 1

end if
end if

Initialization of internal states : x1 ← 0

Initialization of discrete variables : z ← −1

The vi values must be increasing, but two consecutive values may be equal, i.e. v1 ≤ v2 ≤ v3 ≤
. . . ≤ vn−1 ≤ vn.

The piecewise linear characteristic is typically used to approximate an inverse-time characteristic,
in which case the T values are decreasing, i.e. T1 ≥ T2 ≥ T3 ≥ . . . ≥ Tn−1 ≥ Tn. Nevertheless,
non decreasing values are also allowed.

If the initial value of xi is larger than v1, xj will change to one after the time τ(xi), unless xi
decreases below v1 before the delay τ is elapsed.
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timersc*

Timer with varying delay. The latter is a staircase function of the monitored variable

If xi is smaller than a threshold v1, the output xj is equal to zero. Otherwise, xj changes from zero to one at
time t⋆ + τ(xi) where t⋆ is the time at which the input xi became larger than v1 and the delay τ(xi) varies
with xi according to a staircase characteristic involving n points (see diagram below).

Separate blocks exist for n = 1, 2, 3, 4, 5 and 6.

xi xj ∈ {0, 1}see
diagram

xi

τ(xi)

v1 v2 v3 v4

T2

T1

T4

Example for n = 4∞

T3

Syntax : & timersc1
name of variable xi
name of variable xj
data name, parameter name or math expression for v1
data name, parameter name or math expression for T1

& timersc2
name of variable xi
name of variable xj
data name, parameter name or math expression for v1
data name, parameter name or math expression for T1

data name, parameter name or math expression for v2
data name, parameter name or math expression for T2

& timersc3
name of variable xi
name of variable xj
data name, parameter name or math expression for v1
data name, parameter name or math expression for T1

data name, parameter name or math expression for v2
data name, parameter name or math expression for T2

data name, parameter name or math expression for v3
data name, parameter name or math expression for T3
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& timersc4
name of variable xi
name of variable xj
data name, parameter name or math expression for v1
data name, parameter name or math expression for T1

data name, parameter name or math expression for v2
data name, parameter name or math expression for T2

data name, parameter name or math expression for v3
data name, parameter name or math expression for T3

data name, parameter name or math expression for v4
data name, parameter name or math expression for T4

& timersc5
name of variable xi
name of variable xj
data name, parameter name or math expression for v1
data name, parameter name or math expression for T1

data name, parameter name or math expression for v2
data name, parameter name or math expression for T2

data name, parameter name or math expression for v3
data name, parameter name or math expression for T3

data name, parameter name or math expression for v4
data name, parameter name or math expression for T4

data name, parameter name or math expression for v5
data name, parameter name or math expression for T5

& timersc6
name of variable xi
name of variable xj
data name, parameter name or math expression for v1
data name, parameter name or math expression for T1

data name, parameter name or math expression for v2
data name, parameter name or math expression for T2

data name, parameter name or math expression for v3
data name, parameter name or math expression for T3

data name, parameter name or math expression for v4
data name, parameter name or math expression for T4

data name, parameter name or math expression for v5
data name, parameter name or math expression for T5

data name, parameter name or math expression for v6
data name, parameter name or math expression for T6

Internal states : x1

Discrete variables : z ∈ {−1, 0, 1}

Equations :

0 =

{
xj if z ∈ {−1, 0}
xj − 1 if z = 1
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
0 = x1 if z = −1
ẋ1 = 1 if z = 0

ẋ1 = 0 if z = 1

Discrete transitions :

if z = −1 then
if xi ≥ v1 then
z ← 0

end if
else

if xi < v1 then
z ← −1

end if
end if
if z = 0 then

if x1 ≥ τ(xi) then
z ← 1

end if
end if

Initialization of internal states : x1 ← 0

Initialization of discrete variables : z ← −1

The vi values must be increasing, but two consecutive values may be equal, i.e. v1 ≤ v2 ≤ v3 ≤
. . . ≤ vn−1 ≤ vn.

The staircase characteristic is typically used to approximate an inverse-time characteristic, in
which case the T values are decreasing, i.e. T1 ≥ T2 ≥ T3 ≥ . . . ≥ Tn−1 ≥ Tn. Nevertheless, non
decreasing values are also allowed.

If the initial value of xi is larger than v1, xj will change to one after the time τ(xi), unless xi
decreases below v1 before the delay τ is elapsed.
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tsa

Two-state automaton with transitions based on signs of two inputs

xk
v1

v2

x1 x2

The output state xk can take two values: v1 or v2. When xk = v1 the change to v2 depends on the
sign of x1; when xk = v2 the change to v1 depends on the sign of x2.

Syntax : & 2sa
name of variable x1
name of variable x2
name of variable xk
data name, parameter name or math expression for v1
data name, parameter name or math expression for v2

Internal states : none

Discrete variable : z ∈ {1, 2} represents the state of the automaton

Equations :

0 =

{
xk − v1 if z = 1

xk − v2 if z = 2

Discrete transitions :

if z = 1 and x1 > 0 then
z ← 2

else if z = 2 and x2 > 0 then
z ← 1

end if

Initialization of discrete variable : the initial value is z = 1, i.e. xk = v1 is assumed initially.
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12.4 Functions available in models

The functions documented in this section can be used in all mathematical expressions mentionned
in Fig. 11.7.

The first two are general. The others are power system-oriented. Among them, some functions
are restricted to some types of models.

double precision function equal(var1,var2)

double precision:: var1, var2

This function returns 1.d0 if var1 differs from var2 by less than 10−6, and 0.d0 otherwise.

double precision function equalstr(var1,var2)

character:: var1, var2

This function returns 1.d0 if the non-blank parts of str1 and str2 are the same, and 0.d0 otherwise.

double precision ppower([vx],[vy],[ix],[iy])

Returns the active power injected into network

Can be used in models of type: inj

Computation :
P = vxix + vyiy

double precision qpower([vx],[vy],[ix],[iy])

Returns the reactive power injected into network

Can be used in models of type: inj

Computation :
Q = vyix − vxiy
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double precision function vrectif([if],[vin],{kc})

double precision:: kc

This function is used to model the voltage drop in rectifiers. It gives the output voltage vrectif as a function
of the output current if and the input voltage vin. It appears in some IEEE standard excitation models with
vrectif = fex EFD

Can be used in models of type: exc

Computation :

in = kc if/max(vin, 10−3)

if in ≤ 0 then
vrectif = vin

else if in ≤ 0.433 then
vrectif = vin− 0.577 kc if

else if in ≤ 0.75 then
vrectif =

√
0.75 vin2 − (kc if)2

else if in ≤ 1.00 then
vrectif = 1.732(vin− kc if)

else
vrectif = 0

end if

double precision function vinrectif([if],[vrectif],{kc})

double precision:: kc

This function is the inverse of vrectif. It is aimed at being called at initialization. For given values
the field current if and rectifier output voltage vrectif it returns the value of the rectifier input voltage
vinrectif . This determination is iterative because the portion of the nonlinear input-output characteristic
on which the rectifier is operating is not known beforehand. The function does not work with a zero rectifier
output vrectif since, in this case, the input voltage is indeterminate.

Can be used in models of type: exc

Computation :
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nbtries = 1

vinest = vrectif + 0.577 kc if

loop
in = kc if/max(vinest, 1d− 03)

if in ≤ 0 then
vinrectif = vrectif

else if in ≤ 0.433 then
vinrectif = vrectif + 0.577 kc if

else if in ≤ 0.75 then
vinrectif =

√
vrectif2 + (kc if)2/0.75

else
vinrectif = (vrectif/1.732) + kc if

end if
if vinrectif = vinest or nbtries > 5 then

exit loop
end if
nbtries = nbtries+ 1

vinest = vinrectif

end loop

double precision function vcomp([v],[p],[q],{Kv},{Rc},{Xc})

double precision:: Kv, Rc, Xc

This function returns the magnitude of a combination of the terminal voltage and the current of a syn-
chronous machine. It appears in some IEEE standard excitation models

Can be used in models of type: exc

Computation :

Vcomp = |KvV̄ + (Rc + jXc)Ī| = |KvV + (Rc + jXc)(iP − jiQ)|

= |KvV + (Rc + jXc)(
P

V
− j

Q

V
)|

=
1

V

√
(KvV 2 +RcP +XcQ)2 + (XcP −RcQ)2

double precision function satur([ve],{ve1},{se1},{ve2},{se2})

double precision:: ve1, se2, ve2, se2
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This function returns the increment of field current needed to obtain a given output voltage, taking saturation
into account. It appears in the model of some excitation systems.

Can be used in models of type: exc

Computation :
satur = m ven

where:

n =
log10(se1/se2)

log10(ve1/ve2)

m =
se1

ve1n

Exception. The function returns satur = 0 if any of the following conditions holds true:

ve ≤ 0 or ve1 ≤ 0 or ve2 ≤ 0 or ve1 = ve2 or se1 = 0 or se2 = 0
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