
1

Dynamic Simulation of Large-scale Power
Systems Using a Parallel Schur-

complement-based Decomposition Method
Petros Aristidou, Student Member, IEEE, Davide Fabozzi, and Thierry Van Cutsem, Fellow Member, IEEE

Abstract—Power system dynamic simulations are crucial for the operation of electric power systems as they provide important
information on the dynamic evolution of the system after an occurring disturbance. This paper proposes a robust, accurate and
efficient parallel algorithm based on the Schur complement domain decomposition method. The algorithm provides numerical and
computational acceleration of the procedure. Based on the shared-memory parallel programming model, a parallel implementation of
the proposed algorithm is presented. The implementation is general, portable and scalable on inexpensive, shared-memory, multi-core
machines. Two realistic test systems, a medium-scale and a large-scale, are used for performance evaluation of the proposed method.

Index Terms—domain decomposition methods, Schur complement, power system dynamic simulation, OpenMP, shared-memory

F

1 INTRODUCTION

D YNAMIC simulations are frequently used in indus-
try and academia to check the response of electric

power systems to disturbances. Over the last decades,
they have become indispensable to anyone involved in
the planning, design, operation and security of power
systems. Power system operation companies depend on
fast and accurate dynamic simulations to train opera-
tors, analyze large sets of scenarios, assess the dynamic
security of the network in real-time or schedule the day
ahead operation. On the other hand, people designing
future power systems depend on dynamic simulations
to evaluate the proposed changes, whether these involve
adding new transmission lines, increasing renewable
energy sources, implementing new control schemes or
decommissioning old power plants [1].

Complex electric components (like generators, motors,
loads, wind turbines, etc.) used in dynamic simulations
are represented by systems of stiff, non-linear Differ-
ential and Algebraic Equations (DAEs) [2]. Conversely,
the network connecting the equipment together is repre-
sented by a system of linear algebraic equations. These
equations try to describe the physical dynamic character-
istics, the interactions and control schemes of the system.
A large interconnected system may involve hundreds of
thousands of such equations whose dynamics span over
very different time scales and undergoing many discrete
transitions imposed by limiters, switching devices, etc.

Petros Aristidou is with the Department of Electrical Engineering
and Computer Science, University of Liège, Liège, Belgium, e-mail:
p.aristidou@ieee.org.
Davide Fabozzi is with the Department of Electrical Engineering and
Computer Science, University of Liège, Liège, Belgium.
Thierry Van Cutsem is with the Fund for Scientific Research (FNRS) at the
Department of Electrical Engineering and Computer Science, University of
Liège, Liège, Belgium, e-mail: t.vancutsem@ulg.ac.be.

Consequently, dynamic simulations are challenging to
perform and computationally intensive [1].

In applications concerning the security of the system,
for example Dynamic Security Assessment (DSA), the
speed of simulation is a critical factor. In the remaining
applications the speed of simulation is not critical but
desired as it increases productivity and minimizes costs.
This is the main reason why power system operators
often resort to faster, static simulations. However, opera-
tion of non-expandable grids closer to their stability lim-
its and unplanned generation patterns stemming from
renewable energy sources require dynamic studies. Fur-
thermore, under the pressure of electricity markets and
with the support of active demand response, it is likely
that system security will be more and more guaranteed
by emergency controls responding to the disturbance. In
this context, checking the sequence of events that take
place after the initiating disturbance is crucial; a task for
which the static calculation of the operating point in a
guessed final configuration is inappropriate [11].

During the last decade the increase of computing
power has led to an acceleration of dynamic simulations.
Unfortunately, at the same time, the size and complexity
of simulations has also grown. The increasing demand
for more detailed and complex models (power electronic
interfaces, distributed energy sources, active distribution
networks, etc.) can easily push any given computer to its
limits [1]. However, the emergence of parallel computing
architectures resulted in a great boost of the simulation
performance. The most prominent parallel algorithms
developed are inspired from the field of Domain De-
composition Methods (DDMs).

DDM refers to a collection of techniques which re-
volve around the principle of “divide-and-conquer”.
Such methods have been used extensively in problems
deriving from physics and structural engineering [3].

2

They were primarily developed for solving large bound-
ary value problems of Partial Differential Equations
(PDEs) by splitting them into smaller problems over
sub-domains and iterating between them to coordinate
the solution [4]. Following, because of their high effi-
ciency and performance, DDMs became popular in DAE
problems, such as those appearing in power system
simulations, VLSI simulations, multi-domain mechanical
design, etc. [5], [6], [7], [8], [9]. In these problems, the so-
lution domain refers to the states describing the physics
and mechanisms of the underlying process and not to
the space domain as usually in PDE problems. A more
detailed overview of DDMs is presented in App. A.

In this paper we propose a parallel algorithm for
dynamic simulation of large-scale electric power sys-
tems based on the Schur complement DDM. A non-
overlapping, topological-based, decomposition scheme
is applied on large electric power systems revealing a
star-shaped sub-domain layout. This decomposition is
reflected to a separation of the DAEs describing the
system. Following, the non-linear DAE system describ-
ing each sub-domain is solved independently by dis-
cretizing and using a Newton method with infrequent
matrix update and factorization. The interface variables
shared between sub-domains are updated using a Schur-
complement-based method [8], [10].

The proposed algorithm augments the performance of
the simulation in two ways: first, the independent calcu-
lations of the sub-systems (such as formulation of DAE
system, discretization, formulation of linear systems for
Newton methods, solution of linear system, check of
convergence, etc.) are parallelized, thus providing com-
putational acceleration. Second, it exploits the locality of
the decomposed sub-systems to avoid many unnecessary
computations and provide numerical acceleration.

Additionally, we present the implementation of the al-
gorithm based on the shared-memory parallel program-
ming model targeting common, inexpensive multi-core
machines. For this, modern Fortran and the OpenMP
Application Programming Interface (API) are used. The
implementation is general, with no hand-crafted opti-
mizations particular to the computer system, Operating
System (OS), simulated electric power network or dis-
turbance. The results were acquired using four different
multi-core computers and show significant acceleration.

The paper is organized as follows: in Section 2 we
present the power system model formulation and some
existing dynamic simulation algorithms. In Section 3,
we explain the proposed algorithm and its application
on dynamic simulations of electric power systems. In
Section 4, some important parallel programming aspects
and challenges of the implementation are discussed. Our
simulation study is reported in Section 5, followed by a
discussion in Section 6 and closing remarks in Section 7.

2 POWER SYSTEM DYNAMIC SIMULATION
Power system dynamic simulations fall in basically
two categories: electromagnetic transients and quasi-

sinusoidal approximation. In the former, fast electromag-
netic transients are simulated; in steady state, voltages
and currents evolve sinusoidally with time at a fre-
quency close to the nominal value (50 or 60 Hz). The net-
work itself is modeled through the differential equations
relative to its inductances and capacitors. On the other
hand, in the quasi-sinusoidal (or phasor) approximation,
the network is represented through algebraic equations
corresponding to sinusoidal regime. During transients,
all phasors vary with time while in steady-state they take
on constant values [2]. The dynamic model describes
how the phasors evolve with time.

The dynamic simulations described in this paper fall
in the second category. It is the one commonly used
in global stability studies, where the simulated time
interval can extend up to several minutes, if not more.
Typical time step sizes range form a few milliseconds to
seconds.

2.1 Model Overview
An electric power system, under the quasi-sinusoidal
approximation, can be described in compact form by the
following DAE Initial Value Problem (IVP):

0 =Ψ(x,V)
Γẋ=Φ(x,V)

x(t0) = x0,V(t0) = V0

(1)

where V is the vector of voltages through the network,
x is the expanded state vector containing the differen-
tial and algebraic variables (except the voltages) of the
system and Γ is a diagonal matrix with

(Γ)ℓℓ =

{
0 if ℓ-th equation is algebraic
1 if ℓ-th equation is differential

The first part of (1) corresponds to the purely alge-
braic network equations. The second part describes the
remaining DAEs of the system. This system changes
during the simulation due to the discrete dynamics of the
system such as response to discrete controls or changes
in continuous-time equations. For reasons of simplicity,
the handling of these discrete events is not presented in
this paper. More details concerning their handling can
be found in [11] and its quoted references.

2.2 Review of Solution Algorithms
The existing sequential algorithms can be categorized as
partitioned or integrated (simultaneous) [12]. Partitioned
algorithms solve separately the differential equations of
(1) for the state variables and the algebraic equations
for the algebraic variables. Then, these solutions are
alternated until convergence. On the other hand, inte-
grated algorithms use an implicit integration method to
convert (1) into a unique set of algebraic equations to be
solved simultaneously. The most popular algorithm in
this category [13] is the Very DisHonest Newton (VDHN)
detailed in App. B.1.

As soon as parallel computers emerged, several algo-
rithms trying to exploit the new computational potential

3

were proposed. These can be mainly classified into fine-
grained [14], [15], [16], [17] and coarse-grained [6], [7],
[18], [19], [20], [21], [22] parallel algorithms.

A more detailed overview of existing sequential and
parallel algorithms in power system dynamic simula-
tions can be found in App. B.

3 PROPOSED ALGORITHM

This section describes the proposed parallel Schur-
complement-based algorithm.

3.1 Power System Decomposition

From topological perspective, power systems consist of
electric components (e.g. synchronous machines, loads,
motors, small distribution network equivalents, etc.)
interfacing with each other through the network. For
reasons of simplicity, all the aforementioned components
connected to the network will be called injectors and refer
to devices that either produce or consume power. The
proposed algorithm employs a topological decomposi-
tion separating each injector to define one sub-domain
and the remaining electric network as the central sub-
domain of a star layout. The proposed decomposition is
visualized in Fig. 1 with each shaded area representing
one sub-domain.

This decomposition separates the problem (1) into sev-
eral sub-problems, each defined over one sub-domain.
Thus, the network sub-domain is described by the alge-
braic equations:

0 = Ψ(xext,V)
xext(t0) = xext

0 ,V(t0) = V0
(2)

while each injector sub-domain i is described by DAEs:

Γiẋi = Φi(xi,V
ext)

xi(t0) = xi0,V
ext(t0) = Vext

0
(3)

where the first N−1 sub-domains are injectors and N -th
sub-domain the network. xi and Γi are the projections
of x and Γ, defined in (1), on the i-th sub-domain. Fur-
thermore, the variables of each injector xi are separated
into interior xint

i and local interface xext
i variables and

Network

M

M

M

M

Γiẋi =Φi(xi,V
ext)

0=Ψ(xext
,V)

V

Injectors

Figure 1. Proposed decomposition scheme

the network sub-domain variables V are separated into
interior Vint and local interface Vext variables.

Although for decomposed DAE systems detecting
the interface variables is a complicated task [8], for
the proposed topological-based decomposition these are
preselected based on the nature of the components.
For the network sub-domain, the interface variables are
the voltage variables of buses on which injectors are
physically connected. For each injector sub-domain, the
interface variable is the current injected in that bus.

The resulting star-shaped, non-overlapping, partition
layout (see Fig. 1) is extremely useful when applying
Schur-complement-based DDMs since it allows simpli-
fying and further reducing the size of the global reduced
system needed to be solved for the interface unknowns.

Moreover, the decomposition is based on topolog-
ical inspection and doesn’t demand complicated and
computationally intensive partitioning algorithms. It in-
creases modularity as the addition or removal of injec-
tors does not affect the existing decomposition or other
sub-domains besides the network. This feature can be
exploited to numerically accelerate the solution.

3.2 Local System Formulation

The VDHN method is used to solve the algebraized
injector DAE systems and the network equations. Thus,
the resulting local linear systems take on the form of (4)
for the injectors and (5) for the network.
A1i (resp. D1) represents the coupling between in-

terior variables. A4i (resp. D4) represents the coupling
between local interface variables. A2i and A3i (resp. D2

and D3) represent the coupling between the local inter-
face and the interior variables. Bi (resp. Cj) represent the
coupling between the local interface variables and the
external interface variables of the adjacent sub-domains.

3.3 Global Reduced System Formulation

Following, the interior variables of the injector sub-
domains are eliminated (see App. A.2.2) which yields
for the i-th injector:

Si△xext
i +Bi△Vext = f̃i (6)

with Si = A4i − A3iA
−1
1i A2i, the local Schur comple-

ment matrix and f̃i = fexti −A3iA
−1
1i f

int
i the correspond-

ing adjusted mismatch values.
The matrix D of the electric network is very sparse and

structurally symmetric. Eliminating the interior variables
of the network sub-domain requires building the local
Schur complement matrix SN which is in general not a
sparse matrix. That matrix being large (since many buses
have injectors connected to them) the computational
efficiency would be impacted. On the other hand, not
eliminating the interior variables of the network sub-
domain increases the size of the reduced system but
retains sparsity. The second option was chosen as it
allows using fast sparse linear solvers.

4

(
A1i A2i

A3i A4i

)
︸ ︷︷ ︸

(
△xint

i

△xext
i

)
︸ ︷︷ ︸ +

Ai △xi

(
0

Bi△Vext

)
=

(
f inti (xint

i ,xext
i)

fexti (xint
i ,xext

i ,Vext)

)
︸ ︷︷ ︸

fi

(4)

(
D1 D2

D3 D4

)
︸ ︷︷ ︸

(
△Vint

△Vext

)
︸ ︷︷ ︸ +

D △V

(
0∑N−1

j=1 Cj△xext
j

)
=

(
gint(Vint,Vext)

gext(Vint,Vext,xext)

)
︸ ︷︷ ︸

g

(5)

(
D1 D2

D3 D4 −
∑N−1

i=1 CiS
−1
i Bi

)
︸ ︷︷ ︸

D̃

(
∆Vint

∆Vext

)
︸ ︷︷ ︸

∆V

=

(
gint

gext −
∑N−1

i=1 CiS
−1
i f̃i

)
︸ ︷︷ ︸

g̃

(8)

So, the global reduced system to be solved, with the
previous considerations, takes on the form:

S1 0 0 · · · 0 B1

0 S2 0 · · · 0 B2

0 0 S3 · · · 0 B3

...
...

...
. . .

...
...

0 0 0 · · ·D1 D2

C1 C2 C3 · · ·D3 D4

△xext
1

△xext
2

△xext
3

...
△Vint

△Vext

=

f̃1
f̃2
f̃3
...

gint

gext

(7)

Due to the star layout of the decomposed system, the
resulting global Schur complement matrix is in the so
called Block Bordered Diagonal Form (BBDF). Manipu-
lating this structure, which is a unique characteristic of
star-shaped layout decompositions, we can further elim-
inate from the global reduced system all the interface
variables of the injector sub-domains and keep only the
variables associated to the network sub-domain [23].

This results in the simplified, sparse, reduced system
(8) where the elimination factors CiS

−1
i Bi act only on

the already non-zero block diagonal of sub-matrix D4

thus retaining the original sparsity pattern. System (8) is
solved efficiently using a sparse linear solver to acquire
V and the network sub-domain interface variables are
backward substituted in (4), thus decoupling the solution
of injector sub-domains. Then, the injector interior (xint

i)
and local interface (xext

i) variables are computed and
the convergence of each sub-domain is checked using an
infinite norm on its normalized state vector corrections.
The solution stops when all sub-domains obey the con-
vergence criteria, thus the non-linear systems (3) have
been solved.

Other power system decomposition algorithms, like
diakoptics [5], use a Schwartz-based approach (App. A)
to update the interface variables. This is reflected into
an equivalent system of (7) which, instead of BBDF, is
in lower/upper triangular form. On the one hand, this
form augments the algorithm’s parallel performance by
providing fewer synchronization points. On the other
hand, it increases the number of iterations needed to
converge as the influence of neighboring sub-domains
is kept constant during a solution.

Although Schwartz-based algorithms are very use-
ful when considering distributed memory architectures

(where the cost of data exchange and synchronization
is high), in modern shared-memory architectures the
use of Schur-complement-based algorithms, as the one
proposed, can compensate for the higher data exchange
with less iterations because it retains the equivalent BBD
structure of the final matrix.

3.4 Computational Acceleration
The proposed parallel algorithm -denoted (P)- is pre-
sented in Fig. 2. As described above, the VDHN method
is used for the solution of the sub-domain systems, thus
updating and factorizing the local matrices is done infre-
quently. If the decomposed algorithm does not converge
after a given number of sub-domain VDHN iterations,
then, all the local sub-domain matrices are updated and
factorized, the local Schur complement and elimination
factors are recomputed and the simplified reduced sys-
tem (8) reformulated.

Thus, the main sources of parallelism of the proposed
algorithm are the formulation and update of the sub-
domain local systems, the elimination of the interior
variables and calculation of local Schur complements, the
calculation of the elimination factors, the formulation of
the reduced system and the solution of the sub-domain
systems. These can be seen in the shaded blocks in Fig. 2.

The proposed algorithm, as Schur-complement-based,
suffers from the sequentiality introduced by the solution
of the global reduced system (8). Because of the high
sparsity, the linear nature of the network sub-domain
and the infrequent system update, this bottleneck is
bounded to 5−8% of the overall computational cost (see
App. E.2). Although this sequentiality can be tackled by
the use of available parallel sparse linear solvers, the new
synchronization points introduced would increase the
overhead time and counteract any benefits arising from
parallelization. Hence, a powerful but general solver [24]
has been used in this work. However, in future devel-
opment a customized advanced parallel solver (e.g. [25])
could be used to compute this remaining sequential
portion in the most efficient manner.

3.5 Numerical Acceleration
The proposed algorithm can also provide numerical ac-
celeration, if we exploit the locality of the sub-domains.

5

Parallel threads

Parallel threads

Figure 2. Proposed parallel algorithm (P)

This is based on the observation that sub-domains de-
scribed by strongly non-linear systems or with fast
changing variables, converge slower and need more
VDHN iterations, while sub-domains with “low dy-
namic activity” converge faster and need less VDHN
iterations. We can exploit this in two ways.

First, in algorithm (P) the local matrices and the global
Schur complement matrices are computed infrequently
but in a synchronized way; when the criteria for global
update is reached, all matrices are recomputed at the
same time. Taking advantage of the fact that each sub-
domain is solved by a separate VDHN method, we
can decouple the matrix update criteria and allow local
system matrices to be updated asynchronously. In this
way, sub-domains which converge fast will keep the
same local system matrices for many iterations and time-
steps, while sub-domains which converge slower will
update their local systems more frequently.

Second, in algorithm (P) all sub-domains need to
be solved at every iteration up to global convergence.
Conversely, if the convergence check is done locally
on each separate sub-domain, then many sub-domain
solutions can be saved. That is, at a given iteration
not-converged sub-domains will continue being solved,
while converged sub-domains will stop being solved.

Based on algorithm (P) and the two above enhance-
ments, the enhanced parallel algorithm (EP) is presented
in Fig. 3. Both algorithms have the same parallelization
opportunities but the second algorithm (EP) offers some
further, numerical acceleration [11].

Parallel threads

Parallel threads

Figure 3. Proposed enhanced parallel algorithm (EP)

4 PARALLEL IMPLEMENTATION
The main reason for applying parallelization techniques
is to achieve higher application performance, or in our
case, reduce simulation time. This performance depends
on several factors, such as the percentage of paral-
lel code, load balancing, communication overhead, etc.
Other reasons, which are not considered in this paper,
include the existence of proprietary data in some sub-
domains or the usage of black-box models. In such cases,
the method can work if the sub-domains are solved
separately and only the interface values are disclosed.

Several parallel programming models were considered
for the implementation of the algorithm (see App. C.1).
The shared-memory model using OpenMP was selected
as it is supported by most hardware and software ven-
dors and it allows for portable, user-friendly program-
ming. Shared-memory, multi-core computers are becom-
ing more and more popular among low-end and high-
end users due to their availability, variety and perfor-
mance at low prices. OpenMP has the major advantage
of being widely adopted on these platforms, thus allow-
ing the execution of a parallel application, without any
changes, on many different computers [26]. Moreover,
OpenMP provides some easy to employ mechanisms
for achieving good load balance among the working
threads; these are detailed in App. C.2.

4.1 Parallel Work Scheduling
One of the most important tasks of parallel program-
ming is to make sure that parallel threads receive equal

6

amounts of work [26]. Imbalanced load sharing among
threads leads to delays, as some threads are still working
while others have finished and remain idle.

In the proposed algorithm, the injector sub-domains
exhibit high imbalance based on the dynamic response
of each injector to the disturbance. In such situations, the
dynamic strategy (App. C.2) is to be preferred for better
load balancing. Spatial locality can also be addressed
with dynamic scheduling, by defining a minimum num-
ber of successive sub-domains to be assigned to each
thread (chunk). Temporal locality, on the other hand,
cannot be easily addressed with this strategy because
the sub-domains treated by each thread, and thus the
data accessed, are decided at run-time and can change
from one parallel segment of the code to the next.
When executing on Uniform Memory Access (UMA)
architecture computers, where access time to a memory
location is independent of which processor makes the
request, this strategy proved to be the best.

On the other hand, when executing on Non-
Uniform Memory Access (NUMA) architecture com-
puters (App C.3), a combination of static scheduling
(App. C.2) with a proper choice of successive itera-
tions to be assigned to each thread (chunk), proved to
provide the best performance. A small chunk number
means that the assignment of sub-domains to threads
is better randomized, thus practically providing good
load balancing. A higher chunk number, as discussed
previously, allows to better address spatial locality. So,
a compromise chunk size is chosen at runtime based
on the number sub-domains and available threads. The
same static scheduling and chunk number is used on all
the parallel loops, which means that each thread handles
the same sub-domains and accesses the same data, at
each parallel code segment thus addressing temporal
locality.

4.2 Ratio of Sub-domains to Threads
In several decomposition schemes, the number of sub-
domains is chosen to be the same as the number of
available computing threads and of equal size in order
to utilize in full the parallelization potential. Further
partitioning is avoided as increasing the number of sub-
domains leads to an increased number of interfaces and
consequently higher synchronization cost. On the con-
trary, the proposed decomposition suggests an extremely
large number of injector sub-domains.

First, due to the star-shaped layout, the injector sub-
domains of the proposed scheme have no interface or
data exchange with each other except with the network.
Thus, the high number of injector sub-domains does not
affect the synchronization cost. Second, groups (chunks)
of sub-domains are assigned at run-time to the parallel
threads for computation, thus better load-balancing is
achieved as they can be dynamically reassigned. Last,
this decomposition permits the individual injector treat-
ment to numerically accelerate the procedure as seen in
Section 3.5.

These benefits, that is dynamic load balancing and
numerical acceleration, cannot be exploited when fewer
but bigger sub-domains, aggregating many injectors, are
used. In dynamic simulations it is not known which
injectors will display high dynamic activity, thus high
computational cost, before applying a disturbance. So, to
achieve good load balancing the splitting of injectors to
sub-domains would need to be changed for each system
and applied disturbance. Further, to apply the numerical
acceleration presented in Section 3.5, all the injectors of
the big sub-domain should be treated at the same time.
Hence, the whole big sub-domain should be solved even
if only one injector is strongly active.

5 RESULTS

In this section we present the results of the Schur
Complement-based algorithm implemented in the aca-
demic simulation software RAMSES1, developed at the
University of Liège. The software is written in standard
Fortran language with the use of OpenMP directives for
the parallelization.

Three algorithms were implemented for comparison:
(I) Integrated sequential algorithm VDHN (see

App. B.1) applied on the original system (1).
The Jacobian matrix is updated and factorized
only if the system hasn’t converged after three
Newton iterations at any discrete time instant.
This update strategy gives the best performance
for the proposed test-cases.

(P) Parallel decomposed algorithm of Fig. 2. The
global update and global convergence criteria
are chosen to be the same as of (I).

(EP) Parallel decomposed algorithm of Fig. 3. The
local update and local convergence criteria,
applied to each sub-domain individually, are
chosen to be the same as of (I).

For all three algorithms the same models, algebraization
method (second-order backward differentiation formula
- BDF2) and way of handling the discrete events were
used. For the solution of the sparse linear systems, the
sparse linear solver HSL MA41 [24] was used in all three
algorithms. For the solution of the dense injector linear
systems in algorithms (P) and (EP), Intel MKL LAPACK
library was used.

Keeping the aforementioned parameters of the sim-
ulation constant for all algorithms permits the better
evaluation of the proposed algorithms’ performance.

5.1 Performance Indices

Many different indices exist for assessing the perfor-
mance of a parallel algorithm. The two indices most
commonly used by the power system community, as
proposed in [13], are speedup and scalability.

1. Acronym for “Relaxable Accuracy Multithreaded Simulator of
Electric power Systems”.

7

First, the speedup is computed by:

Speedup(M) =
Wall time (I) (1 core)

Wall time (P/EP) (M cores)
(9)

and shows how faster is the parallel implementation
compared to the fast, well-known and widely used
sequential algorithm presented in App. B.1.

The second index is the scalability of the parallel algo-
rithm, computed by:

Scalability(M) =
Wall time (P/EP) (1 core)

Wall time (P/EP) (M cores)
(10)

and shows how the parallel implementation scales when
the number of processors available are increased.

5.2 Computer Platforms Used
The following computer platforms were used to acquire
the simulation results:

1) Intel Core2 Duo CPU T9400 @ 2.53GHz, 32KB
private L1 and 6144KB shared L2 cache, 3.9GB
RAM, Microsoft Windows 7

2) Intel Core i7 CPU 2630QM @ 2.90GHz, 64KB pri-
vate L1, 256KB private L2 and 6144KB shared L3
cache, 7.7GB RAM, Microsoft Windows 7

3) Intel Xeon CPU L5420 @ 2.50GHz, 64KB private
L1 and 12288KB shared L2 cache, 16GB RAM,
Scientific Linux 5

4) AMD Opteron Interlagos CPU 6238 @ 2.60GHz,
16KB private L1, 2048KB shared per two cores L2
and 6144KB shared per six cores L3 cache, 64GB
RAM, Debian Linux 6 (App. C.3, Fig. 1)

Machines (1) and (2) are ordinary laptop computers
with UMA architecture, thus dynamic load balancing
was used. Machines (3) and (4) are scientific computing
equipment with NUMA architecture, hence static load
balancing and the considerations of App. C.3 were used.

5.3 Test-case A
The first test-case is based on a medium-size model
of a real power system. This system includes 2204
buses and 2919 branches. 135 synchronous machines
are represented in detail together with their excitation
systems, voltage regulators, power system stabilizers,
speed governors and turbines. 976 dynamically modeled
loads and 22 Automatic Shunt Compensation Switching
(ASCS) devices are also present. The resulting, undecom-
posed, DAE system has 11774 states. The models were
developed in collaboration with the system operators.

Table 1
Case A1: Performance summary

average iterations platform (1) (2) (3) (4)
per time step cores 2 4 8 12

(P) 2.6 speedup 1.8 2.1 2.5 3.8
scalability 1.1 1.5 1.7 2.8

(EP) 3.0 speedup 4.1 4.5 4.8 6.7
scalability 1.1 1.4 1.4 2.3

(I) 2.6 - - - - -

The disturbance consists of a short circuit near a bus
lasting seven cycles (116.7 ms at 60 Hz), that is cleared by
opening two transmission lines (test-case A1). The same
simulation is repeated with the difference that six of the
ASCS devices located in the area of the disturbance are
deactivated (test-case A2). Both test-cases are simulated
over a period of 240 s with a time step of one cycle
(16.667 ms) for the first 15 s after the disturbance (short-
term) and 50 ms for the remaining time up to four
minutes (long-term). The dynamic response of test-cases
A1 and A2 as well as a comparison on the accuracy of
the three algorithms can be found in App. D.1.

Tables 1 and 2 summarize the performance measured
for test-cases A1 and A2, respectively. First, the average
number of iterations needed for each discrete time step
computation is presented. As expected, algorithms (I)
and (P) need the same average number of iterations
to compute the solution. Conversely, algorithm (EP)
requires more iterations as converged sub-domains are
not solved anymore and kept constant. However, each
iteration of (EP) requires much smaller computational
effort, as only non-converged sub-domains are solved,
thus the overall procedure is accelerated.

Second, the performance indices achieved on each of
the computational platforms. Both parallel algorithms
(P) and (EP) provide significant acceleration when com-
pared to the sequential algorithm (I). As expected, the
best acceleration is achieved by algorithm (EP) which
takes advantage of both the computational and numer-
ical acceleration as described in Sections 3.4 and 3.5,
respectively. It is noticeable that even on inexpensive
portable computers (like UMA machines (1) and (2))
a significant acceleration is achieved with an up to
4.5 times speedup. On the bigger and more powerful
computers used a speedup of up to 6.7 times is obtained.

Moreover, it is worth noticing that test-case A2, which
is an unstable case (see App. D.1), requires on average
more iterations per discrete time step computation. In
fact, as the system collapses (App. D.1, Fig. 3) the
injector sub-domains become more active, thus more
iterations are needed for convergence. This also explains
why test-case A2 shows slightly better scalability. That
is, the additional number of sub-domain updates and
solutions are computed in parallel, hence increasing the
parallel percentage of the simulation (see App. E). At the
same time, test-case A2 benefits less from the numerical
speedup with algorithm (EP) as more active injector sub-
domains delay to converge.

Table 2
Case A2: Performance summary

average iterations platform (1) (2) (3) (4)
per time step cores 2 4 8 12

(P) 3.5 speedup 1.9 2.3 2.6 3.9
scalability 1.2 1.6 1.8 3.0

(EP) 4.2 speedup 3.8 4.2 4.5 6.2
scalability 1.1 1.4 1.5 2.3

(I) 3.5 - - - - -

8

Table 3
Case B: Performance summary

average iterations platform (1) (2) (3) (4)
per time step cores 2 4 8 24

(P) 2.2 speedup 1.4 2.0 2.7 3.9
scalability 1.5 2.1 2.5 3.9

(EP) 2.6 speedup 2.9 3.3 4.1 4.7
scalability 1.4 1.7 1.8 2.9

(I) 2.2 - - - - -

5.4 Test-case B

The second test-case is based on a large-size power
system representative of the continental European main
transmission grid. This system includes 15226 buses,
21765 branches and 3483 synchronous machines rep-
resented in detail together with their excitation sys-
tems, voltage regulators, power system stabilizers, speed
governors and turbines. Additionally, 7211 user-defined
models (equivalents of distribution systems, induction
motors, impedance and dynamically modeled loads, etc.)
and 2945 Load Tap Changing (LTC) devices are included.
The resulting, undecomposed, DAE system has 146239
states. The models were developed in collaboration with
industrial partners and operators of the power system.

The disturbance simulated on this system consists of
a short circuit near a bus lasting five cycles (100 ms at
50 Hz), that is cleared by opening two important double-
circuit transmission lines. The system is simulated over
a period of 240 s with a time step of one cycle (20 ms)
for the first 15 s after the disturbance (short-term) and
50 ms for the rest (long-term). The dynamic response of
test-case B as well as a comparison on the accuracy of
the three algorithms can be found in App. D.2.

Table 3 summarizes the performance measured for this
test-case. As with test-cases A1 and A2, algorithms (I)
and (P) need the same average number of iterations to
compute the solution at each discrete time step, while
(EP) slightly more. Furthermore, the performance indices
show significant acceleration of the parallel algorithms
compared to algorithm (I).

The scalability of test-case B is higher than of A1
and A2 as the significantly larger number of injectors

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 4 6 8 10 12 14 16 18 20 22 24
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

S
pe

ed
up

W
al

l t
im

e
(s

)

cores

Simulated time=240s

Algorithm (I)=660s

Wall time
Speedup

Ideal speedup

Figure 4. Case B: Speedup of algorithm (P)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 4 6 8 10 12 14 16 18 20 22 24
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

S
pe

ed
up

W
al

l t
im

e
(s

)

cores

Simulated time=240s

Algorithm (I)=660s

Wall time
Speedup

Ideal speedup

Figure 5. Case B: Speedup of algorithm (EP)

in the second system provides higher percentage of
computational work in the parallelized portion. On the
other hand, test-case B exhibits smaller overall speedup
(4.7) compared to A1 and A2 (6.7 and 6.2 respectively).
This can be attributed to the numerical acceleration of
algorithm (EP), better benefiting test-cases A1 and A2.
That is, many injectors in test-cases A1 and A2 converge
early during the iterations and stop being solved (see
Section 3.5), thus the amount of computational work
inside each iteration is decreased and the overall sim-
ulation further accelerated.

Finally, Figs. 4 and 5 show the speedup and wall
time of the algorithms (P) and (EP) when the number
of threads on machine (4) are varied between one and
24. The ideal speedup is calculated using the profiling
results of the test-case in sequential execution to acquire
the parallel and sequential portion (App. E.2) and Am-
dahl’s law (App. E.1).

6 DISCUSSION

This section presents a discussion concerning the sequen-
tial, parallel and real-time performance of the proposed
algorithms executed on NUMA machine (4).

6.1 Sequential Performance
In sequential execution, algorithms (I) and (P) perform
almost the same (see Fig. 4, one core). On the other
hand, due to the numerical accelerations presented in
Section 3.5, algorithm (EP) is faster by a factor of 1.5−2.0
(see Fig. 5, one core). Therefore, the proposed algorithm
(EP) can provide significant acceleration even when exe-
cuted on single-core machines. Moreover, it can be used
on multi-core machines to simulate several disturbances
concurrently using one core for each.

6.2 Parallel Performance
Equations 9 and 10 provide the actual speedup and
scalability achieved by the parallel implementation.
These indices take into consideration the OverHead Cost
(OHC) needed for creating and managing the parallel

9

threads, as well as any other delays occurring in the
implementation (e.g. due to load imbalances). To assess
the performance of a parallel implementation Amdahl’s
law can be used [27] to provide its theoretical scalability,
that is the theoretical maximum performance of the
implementation if no OHC and perfect load balancing
is considered. This theoretical maximum can be used to
evaluate the quality of an implementation (see App. E).

Figure 6 shows how algorithms (P) and (EP) scale over
a changing number of cores for test-case B. The theoretic
scalability curves are plotted using the profiling results
and Amdahl’s law. The difference between the theoretic
scalability and the measured scalability is due to costs
of managing the threads and communication between
them. This is better explained by the modified Amdahl’s
law (see App. E.1) which includes the OHC. The spread
among theoretic and measured curves can be minimized
if the costs of synchronization and communication, and
thus OHC, are minimized.

To achieve this, further study on the algorithmic part
(merging some parallel sections of the code to avoid syn-
chronizations, parallelizing other time consuming tasks,
etc.) and on the memory access patterns and manage-
ment (avoiding false sharing, arranging better memory
distribution, etc.) is needed. Especially for the latter,
particularly interesting is the effect of LAPACK solvers
used for the parallel solution of sub-domains. These
popular solvers do not use optimized data structures
to minimize wasting memory bandwidth or minimize
conditionals to avoid pipeline flushing in multi-core
execution. Techniques have been proposed for the devel-
opment of customized solvers [25] to help alleviate this
issue and need to be considered in future development.

Finally, a slight decrease of the scalability of (EP)
is observed when the number of threads exceeds 22
(see Fig. 6). That is, when using more than 22 threads,
the scalability degrades compared to the maximum
achieved. The degradation occurs as the execution time
gained (P

22 −
P
24), when increasing from 22 to 24 threads,

is smaller than the overhead cost OHC(24) − OHC(22)
of creating and managing the two extra threads (see
App. E.1).

6.3 Real-time Performance

Fast dynamic simulations of large-scale systems can be
used for operator training and testing global control
schemes implemented in Supervisory Control and Data
Acquisition (SCADA) systems. In brief, measurements
(such as the open/closed status from a switch or a valve,
pressure, flow, voltage, current, etc.) are transfered from
Remote Terminal Units (RTUs) to the SCADA center
through a communication system. These information are
then visualized to the operators or passed to a control
software which take decisions for corrective actions to
be communicated back to the RTUs. In modern SCADA
systems the refresh rate (∆T) of these measurements is
2− 5 seconds [28].

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 6 8 10 12 14 16 18 20 22 24

S
ca

la
bi

lit
y

cores

Theoretic scalability - alg. (P)
Scalability - alg. (P)

Theoretic scalability - alg. (EP)
Scalability - alg. (EP)

Figure 6. Case B: Scalability of algorithms (P) and (EP)

The simulator in these situations takes on the role of
the real power system along with the RTU measurements
and the communication system. It needs to provide
the simulated “measurements” to the SCADA system
with the same refresh rate as the real system. Thus, the
concept of “real-time” for these applications translates to
time deadlines.

In Fig. 7 we observe the performance of the algorithm
for test-case A1. The straight diagonal line defines the
limit of faster than real-time performance. When using
six or more cores for the simulation, algorithm (EP)
is able to simulate any of the tested disturbances on
this system faster than real-time throughout the time
horizon. That is, all simulation timings lay below the
real-time line and all possible time deadlines can be met.

On the other hand, in Fig. 8 we observe that test-case
B is faster than real-time after the initial 13 s. However,
time deadlines with ∆T ⩾ 4 s can still be met as the
maximum lag between simulation and wall time is 4 s.

Overall, a wide range of available test-systems was
evaluated in the same way for their real-time perfor-
mance. A model of 8053 buses and 11292 injectors (to-
taling 74930 states) was found to be the limit of the
proposed implementation, on platform (4), with faster
than real-time execution.

 0

 40

 80

 120

 160

 200

 240

 0 40 80 120 160 200 240

W
al

l t
im

e
(s

)

Simulation time (s)

Real-time
Algorithm (I)
Algorithm (EP): 1-core
Algorithm (EP): 6-cores
Algorithm (EP): 12-cores

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5
 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

Figure 7. Case A1: Real-time performance (EP)

10

 0

 100

 200

 300

 400

 500

 600

 0 40 80 120 160 200 240

W
al

l t
im

e
(s

)

Simulation time (s)

Real-time
Algorithm (I)
Algorithm (EP): 1-core
Algorithm (EP): 4-cores
Algorithm (EP): 16-cores
Algorithm (EP): 22-cores

 0

 5

 10

 15

 20

 0 5 10 15 20
 0

 5

 10

 15

 20

 0 5 10 15 20

Figure 8. Case B: Real-time performance (EP)

7 CONCLUSIONS
In this paper a parallel Schur-complement-based algo-
rithm for dynamic simulation of electric power systems
is presented. It yields acceleration of the simulation pro-
cedure in two ways. On the one hand, the procedure is
accelerated numerically, by exploiting the locality of the
sub-domain systems and avoiding many unnecessary
computations (factorizations, evaluations, solutions). On
the other hand, the procedure is accelerated computa-
tionally, by exploiting the parallelization opportunities
inherent to DDMs.

The proposed algorithm is accurate, as the original
system of equations is solved exactly until global con-
vergence. It is robust, as it can be applied on general
power systems and has the ability to simulate a great
variety of disturbances without dependency on the exact
partitioning. It exhibits high numerical convergence rate,
as each sub-problem is solved using a VDHN method
with updated and accurate interface values during the
whole procedure.

Along with the proposed algorithm, an implementa-
tion based on the shared-memory parallel programming
model is presented. The implementation is portable, as
it can be executed on any platforms supporting the
OpenMP API. It can handle general power systems,
as no hand-crafted, system specific, optimizations were
applied and it exhibits good sequential and parallel
performance on a wide range of inexpensive, shared-
memory, multi-core computers.

REFERENCES
[1] D. Koester, S. Ranka, and G. Fox, “Power systems transient

stability-a grand computing challenge,” Northeast Parallel Archi-
tectures Center, Syracuse, NY, Tech. Rep. SCCS, vol. 549, 1992.

[2] P. Kundur, Power system stability and control. McGraw-hill New
York, 1994.

[3] B. Wohlmuth, Discretization methods and iterative solvers based on
domain decomposition. Springer Verlag, 2001.

[4] A. Toselli and O. Widlund, Domain decomposition methods–
algorithms and theory. Springer Verlag, 2005.

[5] G. Kron, Diakoptics: the piecewise solution of large-scale systems.
MacDonald, 1963.

[6] M. Ilic’-Spong, M. L. Crow, and M. A. Pai, “Transient Stability
Simulation by Waveform Relaxation Methods,” Power Systems,
IEEE Transactions on, vol. 2, no. 4, pp. 943 –949, nov. 1987.

[7] M. La Scala, A. Bose, D. Tylavsky, and J. Chai, “A highly parallel
method for transient stability analysis,” Power Systems, IEEE
Transactions on, vol. 5, no. 4, pp. 1439 –1446, nov 1990.

[8] D. Guibert and D. Tromeur-Dervout, “A Schur Complement
Method for DAE/ODE Systems in Multi-Domain Mechanical
Design,” Domain Decomposition Methods in Science and Engineering
XVII, pp. 535–541, 2008.

[9] E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, “The
waveform relaxation method for time-domain analysis of large
scale integrated circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 1, no. 3, pp. 131–
145, 1982.

[10] Y. Saad, Iterative methods for sparse linear systems, 2nd ed. Society
for Industrial and Applied Mathematics, 2003.

[11] D. Fabozzi, A. Chieh, B. Haut, and T. Van Cutsem, “Accelerated
and localized newton schemes for faster dynamic simulation of
large power systems,” Power Systems, IEEE Transactions on, 2013.

[12] B. Stott, “Power system dynamic response calculations,” Proceed-
ings of the IEEE, vol. 67, no. 2, pp. 219–241, 1979.

[13] D. Tylavsky, A. Bose, F. Alvarado, R. Betancourt, K. Clements,
G. Heydt, G. Huang, M. Ilic, M. La Scala, and M. Pai, “Parallel
processing in power systems computation,” Power Systems, IEEE
Transactions on, vol. 7, no. 2, pp. 629 –638, may 1992.

[14] J. Chai and A. Bose, “Bottlenecks in parallel algorithms for power
system stability analysis,” Power Systems, IEEE Transactions on,
vol. 8, no. 1, pp. 9–15, 1993.

[15] L. Yalou, Z. Xiaoxin, W. Zhongxi, and G. Jian, “Parallel algorithms
for transient stability simulation on PC cluster,” in Power System
Technology, 2002. Proceedings. PowerCon 2002. International Confer-
ence on, vol. 3, 2002, pp. 1592 – 1596 vol.3.

[16] K. Chan, R. C. Dai, and C. H. Cheung, “A coarse grain parallel
solution method for solving large set of power systems network
equations,” in Power System Technology, 2002. Proceedings. Power-
Con 2002. International Conference on, vol. 4, 2002, pp. 2640–2644.

[17] J. S. Chai, N. Zhu, A. Bose, and D. Tylavsky, “Parallel newton
type methods for power system stability analysis using local and
shared memory multiprocessors,” Power Systems, IEEE Transac-
tions on, vol. 6, no. 4, pp. 1539–1545, 1991.

[18] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi, “Large-Scale Tran-
sient Stability Simulation of Electrical Power Systems on Parallel
GPUs,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 23, no. 7, pp. 1255 –1266, july 2012.

[19] M. Ten Bruggencate and S. Chalasani, “Parallel Implementa-
tions of the Power System Transient Stability Problem on Clus-
ters of Workstations,” in Supercomputing, 1995. Proceedings of the
IEEE/ACM SC95 Conference, 1995, p. 34.

[20] D. Fang and Y. Xiaodong, “A new method for fast dynamic
simulation of power systems,” Power Systems, IEEE Transactions
on, vol. 21, no. 2, pp. 619–628, 2006.

[21] J. Shu, W. Xue, and W. Zheng, “A parallel transient stability
simulation for power systems,” Power Systems, IEEE Transactions
on, vol. 20, no. 4, pp. 1709 – 1717, nov. 2005.

[22] V. Jalili-Marandi and V. Dinavahi, “SIMD-Based Large-Scale Tran-
sient Stability Simulation on the Graphics Processing Unit,” Power
Systems, IEEE Transactions on, vol. 25, no. 3, pp. 1589 –1599, aug.
2010.

[23] X. Zhang, R. H. Byrd, and R. B. Schnabel, “Parallel Methods for
Solving Nonlinear Block Bordered Systems of Equations,” SIAM
Journal on Scientific and Statistical Computing, vol. 13, no. 4, p. 841,
1992.

[24] HSL(2011). A collection of Fortran codes for large scale scientific
computation. [Online]. Available: http://www.hsl.rl.ac.uk

[25] D. P. Koester, S. Ranka, and G. Fox, “A parallel Gauss-Seidel
algorithm for sparse power system matrices,” in Supercomputing
’94., Proceedings, Nov, pp. 184–193.

[26] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, 2007.

[27] D. Gove, Multicore Application Programming: For Windows, Linux,
and Oracle Solaris. Addison-Wesley Professional, 2010.

[28] J. Giri, D. Sun, and R. Avila-Rosales, “Wanted: A more intelligent
grid,” Power and Energy Magazine, IEEE, vol. 7, no. 2, pp. 34–40,
March-April.

11

Petros Aristidou (S’10) received his Diploma in
2010 from the Dept. of Electrical and Computer
Engineering of the National Technical Univer-
sity of Athens, Greece. He is currently pursuing
his Ph.D. in Analysis and Simulation of Power
System Dynamics at the Dept. of Electrical and
Computer Engineering of the Univ. of Liège, Bel-
gium. His research interests are in power system
dynamics, control and simulation. In particular
investigating the use of domain decomposition
algorithms and parallel computing techniques to

provide fast and accurate time-domain simulations.

Davide Fabozzi (S’09) received the B.Eng. and
M.Eng. degrees in Electrical Engineering from
the Univ. of Pavia, Italy, in 2005 and 2007, re-
spectively. In 2007 he joined the Univ. of Liège,
where he received the Ph.D. degree in 2012.
Presently, he is a Marie Curie Experienced Re-
searcher Fellow at Imperial College London,
UK. His research interest include simulation of
differential-algebraic and hybrid systems, power
system dynamics and frequency control.

Thierry Van Cutsem (F’05) graduated in
Electrical-Mechanical Engineering from the
Univ. of Liège, Belgium, where he obtained the
Ph.D. degree and he is now adjunct professor.
Since 1980, he has been with the Fund for
Scientific Research (FNRS), of which he is now
a Research Director. His research interests are
in power system dynamics, security, monitoring,
control and simulation, in particular voltage
stability and security. He is currently Chair of the
IEEE PES Power System Dynamic Performance

Committee.

1

Supplemental Material for “Dynamic Simulation
of Large-scale Power Systems Using a Parallel

Schur-complement-based Decomposition
Method”

Petros Aristidou, Student Member, IEEE, Davide Fabozzi, and Thierry Van Cutsem, Fellow Member, IEEE

F

APPENDIX A
DOMAIN DECOMPOSITION METHODS

DDMs were originally used due to the lack of memory
in computing systems: data needed for smaller portions
of a problem could fit entirely to the memory while
for the whole problem they could not. They lost their
appeal as larger and cheaper memory became available,
only to resurface in the era of parallel computing. These
methods are inherently suited for execution on parallel
architectures and many parallel implementations have
been presented on multi-core computers, clusters and
lately Graphics Processing Units (GPUs) [1], [2].

They are mainly distinguished by three features: sub-
domain partitioning, problem solution over sub-domains
and sub-domain interface variable processing [3].

A.1 Sub-domain Partitioning
Sub-domain partitioning has to be chosen based on the
desired sub-domain characteristics for the given prob-
lem. This includes choosing the number of sub-domains,
the type of partitioning, and the level of overlap between
the sub-domains. Each of these choices depend on a
variety of factors such as size, type, and geometry of
the problem domain, the number of parallel processors,
communication cost, and the actual system being solved.

When considering spatial domain problems, such as
PDEs, the decomposition is usually given by the geo-
metrical data and the order of the discretization scheme
used. Conversely, in state domain problems, such as
DAE, no a priori knowledge of the coupled variables is
available since there are no regular data dependencies.
Furthermore, each system model can be composed by

Petros Aristidou is with the Department of Electrical Engineering
and Computer Science, University of Liège, Liège, Belgium, e-mail:
p.aristidou@ieee.org.
Davide Fabozzi is with the Department of Electrical Engineering and
Computer Science, University of Liège, Liège, Belgium.
Thierry Van Cutsem is with the Fund for Scientific Research (FNRS) at the
Department of Electrical Engineering and Computer Science, University of
Liège, Liège, Belgium, e-mail: t.vancutsem@ulg.ac.be.

several sub-models which are sometimes hidden, too
complex, or used as black boxes. Hence, an automatic
decomposition of the system is not trivial [4]. In fact,
they usually have to rely on problem specific tech-
niques which require good knowledge of the underlying
system, the models composing it and the interaction
between them.

A.2 Solution and Interface Variable Processing

Each sub-domain problem is then solved exactly or
approximately before exchanging information with other
sub-domains. The frequency at which information is ex-
changed with other sub-domains leads to a compromise
between numerical convergence and data exchange rate.

Exchanging information frequently leads to faster con-
vergence, as sub-domain solution methods always use
recent values of interface variables, but higher data
exchange rate. Exchanging information infrequently or
keeping them constant during the whole solution leads
to smaller data exchange rates but might degrade the
global convergence as sub-domain solution methods use
older interface values. It is obvious that when the sub-
domains are weakly connected or disjoint, thus interface
variables do not affect strongly the sub-domain solution,
infrequent updating is better. This kind of partitioning,
though, might be very difficult or even impossible.

The choice on the processing of the interface variables
dictates the method used for solving the decomposed
problem. The two principle methods are: Schwartz al-
ternating and Schur complement.

A.2.1 Schwarz Alternating Method

Among the simplest and oldest techniques are the
Schwarz alternating procedures. These methods work by
freezing the interface variables during the solution of
each sub-domain, hence the sub-domain problems are
totally decoupled and no exchange of information is
needed. This formulation is very attractive for parallel

2

implementations since the data exchange rate is mini-
mum. On the contrary, if the sub-domains are not weakly
coupled the algorithm can suffer from degraded conver-
gence or even divergence [5], [6], [7], [8]. Other variants
of this method can be found in literature depending on
how often and in which order the interface variables
are updated, for instance the additive or multiplicative
Schwartz procedures [3].

A.2.2 Schur Complement Method
When applying the Schur complement DDM, also called
iterative sub-structuring, non-overlapping sub-domain
partitioning is employed. The sub-domain problems usu-
ally involve interior (coupled only through local equa-
tions), local interface (coupled through both local and
non-local equations) and external interface (belong to
other sub-domains) variables. Next, a numerical method
(e.g. Newton’s) is used to solve the sub-problems.

The Schur complement technique is a procedure to
eliminate the interior variables in each sub-domain and
derive a global, reduced in size, linear system involving
only the interface variables. This reduced system is then
solved to obtain the interface variables before each sub-
domain iterative solution.

Once the interface variables are computed, the sub-
problems are decoupled and the remaining, interior to
each sub-domain, variables can be computed indepen-
dently. In many cases, building and solving the reduced
system involves high computational cost. Many methods
are used to speed up the procedure, such as approxi-
mately solving the system [9], assembling the matrix in
parallel using the “local” Schur complements [3], using
Krylov solvers [4] or, exploiting the structure of the
decomposition to simplify the problem [4], [3].

The formulation and update of the sub-domain solu-
tion systems, the elimination of the interior variables,
the formulation of the reduced system and the solution
of the sub-domain systems can be done in parallel.
Unfortunately, this method introduces a bottleneck to
the solution algorithm: the sequential computation of the
global reduced system to update the interface values.
The ratio between the sequential and the parallel part of
the algorithm dictates the scalability of the algorithm.
However, due to the continuous update of interface
variables, the numerical convergence of the algorithm
is significantly better than that of Schwarz methods.

APPENDIX B
DYNAMIC SIMULATION ALGORITHMS

B.1 VDHN Algorithm
One of the most common sequential algorithms used in
simulation software [10] is the Very DisHonest Newton
(VDHN) which belongs to the quasi-Newton family [11].
The algorithm solves directly the integrated DAE system
with the use of a Newton method over discretized
time. At each discrete time instant the non-linear DAE
equations are discretized and algebraized to acquire a

system of linear equations J△y = b, where J is the
Jacobian matrix, y is the vector of unknowns (x and V)
and b is the vector of mismatch values of the non-linear,
algebraized equations. The linear system is then solved
using a sparse linear solver and the values of y and b are
updated. Using the updated values, a new linear system
is formulated and solved until the procedure converges.

Usually, due to the high computational cost of up-
dating the Jacobian matrix J after each solution, the
latter is kept constant for many consecutive iterations or
even time-steps. If correctly implemented, these methods
do not affect the accuracy but only the trajectory of
the iterative solution. The convergence of the method
can be checked on the computed correction ∆y, on the
mismatch values b or a combination of both. When the
method has converged, the solution algorithm proceeds
to the next time instant, formulates and solves the new
DAE system.

This algorithm is employed by many industrial and
academic software and its capabilities and performance
are well known. For this reason, it is usually used as the
benchmark for proposed algorithms [10].

B.2 Fine-grained Parallel Methods

In order to accelerate the simulation, researchers tried
to employ fine-grained parallelization with the use of
customized parallel linear solvers. Some methods, like
parallel VDHN [12], Newton W-matrix [13] and parallel
LU [14], divide the independent vector and matrix op-
erations involved in the linear system solution over the
available computing units. Other methods, like parallel
successive over relaxed Newton [15] and Maclaurin-
Newton [12], use an approximate (relaxed) Jacobian ma-
trix with more convenient structure for parallelization.

While the fine-grained parallelization methods pro-
vide some speedup, they are don’t exploit the full poten-
tial of parallel architectures. A more coarse-grained way
of exploiting parallelization was sought, and for that,
researchers redirected their attention to DDMs.

B.3 Coarse-grained Parallel Methods

As described in App. A, the main idea of DDMs is to
partition the original system, into smaller interconnected
sub-systems and employ some form of parallel algorithm
to solve them. The first to envisage this application
on power system was probably Kron [16] with the
diakoptics method, where the domain is “teared” into
sub-problems, solved independently and joined back
together. At the time, parallel computing was not an
option and the target was to address memory issues,
but, this method provided the ignition for many of the
parallel methods to follow.

Later methods, like waveform relaxation [17] and
parallel-in-time [18], introduced the idea of exploiting
parallelization in time to increase the granularity of the

3

parallel tasks. Following, several methods were pro-
posed inspired by different hardware platforms, mem-
ory models and partitioning schemes [2], [19], [20],
[21]. Some recently proposed methods make use of
both coarse-grained and fine-grained parallelization in a
nested way [1] to increase performance. Several charac-
teristics differentiate these methods. The most important
being the partitioning scheme, the interface variables
processing method and the relaxation of interface vari-
ables.

As discussed in App. A, automatic partitioning of
DAE systems, such as power systems, is not trivial. Some
methods, like coherency analysis [22], epsilon decompo-
sition [23] and graph partitioning [7] have been proposed
in literature, each with its own benefits and problems.
The choice of the decomposition plays big role in the
speed of convergence, the load balancing among parallel
tasks and the overall performance of the method.

A common characteristic of the already proposed
decomposition schemes is the partitioning of the net-
work to interconnected sub-networks and the applica-
tion of Schwartz-based methods for the full paralleliza-
tion of the solution avoiding the sequentiality of Schur-
complement-based methods. This comes at the cost of
computing the partition of a network, which can change
according to the topology of the system or even the
disturbance to be simulated. Moreover, the Schwartz-
based treatment of interface variables can initiate several
new iterations, especially if partitioned sub-networks are
closely coupled [7].

APPENDIX C
PARALLEL COMPUTING

C.1 Selecting a Parallel Programming Model
Several options are available when developing a parallel
implementation. The main candidates considered for our
application were:

• distributed memory model, mainly using Message
Passing Interface (MPI)

• General Purpose computing on GPUs (GPGPU)
• partitioned global address space, mainly using For-

tran Co-array
• shared-memory model, mainly using OpenMP.

The main factors considered to select the appropriate
model were: synchronization cost, data exchange rate,
hardware cost and easiness to program.

MPI was rejected because its high cost of communi-
cation makes it more suitable for coarse-grained parallel
algorithms. Algorithms with high rate of data exchange
among parallel tasks, as the one proposed, are not likely
to be efficient on distributed memory architectures.

GPUs are really good at crunching numbers and can
deliver huge peak performance, but they are not as
good in handling the irregular computation patterns
(unpredictable branches, looping conditions, irregular
memory access patterns, etc.) that most engineering soft-
ware deal with. Moreover, the CPU to GPU data transfer

link has relatively high latency introducing a significant
bottleneck in the execution of the program. Additionally,
there is a high effort needed to develop and maintain
GPGPU code and low portability as no default standard
exists among GPU vendors. Thus, it was rejected.

Co-array was recently introduced in the Fortran stan-
dard as an integrated parallel programming model. It
was rejected as the existing support by compilers is min-
imal and the available user experience and supporting
material almost non-existing.

OpenMP, the selected model, is an shared-memory
API aiming to facilitate shared-memory parallel pro-
gramming. OpenMP is not an official standard but it
is supported by most hardware and software vendors
and it provides a portable, user-friendly, and efficient
approach to shared-memory parallel programming. It is
intended to be suitable for a broad range of symmetric
multiprocessing architectures.

It consists of a set of compiler directives, library rou-
tines, and environment variables that influence run-time
behavior. A set of predefined directives are inserted in
Fortran, C or C++ programs to describe how the work is
to be shared among threads that will execute on different
processors or cores and to order accesses to shared data.

C.2 OpenMP Parallel Work Scheduling

OpenMP offers some mechanisms for the assignment of
loop iterations to threads through the schedule clause.
Very often, the best load balancing strategy depends on
the target architecture, the actual data input, and other
factors not known at programming time. In the worst
case, the best strategy may change during the execution
time due to dynamic changes in the behavior of the
loop or changes in the resources available in the system.
Even for advanced programmers, selecting the best load
balancing strategy is not an easy task and can potentially
take a large amount of time.

Three default strategies to assign loop iterations
(where each iteration treats a sub-domain) to threads.
With the static strategy, the scheduling is predefined
and one or more successive iterations are assigned to
each thread rotationally prior to the parallel execution.
This decreases the overhead needed for scheduling but
can introduce load imbalance if the work inside each
iteration is not the same. With the dynamic strategy, the
scheduling is dynamic during the execution. This intro-
duces a high overhead cost for managing the threads
but provides the best possible load balancing. Finally,
with the guided strategy, the scheduling is again dynamic
but the number of successive iterations assigned to
each thread are progressively reduced in size. This way,
scheduling overheads are reduced at the beginning of the
loop and good load balancing is achieved at the end. Of
course, many other, non-standard, scheduling strategies
have been proposed in literature [24].

4

��������	
����

�����������	����

�������������	
���

���	�
�����

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!����

�����

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!�����

������

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!����"

�����"

�����������
�	
���

���	�
�����

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!����

�����#

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!�����

�����$

���	�������

�
�	
����

 �!�����

�����
�

�
�	
����

 �!����"

�����

���������
�	����

Figure 1. cc-Numa architecture used in our tests

C.3 NUMA Architecture Computers
The proposed implementation targets small and
medium, shared-memory parallel computers. Small
shared-memory machines (e.g. multi-core laptops and
office desktops) have UMA architecture, thus each
individual processor can access any memory location
with the same speed. On the other hand, larger shared-
memory machines usually have NUMA architecture,
hence some memory may be “closer to” one or more of
the processors and accessed faster by them [24].

The main benefit of NUMA computers over UMA
is scalability, as it is extremely difficult to scale UMA
computers beyond 8-12 cores. At that number of cores,
the memory bus is under heavy contention. NUMA is
one way of reducing the number of CPUs competing
for access to a shared memory bus by having several
memory buses and only having a small number of cores
on each of those buses.

The cache coherent NUMA (cc-NUMA) nodes pre-
sented in Fig. 1 are part of a 24-core NUMA parallel com-
puter, based on 6238 AMD Opteron Interlagos, used in
our tests (see Section 5.2, machine (4)). The computer has
two identical sockets, each hosting two NUMA nodes
with six cores. So, even though the system physically
has two CPU sockets with 12 cores each, they are in fact
four NUMA nodes with six cores each.

Resources within each node are tightly coupled with
a high speed crossbar switch and access to them inside a
NUMA node is fast. Moreover, each core has dedicated
L1 cache, every two cores have shared L2 cache and the
L3 cache is shared between all six cores. These nodes are
connected to each other with HyperTransport 3.0 links.
The bandwidth is limited to 12GB/s between the two
nodes in the same socket and 6GB/s to other nodes.

Parallel applications executing on NUMA computers
need special consideration to avoid high overhead costs.
First, given the large remote memory access latency,
obtaining a program with a high level of data locality is
of the utmost importance. Hence, in addition to choosing
the appropriate scheduling strategy, some features of the
architecture and the OS affect the application’s perfor-
mance (binding threads to particular CPUs, arranging
the placement and dynamic migration of memory pages,
etc.) [24].

Data accessed more frequently by a specific thread
should be allocated “close” to that thread. First Touch
memory allocation policy, which is used by many OS,
dictates that the thread initializing an object gets the
page associated with that item in the memory local to the
processor it is currently executing on. This policy works
surprisingly well for programs where the updates to a
given data element are typically performed by the same
thread throughout the computation. Thus, if the data
access pattern is the same throughout the application,
the initialization of the data should be done inside a
parallel segment using the same pattern so as to have
a good data placement in memory. This data initializing
procedure is followed in our parallel implementation,
with each thread initializing the data of the sub-domains
statically assigned to it.

Some further consideration is needed when large
amount of data are read from files to avoid page mi-
gration during the initialization. This problem usually
affects NUMA machines with low link speed and appli-
cations with intensive i/o procedures. In power system
dynamic simulations the data reading is usually done
once and then used numerous times to asses several
different contingencies on the same system, thus this
feature is not critical to their overall performance.

The second challenge on a cc-NUMA platform is
the placement of threads onto the computing nodes.
If during the execution of the program a thread is
migrated from one node to another, all data locality
achieved by proper data placement is destroyed. To
avoid this we need some method of binding a thread to
the processor it was executing during the initialization.
In the proposed implementation, the OpenMP environ-
ment variable OMP_PROC_BIND is used to prevent the
execution environment from migrating threads. Several
other vendor specific solutions are also available, like
kmp_affinity in Intel OpenMP implementation, taskset and
numactl under Linux, pbind under Solaris, bindprocessor
under IBM AIX, etc.

APPENDIX D
DYNAMIC RESPONSE AND ACCURACY

D.1 Test-case A
Figure 2 shows the voltage evolution on a transmission
bus close to the disturbance for test-case A1. It can be
seen that the system is stable in the short-term and long-
term. This is a marginally stable simulation. That is, after

5

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0 40 80 120 160 200 240

V
ol

ta
ge

 (
pu

)

Simulation time (s)

Algorithm (I)
Algorithm (P)
Algorithm (EP)

 0.968

 0.969

 0.97

 0.971

 0.972

 102 104 106 108 110 112 114
 0.968

 0.969

 0.97

 0.971

 0.972

 102 104 106 108 110 112 114

Figure 2. Case A1: Transmission bus voltage

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0 40 80 120 160 200 240

V
ol

ta
ge

 (
pu

)

Simulation time (s)

Algorithm (I)
Algorithm (P)
Algorithm (EP)

 0.885

 0.89

 0.895

 80 82 84 86 88 90 92 94 96

 0.885

 0.89

 0.895

 80 82 84 86 88 90 92 94 96

Figure 3. Case A2: Transmission bus voltage

the short-term dynamics the system starts collapsing but
is stabilized in the long-term by the actions of the ASCS
devices. Such test-cases are the most computationally
demanding as they need to be simulated for the whole
time horizon to decide whether the disturbance is criti-
cal. Moreover, the actual trajectory of the system states is
very important, hence static simulations cannot conclude
for their stability.

Figure 3 shows the voltage evolution on the same
transmission bus for test-case A2. This time, the system is
stable in the short-term but long-term voltage unstable.
In test-case A1 the voltage collapse is averted by the
actions of the ASCS devices deactivated in A2. All
three algorithms provide the same results concerning the
stability and response of the test-cases.

Figures 2 and 3 show the same responses simulated
with all three algorithms. (P) offers exactly the same
response as (I) as they are numerically equivalent. On
the other hand, algorithm (EP) shows some small de-
viations from the other two (see Figs. 2 and 3, zoom).
As explained in Section 3.5, (EP) allows converged sub-
domains to stop being computed but keeps checking
that they satisfy the convergence criteria throughout
the remaining solution. Therefore, its response is almost

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 0 40 80 120 160 200 240

V
ol

ta
ge

 (
pu

)

Simulation time (s)

Algorithm (I)
Algorithm (P)
Algorithm (EP)

 1.0205

 1.0211

 1.0217

 20 22 24 26 28 30
 1.0205

 1.0211

 1.0217

 20 22 24 26 28 30

Figure 4. Case B: Transmission bus voltage

 0.9996

 0.9997

 0.9998

 0.9999

 1

 1.0001

 1.0002

 1.0003

 0 40 80 120 160 200 240

M
ac

hi
ne

 s
pe

ed
 (

pu
)

Simulation time (s)

Algorithm (I)
Algorithm (P)
Algorithm (EP)

 0.9999

 1

 1.0001

 20 22 24 26 28 30
 0.9999

 1

 1.0001

 20 22 24 26 28 30

Figure 5. Case B: Generator speed

indistinguishable from the other two and any small de-
viations at each discrete time computation are bounded
by the convergence tolerance.

D.2 Test-case B

Figures 4 and 5 show the voltage evolution of a trans-
mission bus and the machine speed of a synchronous
generator, respectively. This test-case exhibits short-term
as well as long-term stability. Similarly to test-case A1,
this is a marginally stable simulation. That is, after the
electromechanical oscillations have died out, the system
evolves in the long-term under the effect of LTC de-
vices acting to restore distribution voltages. The decision
about the stability of the system can only be made after
the simulation of the whole time horizon.

The figures display the responses simulated with all
three algorithms. The same observations hold, as with
test-cases A1 and A2, concerning the accuracy of the
proposed algorithms.

6

APPENDIX E
ASSESSING THE SCALABILITY OF PARALLEL
IMPLEMENTATIONS

E.1 Performance Evaluation
To asses the performance of an existing parallel im-
plementation or the potential of a proposed algorithm,
Amdahl’s law is often used [25]. It is based on the
observation that any parallel implementation consists of
a sequentially computed portion S and a parallel portion
P that can be split and assigned to M computational
units. Furthermore, it assumes perfect load balancing
and a perfect parallel machine without any paralleliza-
tion overhead. The most well known variant is:

Runtime(M) = S +
P

M
(1)

Of course, the sum P+S has to account for the sequential
execution time of the implementation (M = 1).

Based on (1), the scalability of parallel algorithm can
be defined as:

Theoretic scalability(M) =
S + P

Runtime(M)
(2)

It is called theoretic scalability as it can never be reached
in real applications because of parallelization overhead
costs, imbalances in load scheduling, etc. Figure 6 dis-
plays the theoretic scalability for several percentage val-
ues of parallel work P . It is noticeable that even small
differences in the percentage of parallel work lead to big
differences in the scalability of the algorithm.

To accommodate for overhead cost of making the
code run in parallel (managing threads, communication,
memory latency, etc.) Amdahl’s law can be modified to:

Runtime(M) = S +
P

M
+OHC(M) (3)

where OHC is the overhead cost as a function of the
number of computational units used. The modified for-
mula can be used to provide a more realistic prediction
of scalability and can be directly linked to the formulas
presented in Section 5.1.

 1
 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1 2 4 6 8 10 12 14 16 18 20 22 24

T
he

or
et

ic
 s

ca
la

bi
lit

y

cores

P=100%

P=99%

P=95%

P=90%

P=80%
P=70%

P=40%

Figure 6. Theoretic scalability based on Amdahl’s law

Table 1
Profiling results: Test-case B / algorithm (P)

% Parallel
Time step initialization 10.02 NO
Injector sub-domain discretization 12.51 YESJacobian calculation and factorization
Schur complement contributions 2.84 YESto simplified reduced system
Factorization and solution of simplified 7.12 NOreduced system (Section 3.3, Eq. 8)
Injector sub-domain solution for interface 61.75 YESand interior variables (Section 3.2, Eq. 4)
Sub-domain convergence check 3.15 YES
Various (bookkeeping, etc.) 2.61 NO
Total 100.00% 80.25%

E.2 Profiling Example

Equation 3 shows that scalability can be increased either
by increasing the parallel work percentage P or by re-
ducing the OHCs. Finally, it can explain situations where
increasing the number of available computational units
degrades the performance due to increased OHCs. That
is, the value of

[
P
M − P

M+1

]
−[OHC(M + 1)−OHC(M)]

becomes negative.
In Table 1 a sample profiling performed on the se-

quential execution of algorithm (P) for test-case B is
presented. Consequently, the theoretic scalability on 24
cores can be computed as S+P

S+ P
24

= 4.3, with P = 0.8025

the parallel and S = 0.1975 the sequential portion of
the implementation as defined in App. E.1. This means
that, if the profiled simulation is executed on a 24 core
parallel computer, without any OHC and with perfect
load balancing, a scalability of 4.3 could be expected.
This value can be compared to the actual scalability
of 3.9 achieved (Section 5.4, Table 3). As expected, the
actual scalability is smaller than the theoretical due to
the overhead costs discussed in Apps. C.3 and E.1.

REFERENCES

[1] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi, “Large-Scale Tran-
sient Stability Simulation of Electrical Power Systems on Parallel
GPUs,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 23, no. 7, pp. 1255 –1266, july 2012.

[2] M. Ten Bruggencate and S. Chalasani, “Parallel Implementa-
tions of the Power System Transient Stability Problem on Clus-
ters of Workstations,” in Supercomputing, 1995. Proceedings of the
IEEE/ACM SC95 Conference, 1995, p. 34.

[3] Y. Saad, Iterative methods for sparse linear systems, 2nd ed. Society
for Industrial and Applied Mathematics, 2003.

[4] D. Guibert and D. Tromeur-Dervout, “A Schur Complement
Method for DAE/ODE Systems in Multi-Domain Mechanical
Design,” Domain Decomposition Methods in Science and Engineering
XVII, pp. 535–541, 2008.

[5] B. Wohlmuth, Discretization methods and iterative solvers based on
domain decomposition. Springer Verlag, 2001.

[6] A. Toselli and O. Widlund, Domain decomposition methods–
algorithms and theory. Springer Verlag, 2005.

[7] CRSA, RTE, TE, and TU/e, “D4.1: Algorithmic requirements
for simulation of large network extreme scenarios,” Tech. Rep.
[Online]. Available: http://www.fp7-pegase.eu/download.html

[8] Z. Jackiewicz and M. Kwapisz, “Convergence of waveform relax-
ation methods for differential-algebraic systems,” SIAM Journal on
Numerical Analysis, vol. 33, no. 6, pp. 2303–2317, 1996.

7

[9] Y. Saad, “Schur complement preconditioners for distributed gen-
eral sparse linear systems,” Domain Decomposition Methods in
Science and Engineering XVI, pp. 127–138, 2007.

[10] D. Tylavsky, A. Bose, F. Alvarado, R. Betancourt, K. Clements,
G. Heydt, G. Huang, M. Ilic, M. La Scala, and M. Pai, “Parallel
processing in power systems computation,” Power Systems, IEEE
Transactions on, vol. 7, no. 2, pp. 629 –638, may 1992.

[11] J. E. Dennis Jr and J. J. Moré, “Quasi-Newton methods, motivation
and theory,” SIAM review, vol. 19, no. 1, pp. 46–89, 1977.

[12] J. Chai and A. Bose, “Bottlenecks in parallel algorithms for power
system stability analysis,” Power Systems, IEEE Transactions on,
vol. 8, no. 1, pp. 9–15, 1993.

[13] L. Yalou, Z. Xiaoxin, W. Zhongxi, and G. Jian, “Parallel algorithms
for transient stability simulation on PC cluster,” in Power System
Technology, 2002. Proceedings. PowerCon 2002. International Confer-
ence on, vol. 3, 2002, pp. 1592 – 1596 vol.3.

[14] K. Chan, R. C. Dai, and C. H. Cheung, “A coarse grain parallel
solution method for solving large set of power systems network
equations,” in Power System Technology, 2002. Proceedings. Power-
Con 2002. International Conference on, vol. 4, 2002, pp. 2640–2644.

[15] J. S. Chai, N. Zhu, A. Bose, and D. Tylavsky, “Parallel newton
type methods for power system stability analysis using local and
shared memory multiprocessors,” Power Systems, IEEE Transac-
tions on, vol. 6, no. 4, pp. 1539–1545, 1991.

[16] G. Kron, Diakoptics: the piecewise solution of large-scale systems.
MacDonald, 1963.

[17] M. Ilic’-Spong, M. L. Crow, and M. A. Pai, “Transient Stability

Simulation by Waveform Relaxation Methods,” Power Systems,
IEEE Transactions on, vol. 2, no. 4, pp. 943 –949, nov. 1987.

[18] M. La Scala, A. Bose, D. Tylavsky, and J. Chai, “A highly parallel
method for transient stability analysis,” Power Systems, IEEE
Transactions on, vol. 5, no. 4, pp. 1439 –1446, nov 1990.

[19] D. Fang and Y. Xiaodong, “A new method for fast dynamic
simulation of power systems,” Power Systems, IEEE Transactions
on, vol. 21, no. 2, pp. 619–628, 2006.

[20] J. Shu, W. Xue, and W. Zheng, “A parallel transient stability
simulation for power systems,” Power Systems, IEEE Transactions
on, vol. 20, no. 4, pp. 1709 – 1717, nov. 2005.

[21] V. Jalili-Marandi and V. Dinavahi, “SIMD-Based Large-Scale Tran-
sient Stability Simulation on the Graphics Processing Unit,” Power
Systems, IEEE Transactions on, vol. 25, no. 3, pp. 1589 –1599, aug.
2010.

[22] D. Koester, S. Ranka, and G. Fox, “Power systems transient
stability-a grand computing challenge,” Northeast Parallel Archi-
tectures Center, Syracuse, NY, Tech. Rep. SCCS, vol. 549, 1992.

[23] A. Zecevic and N. Gacic, “A partitioning algorithm for the parallel
solution of differential-algebraic equations by waveform relax-
ation,” Circuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on, vol. 46, no. 4, pp. 421 –434, apr 1999.

[24] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, 2007.

[25] D. Gove, Multicore Application Programming: For Windows, Linux,
and Oracle Solaris. Addison-Wesley Professional, 2010.

