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Abstract—Simulating a power system with both transmission
and distribution networks modeled is a challenging task. On
the one hand, it is difficult to set up equivalents restituting the
dynamic behavior of aggregated loads and distributed generation
units. On the other hand, representing all distribution networks
in detail is computationally very demanding. In this paper,
the combination of a domain-decomposition approach with the
exploitation of the localized nature of power system responses
to disturbances is proposed. Distribution networks marginally
participating to the system dynamics are automatically replaced
by simple models, while the others are simulated with full detail,
thereby preserving simulation accuracy.

Index Terms—time-domain simulation, active distribution net-
works, domain decomposition methods, localization

I. INTRODUCTION

The most noticeable developments foreseen in power sys-
tems involve Distribution Networks (DNs). Future DNs are
expected to host a big percentage of the renewable energy
sources and play a key role in the development of future grids.
The resulting challenge in dynamic simulation is to correctly
represent DNs and their participation in system dynamics.
This becomes compulsory as DNs are called upon to actively
support the Transmission Network (TN) with an increasing
number of Distributed Generation Units (DGUs) and active
loads participating in ancillary services through smart-grid
technologies.

In present-day dynamic security assessment of a large-scale
power system, it is common to represent the bulk generation
and higher voltage (transmission) levels accurately, while the
lower voltage (distribution) levels are equivalenced. On the
other hand, when concentrating on a DN, the TN is often
represented by a Thévenin equivalent. The prime motivation
behind this practice has been the lack of computational re-
sources. Indeed, fully representing the entire power system
network was simply impossible given the available computing
equipment (memory capacity, processing speed, etc.). Even
with current computational resources this task is extremely
challenging. Each DN can easily include hundreds if not
thousands of buses, loads, and branches. Handling a model

with hundreds of thousands of TN and DN variables proves
impossible with traditional simulation algorithms.

As modern DNs are evolving with power-electronics inter-
faces, DGUs, active loads, and control schemes, more detailed
and elaborate equivalent models would be needed to encom-
pass the dynamics of DNs and their impact on global system
dynamics. The three main equivalencing approaches reported
in the literature are modal methods, coherency methods and
measurement or simulation-based methods [1]. Equivalent
models, however, suffer from a number of drawbacks:

• the identity of the replaced system is lost. Faults that hap-
pen inside the DNs themselves cannot be simulated and
individual voltages at internal buses, currents, controllers,
etc. cannot be observed anymore;

• most equivalent models target a specific type of dynam-
ics (short-term, long-term, electromechanical oscillations,
voltage recovery, etc.) and fail when used for another
type. This requires running different types of simulations
with different models;

• in most cases, the use or not of these equivalent models
is decided off-line, when it is still unknown whether the
disturbance will affect or not the DNs of concern.

In this paper a method is proposed for performing faster dy-
namic simulations of combined transmission and distribution
networks while preserving simulation accuracy. The proposed
method consists in representing in detail the DNs actively
participating to the system dynamics (called active) while
the remaining DNs (called latent) are replaced automatically,
during the simulation, by much smaller models.

II. MODEL DECOMPOSITION

Let the power system be decomposed into the TN, the DNs
and a number of components connected to them, as sketched
in Fig. 1 [2]. For reasons of simplicity, all the components
connected to the TN or DNs that either produce or consume
power in normal operating conditions (such as power plants,
DGUs, induction motors, other loads, etc.) are called injectors.
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Figure 1. Decomposed Power System

The injectors are described by a system of non-linear
Differential-Algebraic Equations (DAEs) [3]:

Γẋ = Φ(x,V )

where V is the vector of voltages (VDi if connected to the
i-th DN or VT if connected to the TN, see Fig. 1), x is the
state vector containing differential and algebraic variables of
the injectors and Γ is a diagonal matrix with

(Γ)`` =

{
0 if the `-th equation is algebraic
1 if the `-th equation is differential.

Under the standard phasor approximation, the algebraic equa-
tions of each network (TN or DN) take on the linear form:

0 = DV − I = g(x,V )

Hence, the full DAE system describing the TN is:

0 = gT (xT ,VT ,VDt)
ΓT ẋT = ΦT (xT ,VT )

(1)

where xT (the state vector of injectors connected to the TN)
and VT (the vector of TN voltages) are internal variables,
while VDt (the vector of DN voltages connected to a TN bus,
see Fig. 1) are external variables.

Similarly, for the i-th DN (i = 1, . . . , N ):

0 = gDi(xDi,VDi, VTi)
ΓDiẋDi = ΦDi(xDi,VDi)

(2)

where xDi and VDi are internal variables and VTi (the voltage
of the TN bus the DN is connected to) is external.

To simulate the combined TN and DNs system two main
families of methods can be employed.

On the one hand, an integrated scheme can be used. In this
case, the DAE systems (1) and (2) are solved together. After
time has been discretized and differential equations have been
algebraized, the whole set of algebraic equations is solved
by Newton method to compute all states at each discrete

time instant. This is a well-known method used by many
commercial and academic software.

On the other hand, a decomposed scheme can be used. In
this case, each of the DAE systems (1) and (2) is solved
separately and the interface variables, that is VDt for (1) and
VTi for (2), are exchanged. Several decomposed schemes have
been proposed in literature differing mainly by the method of
exchanging interface variables. The most prominent methods
are: updating the interface variables after every sub-system’s
Newton iteration, updating the interface variables after com-
puting a converged solution of each system of equations,
or using a global reduced system to accurately compute the
interface variables before each decomposed Newton iteration
[2]. More information can be found in Chapter 14 of [4].

The method reported in this paper consists of replacing,
during the simulation, the full DAE system (2) of a latent DN
by a smaller linear model. The full model is restored if the
DN becomes active again. In an integrated scheme this change
between active and latent would lead to constant changes on
the size and structure of the Jacobian matrix with unacceptable
computational overhead in factorization operations. For this
reason, a decomposed scheme is crucial to the algorithm
since it gives the possibility of replacing DNs with simpler
models connected to the TN without the need of recalculating
and re-factorizing all the jacobian matrices involved in the
decomposed system solution.

Consequently, for the implementation of the localization
algorithm, the decomposed scheme presented in [2] has been
extended to accommodate the solution of DNs. Summarizing
here, the TN and DN systems are solved separately and a
Schur complement method is used to build a reduced system
and compute the interface variables (VDt,VTi) before solving
each subset of linearized equations.

III. SIMPLIFIED MODEL OF LATENT DNS

The proposed method accommodates a wide range of mod-
els to account for the behavior of a DN when it is latent. It
must be emphasized that the modeling requirements are low
since the simplified model is used only when the DN has been
characterized as latent and hence experiences low dynamic
activity.

The results shown in this paper are obtained with the latent
DNs replaced by a linear sensitivity model. That is, after a
DN is declared latent at time t∗, the DN voltages are updated
according to their sensitivity to TN voltage variations:

VD(tn) = VD(t∗)−GD(t∗) [VT (tn)− VT (t
∗)] (3)

for any discrete time tn ≥ t∗. The sensitivity matrix GD

is calculated from the full model (2) at the moment the DN
switches from active to latent.

The simplified model is easy and fast to compute and incor-
porates the dynamic activity of a latent DN at the moment of
switching. A further benefit arises from the way the interface
variables (VDt,VTi) are computed in the decomposed scheme
used. The contribution of both models (2) and (3) to the
Schur complement (linear) system, which is used to solve for
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Figure 2. Representation of a DN in active and latent modes

the interface variables [2], are mathematically the same, thus
alleviating the need for re-computing and re-factorizing that
matrix.

IV. LATENCY CRITERION

In the context of large-scale power system dynamic simula-
tions, DNs in the area affected by the disturbance are actively
contributing to the dynamics while the remaining DNs exhibit
low activity. The switching algorithm automatically selects
between active and latent mode for each individual DN to
speed up the simulation while preserving accuracy.

The dynamic simulation starts with the detailed models of
both transmission and distribution networks and the dynamic
activity of the i-th DN is quantified through the variation of the
apparent power (SDi =

√
PDi

2 +QDi
2) in each distribution

transformer (see Fig. 2). In short, DNi is declared latent
when its apparent power SDi has “not changed significantly
for some time”, or, in other words, exhibits small variability.
This observation variable is chosen because it incorporates the
information needed on the dynamic activity of a DN and the
effect it has on the remaining of the system. More detailed
information for the state of the DN could be extracted from
monitoring separately the active and reactive powers, but this
comes to the expense of doubling the calculations and the
memory needed for the latency criterion.

In more detail, the standard deviation of SDi is monitored
over a moving time-window. When this value gets smaller than
a pre-defined tolerance εL, DNi is declared latent. To calculate
the standard deviation of SDi efficiently, an approximation
originating from real-time digital signal processing is used [5].

First of all, at time tn the average is obtained as the
weighted sum of the new value SDi(tn) and the previous
average value SDi,av(tn−1) according to:

SDi,av(tn) = (1− λ1) ∗ SDi,av(tn−1) + λ1 ∗ SDi(tn)

with 0 ≤ λ1 ≤ 1. The parameter λ1 sets the time window
of observation for averaging, i.e. a smaller value extends the
observation window while a larger curtails it.

Next, the difference between the new value and the com-
puted average, i.e. 4SDi(tn) = SDi(tn)−SDi,av(tn), is used
to calculate the approximate variance:

SDi,var(tn) = (1− λ2) ∗ SDi,var(tn−1) + λ2 ∗ 4SDi(tn)
2
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Figure 3. Expanded Nordic System

with 0 ≤ λ2 ≤ 1. The parameter λ2 sets the response time
to the changes 4SDi, i.e. a smaller value makes the criterion
less responsive.

Finally, the approximate standard deviation of SDi is com-
puted as:

SDi,std(tn) =
√
SDi,var(tn)

and is compared to εL to decide the status of the i-th DN.
More information on the metrics and the effects of param-

eters λ1 and λ2 on the latency criterion can be found in [5].
While DNi is latent, the absolute deviation of SDi(tn)

from its value at the time it was declared latent SDi(t
∗) is

monitored. If the difference gets bigger than εL, the DN is
considered to have moved away from its linearization point
and the sensitivity model not to be an accurate representation
any longer; hence, the DN is switched to active.

V. RESULTS WITH A 14653-BUS SYSTEM

This section reports on results obtained with a large-scale
combined transmission and distribution network model based
on the Nordic32 system (see Fig. 3). The original TN model,
which is documented in [6], is extended to include 146 realistic
DNs replacing the aggregated distribution loads of the original
system. The model and data of each DN were taken from [7]
and scaled to match the original loads. Multiple DNs were



Table I
RESULTS

C1 C2 C3
εL CPU Time Speedup Verr SDerr CPU Time Speedup Verr SDerr CPU Time Speedup Verr SDerr

(MVA) (s) (times) (pu) (%) (s) (times) (pu) (%) (s) (times) (pu) (%)
0.00 1326 - - - 1534 - - - 2420 - - -
0.01 728 1.8 1.0E-4 0.01 493 3.1 2.6E-5 0.01 1374 1.8 1.9E-4 0.01
0.05 353 3.8 1.2E-4 0.05 307 5.0 5.0E-4 0.08 965 2.5 3.8E-3 0.04
0.08 293 4.5 1.3E-4 0.08 261 5.9 1.1E-3 0.14 950 2.5 3.8E-3 0.06
0.10 277 4.8 1.9E-4 0.12 256 6.0 1.4E-3 0.23 857 2.8 6.0E-3 0.10
0.50 176 7.5 7.1E-4 0.69 203 7.6 2.8E-3 0.24 578 4.2 7.7E-3 0.25

used to match the original load powers, taking into account
the nominal power of the DN transformers.

The TN includes 53 buses, 222 branches, 20 synchronous
machines represented in detail together with their excitation
systems, voltage regulators, power system stabilizers, speed
governors and turbines.

Each one of the 146 DNs includes 100 buses, 108 branches,
one Distribution Voltage Regulator (DVR) equipped with
Load Tap Changing (LTC) device, three type-1 and three
type-2 Wind Turbines (WTs) [8], 12 impedance loads and
133 dynamically modeled loads, such as, small induction
machines and self-restoring exponential loads. The transformer
connecting each DN to the TN is also equipped with an LTC
controlling the distribution side voltage (as shown in Fig. 2).

Moreover, to avoid identical DNs and artificial synchroniza-
tion, the delays on transformer tap changes were randomized
around their original values and the WTs were randomly
initialized to produce 60 to 100% of their nominal power.

In total, the combined transmission and distribution system
includes 14653 buses, 15990 branches, 20 synchronous ma-
chines, 293 LTC equipped transformers, 876 wind-turbines,
1752 impedance loads and 19419 dynamically modeled loads.
The resulting DAE system has 137742 states.

Finally, the latency criterion presented in Section IV was
used with λ1 = λ2 = 0.01 and εL varying between zero
(fully accurate simulation) and 0.5 MVA. Two metrics are used
to quantify the error introduced by the algorithm. First, the
maximum average error on voltage:

Verr = max
i=1...M

[
1

ns

ns∑
k=1

|Vi(k, εL)− Vi(k, 0)|

]
with M the number of all buses of the system and ns the
number of time-steps taken during the simulation. Second, the
maximum average error on DN apparent power:

SDerr = max
i=1...N

[
1

ns

ns∑
k=1

∣∣∣∣SDi(k, εL)− SDi(k, 0)

SDi(k, 0)

∣∣∣∣
]

A. Case C1

The disturbance considered in C1 is the loss of approxi-
mately 90 MW of wind generation due to the disconnection of
30 type-1 and 30 type-2 WTs located inside the DNs connected
to TN bus 1041 in the CENTRAL area (see Fig. 3). The 60
WTs are disconnected over a period of 2 s and the system is
simulated for 140 s with a time-step of 1 cycle at the nominal

0 20 40 60 80 100 120 140
time (s)

64

66

68

70

72

74

76

78

80

S
(M

VA
)

εL = 0.00 MVA

εL = 0.05 MVA

30 35 40 45 50 55
73

74

75

76

Figure 4. Case C1: Apparent power into disturbed DN (on TN bus 1041)

0 20 40 60 80 100 120 140
time (s)

58

58

59

59

60

60

61

61

62

S
(M

VA
)

εL = 0.00 MVA

εL = 0.05 MVA

Figure 5. Case C1: Apparent power into a remote DN (on TN bus 1011)

frequency (50 Hz). The DNs compensate by importing more
power from the TN. Such an event might result from high
winds in the area, causing WTs to trip to avoid damage.

This event affects mainly the DNs in the CENTRAL area,
while DNs located far away (NORTH and SOUTH areas)
are barely affected. Such disturbances, with events happening
inside the DNs, are very difficult - if not impossible - to
simulate when DN models are fully equivalenced beforehand.

Table I shows the speedup from increasing εL, ranging from
1.8 to 7.5 times, and the error Verr ranging from 1.0E−4 pu
to 7.1E − 4 pu and SDerr from 0.01% to 0.69%.

Figure 4 displays SD into one of the disturbed DN with the
latent periods shown in gray and the vertical lines signaling
the transition between modes. As expected, at the end of the
simulation the DN imports more power compared to the pre-
disturbance state to compensate for the lost WT generation.
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Figure 6. Case C1: Voltage evolution at bus 1041 and corresponding absolute
error

The effect of the distribution transformer LTC device restoring
the voltage level in the DN can be also seen.

Additionally, Fig. 5 displays SD into a remote DN located
in the NORTH area and connected to TN bus 1011. As can
be seen, the remote DN remains almost unaffected by the
disturbance. The DN becomes latent much earlier and remains
latent almost through the whole situation. In both figures, the
accurate and with latency εL = 0.05 MVA curves are almost
indiscernible (see zoom in Fig. 4).

Moreover, Fig. 6 shows the voltage evolution and absolute
voltage error |V (k, εL)− V (k, 0)| at bus 1041, the TN bus
closest to the disturbance. The sudden voltage drop during the
event, as well as the further gradual voltage decrease stemming
from LTC actions can be observed. From the same figure, it
is seen that the biggest discrepancy between the two voltage
evolutions never exceeds 0.004 pu.

B. Case C2

The disturbance considered in this case is the loss of
generator g9 located in the NORTH region and producing
approximately 400 MW and 100 MVAr. The system is sim-
ulated for 240 s with the same time step as in case C1.
This disturbance affects mainly the NORTH area, close to the
tripped generator.

Table I shows the speedup, ranging from 3.1 to 7.6 times,
and the errors Verr and SDerr, which are minimal for all εL
values considered.

Figure 7 displays SD into a DN situated close to the tripped
generator while Fig. 8 refers to a remote DN in CENTRAL
area. As expected, the nearby DN gets more affected by the
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disturbance while the remote DN remains almost unaffected
and latent for longer period.

Finally, Fig. 9 shows the absolute voltage error on the
nearby TN bus 1011 located in the NORTH area. It barely
exceeds 0.0002 pu.

C. Case C3

The disturbance considered in case C3 is a 5-cycle (0.1 s)
short circuit near the TN bus 4032 cleared by the opening line
4032 − 4042. The system is then simulated over 240 s with
a one-cycle time-step. The system evolves in the long term
under the effect of the LTCs and overexcitation limiters on
the generators. This is a severe disturbance that affects all the
TN and DNs.
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Table I shows the speedup, ranging from 1.8 to 4.2 times,
and the errors Verr and SDerr are negligible for all εL values
considered. Due to the severity of the disturbance and the
effect it has on the whole system, the speedup is significantly
lower than the previous, more localized, cases.

Figure 10 displays SD into a DN situated in the area
strongly affected by the disturbance. The two evolutions
(accurate and with latency) are almost indiscernible for most of
the simulation except around 90 s (see zoom in Fig. 10). This
discrepancy is due to the delayed by one second action of the
distribution transformer LTC device. LTC devices are discrete
with response times in the order of 10 seconds; therefore, the
above delay has small practical consequence.
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Moreover, Fig. 11 displays SD into a remote DN where the
effect of the disturbance is less severe. Hence, the DN turns
latent faster and gets back to active mode for short periods of
time.

Finally, Fig. 12 shows the overall DN activity in the system
during the simulation. Significant activity is observed during
the first 35 s with all DNs remaining active. This is followed by
a small period of inactivity where all the DNs become latent.
Then, the DVR devices inside the DNs, with an initial response
time of approximately 60 s, start acting and many DNs become
active again. The following period until 170 s is dominated
by the distribution transformer and DVR responses which
periodically “wake up” several latent distribution networks. In
the final period, following 170 s, all LTC-controlled voltages
are restored in their dead-bands and all the DNs become latent.

VI. CONCLUSION

In the future, the rising need for simulating larger power
system models, including DNs, will further increase the com-
putational burden of dynamic simulations. Distributed protec-
tion and control schemes, DGUs providing ancillary services
and active demand response will make the contribution of DNs
to the system dynamics more significant and the exploitation
of localization techniques for performance more vital.

This paper presents a method relying on a transmission-
distribution system decomposition, and exploiting the local-
ized response of distribution sub-systems to perform large-
scale dynamic simulations of the whole system.

Detailed (unreduced) models are used for the active DNs
to preserve accuracy, while the simulation is speeded up by
substituting the DNs not participating in the system dynamics
with simplified, small and linear models. The effectiveness
and accuracy of the proposed algorithm was demonstrated
by simulating several disturbances on a 14653-bus system
including both transmission and distribution networks.
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