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Abstract—In this paper, some algorithmic and computational
advances are presented for power system dynamic simulations.
The heart is a Schur-complement-based solution algorithm,
stemming from domain decomposition methods, applied to the
differential-algebraic equation model. This algorithm is then
accelerated computationally, by employing parallel computing
techniques, and numerically, by exploiting time-scale decomposi-
tion and localization. Models of a real medium-scale system and
a realistic large-scale test system are used for the performance
evaluation of the proposed methods.

Index Terms—dynamic security assessment, differential-
algebraic equations, time simulation, Schur-complement, parallel
processing, Newton method, localization

I. INTRODUCTION

Over the last decades, dynamic simulations have become
indispensable in the planning, design, operation and security
assessment of power systems. They find application in power
system operator training, analyzing large sets of scenarios,
assessing the dynamic security of the network in real-time
or scheduling the day-ahead operation.

In this type of simulations, complex electric components
(like generators, motors, loads, wind turbines, etc.) are rep-
resented by systems of stiff, non-linear Differential and Al-
gebraic Equations (DAEs) [1]. Conversely, the network con-
necting the equipment together is represented by a system
of linear algebraic equations. Thus, a large interconnected
system may involve hundreds of thousands of such equations
whose dynamics span over very different time scales and,
in addition, undergo many discrete transitions imposed by
limiters, switching devices, etc.

When an application concerns the security of the system, the
speed of simulation is a critical factor [2]. In the remaining,
non-critical, applications the speed of simulation is desired
as it increases productivity and minimizes costs. This is the
main reason why control center applications often resort to
faster, static simulations. However, with the operation of non-
expandable grids closer to their stability limits, unplanned
generation patterns stemming from renewable energy sources
and active demand response schemes directed by electricity
markets, it is likely that system security will be more and more
guaranteed by emergency controls. In this context, checking
the sequence of events that take place after the initiating
disturbance is crucial; a task for which the static calculation
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of the operating point in a guessed final configuration is
inappropriate.

In this paper, a Schur-complement-based algorithm is first
presented, which accurately solves the DAEs of the power
system model over a discretized time horizon. It utilizes a
simple partitioning to perform the solution in a decomposed
manner, thus allowing the independent treatment of individual
power system components. Then, the proposed algorithm is
accelerated computationally and numerically to provide faster
dynamic simulations.

First, it will be shown how the proposed domain decompo-
sition allows for the application of modern parallel processing
techniques, thus exploiting the computational power available
in many inexpensive, shared-memory parallel computers. Sec-
ond, it will be shown how the different time-scales of phe-
nomena under study can be exploited by a stiff-decay solver
to accelerate the algorithm while still monitoring discrete
events triggered by the initial disturbance. Finally, it will be
shown how the localized response to some disturbances can
be used to further reduce the simulation time by performing
less computations on elements with “lower dynamic activity”.
By combining these three acceleration techniques (acc. tech.),
fast and accurate dynamic simulations can be performed.

This is a paper accompanying a Panel presentation at the
2014 IEEE PES General Meeting. The work presented here
unifies and extends the previous works [3], [4], [5] and
[6]. New simulation results are provided and the benefit of
combining the three acceleration techniques is investigated.
The paper is organized as follows. In Section II the Schur-
complement-based solution algorithm is presented. In Section
III, the three proposed acc. tech. are summarized. Simulation
results are reported in Section IV and followed by closing
remarks in Section V.

II. SCHUR-COMPLEMENT-BASED ALGORITHM

Let the power system be decomposed into the network and
a number of components, as sketched in Fig. 1. For reasons
of simplicity, all components connected to the network, pro-
ducing or consuming power, are called injectors.

On the one hand, each injector i is described by a system
of non-linear DAEs [1]:

Γiẋi = Φi(xi,V ) (1)

where V is the vector of rectangular components of bus
voltages, xi is the state vector containing differential and
algebraic variables of the i-th injector and Γi is a diagonal
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Figure 1. Decomposed Network

matrix with:

(Γi)ℓℓ =

{
0 if the ℓ-th equation is algebraic
1 if the ℓ-th equation is differential.

On the other hand, the linear algebraic network equations
take on the form:

0 = DV − I = DV −
n∑

i=1

Cixi ≜ g(x,V ) (2)

where D includes the real and imaginary parts of the bus
admittance matrix, I is the vector of rectangular components
of the bus currents, and Ci is a trivial matrix with zeros
and ones whose purpose is to extract the injector current
components from xi.

For the purpose of numerical simulation, the injector DAE
systems (1) are algebraized using a differentiation formula,
such as Trapezoidal Rule or Backward Differentiation For-
mulae (BDF), to get the corresponding non-linear algebraized
systems:

0 = fi(xi,V ), i = 1, . . . , n. (3)

At each discrete time-step tn the non-linear algebraized
injector equations (3) are solved together with the network
equations (2) using a Newton method to compute the vectors
x(tn) and V (tn). At the k-th Newton iteration, the linearized
injector systems have to be solved simultaneously with the
linear network equations (i = 1, . . . , n):

Ai∆xi +Bi∆V = −f i(x
k−1
i ,V k−1) (4)

D∆V −
∑n

i=1 Ci∆xi = −g(xk−1,V k−1) (5)

The solution is computed using the decomposed and accel-
erated Newton scheme detailed in [3]. In brief, the injector
equations (4) are solved with respect to ∆xi, which is intro-
duced in (5) to obtain the following reduced system:

(D +

n∑
i=1

CiA
−1
i Bi)∆V =− g(xk−1,V k−1) (6)

−
n∑

i=1

CiA
−1
i f i(x

k−1
i ,V k−1)

This reduced system is solved to obtain the voltage correction
∆V which is backward substituted in (4) to get the state
corrections ∆xi.

While this decomposition method is numerically equivalent
to an integrated Newton scheme applied to equations (2)
and (3), it provides access to the individual injector models
and allows their separate treatment. This feature is exploited
to accelerate the simulation procedure by parallelizing the
independent calculations and employing localization.

III. ACCELERATION TECHNIQUES

The presented Schur-complement-based algorithm opens
the way for faster while accurate power system dynamic
simulations. Namely, three acc. tech., summarized in Fig. 2,
applied to that algorithm will be presented.

A. Parallel Computing

The parallel processing opportunities inherent to domain
decomposition methods are exploited using shared-memory
parallel programming techniques to take advantage of the
computational resources available in multi-core computers.
This is achieved by parallelizing the independent calculations
relative to individual injectors.

Two steps of the presented algorithm are parallelized. First,
the algebraization of the injector DAE systems (1) to get
the corresponding non-linear algebraized systems (3), the
linearization of the latter to calculate the individual Jacobian
matrices, the factorization of the matrices and the calculation
of the elimination factors CiA

−1
i Bi and CiA

−1
i f i. Second,

the solution of the linearized systems (4) to compute the state
corrections ∆xi and the convergence check of the injector
DAE models. These two parallelized steps sum up for almost
80% of the total computing time.

B. Time-scale Decomposition

When considering long-term dynamic simulations (i.e. for
long-term voltage stability), some fast components of the
response may not be of interest and could be partially or totally
omitted to provide faster simulations. This can be achieved
either through the use of simplified models [7] or with a
dedicated solver applying time-averaging [5].

While model simplification offers a big acceleration with
respect to detailed simulation, some drawbacks exist. First, the
separation of slow and fast components might not be possible
for complex or black-box models. Furthermore, there is a need
to maintain both detailed and simplified models. Finally, if
both short and long-term evolutions are of interest, simplified
and detailed simulations must be properly coupled [7].

At the same time, solvers using “stiff-decay” (L-stable)
integration methods, such as BDF, with large enough time-
steps can discard some fast dynamics. Such a solver, applied
on a detailed model, can “filter” out the fast dynamics and
concentrate on the average evolution of the system. The most
significant advantage of this approach is that it processes the
detailed, referenced model. Furthermore, this technique allows
combining detailed simulation for short-term by limiting the
time-step size, and time-averaged long-term by increasing it.

As power systems are described by hybrid models, an
important consideration when increasing the time-step size is



Figure 2. Proposed Acceleration Techniques for Schur-complement-based Algorithm

the treatment of the discrete events. In the context of time-
averaging an ex-post treatment of discrete events can be used
as detailed in [5]. Summarizing the scheme used, at any time
t a time-step h is taken and the corresponding state vector
x(t + h) is computed. Then, the system is checked for any
violated discrete event conditions. If it is detected that a
discrete event has occurred within the time-step, the equations
(1) are changed accordingly and the step t → t+h is repeated
to compute a new state vector x(t + h). The algorithm uses
the previously computed x(t+h) as initial vector to solve the
perturbed equations (“warm-start”), thus significantly reducing
the computational cost. This procedure is repeated, updating
the state vector, until no more discrete conditions are violated
or a maximum number of repetitions is reached. This yields
the final state vector for the current step.

C. Localization

The concept of localization results from the observation that
in a large power system a disturbance may affect only a small
number of components. This fact is exploited in two ways.

First, it is used within one discretized time instant solution
to stop computations of injectors whose DAE models have
already been solved with the desired tolerance. That is, after
one decomposed solution of (4) and (5), the convergence
of each injector is checked individually. If the convergence
criterion (

∣∣∣∆xi

xi

∣∣∣ < tol) is satisfied, then the specific injector
is flagged as converged. For the remaining iterations of the
current time instant, the injector is not solved, although its
mismatch, computed with (3), is monitored to guarantee that

it remains converged. This technique decreases the compu-
tational effort within one discretized time instant without
affecting the accuracy of the solution [3].

Second, localization is exploited over several time steps
by detecting, during the simulation, the injectors marginally
participating to the system dynamics (latent) and replacing
their dynamic models (1) with much simpler and faster to
compute sensitivity-based models. At the same time, the full
dynamic model is used if an injector exhibits significant
dynamic activity (active). The sensitivity-based model used
is derived from the linearized equations (4) when ignoring the
internal dynamics, that is fi(x

k−1
i ,V k−1) ≃ 0, and solving

for the state variation ∆xi:

∆xi ≃ −A−1
i Bi∆V

The corresponding current variation ∆Ii is given by:

∆Ii = −EiA
−1
i Bi∆V = −Gi∆V (7)

where Ei (similarly to Ci) is a trivial matrix with zeros and
ones whose purpose is to extract the injector current variations
from ∆xi and Gi is a sensitivity matrix relating the current
with the voltage variation.

The technique employs simple and fast to compute metrics,
originating from real-time digital signal processing, to classify
each component into active or latent [6]. In brief, the vari-
ability of each injector’s active and reactive powers (Pi, Qi)
is quantified by computing their standard deviations (Pstd−i,
Qstd−i) over a moving time-window. Standard deviations
show how much variation or dispersion exists around the
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Figure 3. 2204-bus System: Accuracy of Voltage Evolution

average. A small standard deviation indicates that the data
points tend to be very close to the average.

Consequently, if both Pstd−i and Qstd−i are smaller than a
chosen tolerance (ϵL), the i-th injector is considered to exhibit
low dynamic activity and is declared latent. Thus, the full
dynamic model (1) is replaced by the linear sensitivity-based
(7). The tolerance value ϵL controls the trade-off between
acceleration and accuracy. In practice, a tolerance ϵL ≤ 0.5
(MW/MVAr) has been shown to provide significant speedup
over several time-steps while maintaining high accuracy [6].

The average and standard deviations are computed using
as efficient recursive formula [6], which is equivalent to
observing the system response over a time-window.

Finally, the localization technique can be used to detect
when the simulated system has reached a new steady-state
equilibrium. That is, if all injectors in the system are declared
latent at the same time, it is a good indication that the system
has reached a new equilibrium state. Hence, the simulation
can stop early without overlooking any dynamics.

IV. RESULTS

The Schur-complement-based algorithm with the acc. tech.
sketched in Fig. 2 are implemented in RAMSES, developed
at the University of Liège. RAMSES uses the OpenMP appli-
cation programming interface for the parallelization. All the
simulation results have been obtained with a 24-core AMD
Opteron Interlagos desktop computer running Debian Linux.

The well-known, simultaneous Very DisHonest Newton
(VDHN) algorithm applied on the original system (1), (2) is
used for comparison [4]. In this scheme, the Jacobian matrix
is updated and factorized only if the system hasn’t converged
after three Newton iterations at any discrete time instant. This
update strategy gives the best performance for the following
test-cases. The VDHN simulations are performed with one-
cycle time steps.

Concerning the localization parameters, an equivalent ob-
servation time window of 20 s and a tolerance ϵL = 0.1
(MW/MVAr) were chosen in both test-systems, whenever
localization is used.
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A. 2204-bus System

This medium-scale model of a real system includes 2204
buses, 2919 branches and 135 power plants with a detailed rep-
resentation of the synchronous machine, its excitation system,
automatic voltage regulator, power system stabilizer, turbine
and speed governor. The model also includes 976 dynamically
modeled loads. The resulting DAE system has 11774 states.
The disturbance consists of a bus bar fault lasting 7 cycles,
that is cleared by opening two lines. Following, the system
is simulated over an interval of 300 s. It evolves in the long
term under the effect of 1076 Load Tap Changers (LTCs), 24
Automatic Shunt Compensation Switching (ASCS) devices as
well as OvereXcitation Limiters (OXL).

Figure 3 shows the voltage at the faulted bus simulated
by respectively the VDHN, the presented algorithm with acc.
tech. A and C, and with all three techniques. Thus, for the
first two simulations, a time step size of one cycle was used
throughout the whole simulation; while, for the last, a time step
of one cycle until t = 15 s (short term) and 0.1 s thereafter.

The short-term response (Fig. 3, zoom) is identical in all
three curves. Due to the high dynamic activity observed during
this period, the localization technique retains the injector DAE
models. In the long-term, some small deviations are observed
between the responses due to time-averaging and localization.
The discrepancies are mainly due to the marginal activation
of the ASCS devices. Their activation is identified correctly
in all three simulations but some actions are shifted in time.
However, the biggest voltage deviation between responses is
in the order of 0.001 pu, which can be considered negligi-
ble for most applications. Moreover, their final, steady-state,
equilibrium is the same.

Figure 4 shows the speedup obtained with acc. tech. A and
C and with all three techniques. It can be seen that the pro-
posed techniques perform, respectively, three and seven times
faster than the VDHN even in sequential execution. When
using parallel computing, the proposed techniques simulate
the disturbance in 48 s (resp. 16 s) compared to 252 s needed
by VDHN, achieving a speedup of 5.2 (resp. 15.3) times.
Parallelization drives the simulation speedup in the short-term,
when high dynamic activity is observed, as most injectors
are in active mode and their solutions more computationally
intensive. When moving to long term, techniques B and
C offer more acceleration by decreasing the computational
burden.
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Figure 5. 2204-bus System: Real-time Performance

Figure 5 shows the real-time performance of the algorithm
with two of the techniques. When the wall time curve is above
the real-time line, then the simulation is lagging; otherwise,
the simulation is faster than real-time and can be used for
more demanding applications, like look-ahead simulations,
training simulators or hardware/software in the loop [2]. On
this power system, the algorithm performs faster than real-time
when executed on six or more cores. Using all 24-cores, the
algorithm can simulate in real-time power system models of
up to 8000 buses and approximately 75000 dynamic states.

B. 15226-bus System
This large-scale model, representative of the continental

European main transmission grid [3], includes 15226 buses,
21765 branches and 3483 power plants with a detailed repre-
sentation of each synchronous machine, its excitation system,
automatic voltage regulator, power system stabilizer, turbine
and speed governor. The model also includes 7211 dynami-
cally modeled loads. The resulting DAE system has 146239
differential-algebraic states. The disturbance consists of a bus
bar fault, lasting five cycles, that is cleared by opening two
double-circuit lines. The system is simulated over a period of
240 s. The system evolves in the long term under the effect
of LTCs as well as OXLs. A time-step size of one cycle was
chosen for the first 15 s (short term), followed by 2.5 cycles
for the remaining (long term).

Figure 6 shows the speedup obtained with all three tech-
niques. The disturbance is simulated in less than 100 s, more
than 11 times faster than VDHN, when executed on 16 or
more cores.

Figure 7 shows the activity of the injectors based on the
above mentioned localization criterion. It can be seen that
a large percentage of the injectors does not show “high
dynamic activity”, especially in the long term. In the particular
simulation, at around t = 210 s all injectors are declared latent,
indicating that the system has reached a new equilibrium and
simulation can be stopped.

V. CONCLUSION

In this paper, some algorithmic and computational advances
have been presented to accelerate power system dynamic
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Figure 7. 15226-bus System: Active Injectors

simulations. Using the Schur-complement-based solution al-
gorithm, three acc. tech. have been presented.

First, the solution is accelerated computationally with the
use of shared-memory parallel computing techniques. Second,
time-averaging is employed (with the use of a “stiff-decay”
integration scheme, large time steps and ex-post discrete event
handling) to “filter” out the fast dynamics and concentrate on
the average evolution of the system for long-term simulations.
Finally, the localized response of power system components
is exploited to decrease the computational effort by avoiding
unnecessary iterations and by having the original DAE model
of injectors with low dynamic activity automatically replaced
by linear sensitivity-based models.

It has been shown that the combination of these techniques
can significantly accelerate the dynamic simulation procedure
while maintaining high accuracy.
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