
Faculté des Sciences Appliquées
Institut Montefiore
Département d’Electricité, Electronique et Informatique

Time-domain simulation of large electric
power systems using domain-decomposition

and parallel processing methods

Petros Aristidou

Liège, Belgium, June 2015

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Ph.D.) in Engineering Sciences

Examining Committee
Professor Damien Ernst (President of Jury), Université de Liège, Belgium
Professor Christophe Geuzaine, Université de Liège, Belgium
Professor Frédéric Magoulès, École Centrale Paris, France
Professor Sakis Meliopoulos, Georgia Institute of Technology, USA
Professor Luis Rouco, Universidad Pontificia Comillas, Spain
Professor Patricia Rousseaux, Université de Liège, Belgium
Professor Thierry Van Cutsem (Ph.D. advisor), FNRS and Université de Liège, Belgium

To my family.

Contents

Acknowledgments v

Abstract vii

Nomenclature ix

1 Introduction 1
1.1 Motivation . 1
1.2 Power system modeling . 2

1.2.1 Model overview . 3
1.2.2 Numerical integration methods . 3
1.2.3 Time-step selection . 6
1.2.4 Treatment of discrete events . 7
1.2.5 Dealing with algebraic and differential equations 8
1.2.6 System reference frame . 10

1.3 Description of power system models used in this work 11
1.3.1 Nordic system . 11
1.3.2 Hydro-Québec system . 12
1.3.3 PEGASE system . 12

1.4 Thesis objective . 13
1.5 Thesis outline . 15

2 Think parallel 19
2.1 The motivation for multi-core processors . 19
2.2 Types of parallelism . 20

2.2.1 Algorithm-level parallelism . 21
2.2.2 Data-level and task-level parallelism . 21
2.2.3 Instructional parallelism . 21

i

ii CONTENTS

2.2.4 Bit-level parallelism . 22
2.2.5 Types of parallelism used in this thesis 22

2.3 Parallel computer hardware . 22
2.3.1 Flynn’s taxonomy . 22
2.3.2 Further characterization according to memory organization 23

2.4 Selecting a parallel programming model . 24
2.4.1 General purpose computing on graphics processing units 25
2.4.2 Message passing interface . 26
2.4.3 Shared-memory models . 26

2.5 Performance theory . 27
2.5.1 Scalability, speedup and efficiency . 28
2.5.2 Amdahl’s law . 30
2.5.3 Gustafson-Barsis’ law . 31
2.5.4 Work-span model . 32

2.6 Shared-memory computers performance considerations 33
2.6.1 Synchronization . 33
2.6.2 Lack of locality . 34
2.6.3 Load imbalance . 36

2.7 Description of computers used in this work . 37
2.8 Summary . 37

3 DDMs and their Application to Power Systems 39
3.1 Introduction . 39
3.2 DDM characteristics . 40

3.2.1 Sub-domain partitioning . 40
3.2.2 Problem solution over sub-domains . 41
3.2.3 Sub-domain interface variables processing 42

3.3 Existing approaches in power system dynamic simulations 44
3.3.1 Partitioning . 44
3.3.2 Fine-grained methods . 46
3.3.3 Coarse-grained methods . 47

3.4 Summary . 50

4 Parallel Schur-complement-based DDM 51
4.1 Introduction . 51
4.2 Power system decomposition . 52
4.3 Sub-system solution . 53
4.4 Schur-complement treatment of interface variables 54
4.5 Parallel algorithm . 57
4.6 Localization techniques . 58

CONTENTS iii

4.6.1 Skipping converged sub-systems . 59

4.6.2 Asynchronous update of sub-domain matrices 59

4.6.3 Latency . 60

4.7 Effects of localization techniques on convergence 66

4.8 Parallelization specifics . 69

4.8.1 Localization techniques . 70

4.8.2 Load balancing . 71

4.8.3 Overhead cost . 74

4.8.4 Profiling . 75

4.9 Experimental results . 76

4.9.1 Nordic system . 77

4.9.2 Hydro-Québec system . 84

4.9.3 Pegase system . 90

4.9.4 Discussion . 95

4.10 Summary . 100

5 Parallel two-level Schur-complement-based DDM 101
5.1 Introduction . 101

5.2 Power system decomposition . 103

5.2.1 First level of decomposition: Network 103

5.2.2 Second level of decomposition: Injectors 104

5.3 Sub-system solution . 105

5.3.1 Sub-domain reduced systems formulation 107

5.3.2 Global reduced system formulation . 107

5.3.3 Back-substitution and solution . 108

5.3.4 Base power selection . 108

5.4 Parallel algorithm . 109

5.5 Localization techniques . 110

5.5.1 Skipping converged sub-systems . 110

5.5.2 Asynchronous update of injector or sub-domain reduced matrices . . . 111

5.5.3 Latency . 112

5.6 Effects of localization techniques on convergence 113

5.7 Parallelization specifics . 116

5.8 Experimental results . 116

5.8.1 Nordic variant 1 system . 117

5.8.2 Nordic variant 2 system . 131

5.8.3 Hydro-Québec system . 136

5.8.4 Discussion . 143

5.9 Summary . 145

iv CONTENTS

6 General conclusion 147
6.1 Summary of work and main contributions . 147
6.2 Directions for future work . 150

Appendices 153

Appendix A Analysis of Newton-type schemes 155
A.1 Review . 155
A.2 Inexact Newton schemes . 156

Appendix B Test-System diagrams 159

Appendix C RAMSES 167
C.1 Introduction . 167
C.2 Power system modeling . 167
C.3 Acceleration techniques . 170

C.3.1 Time-scale decomposition . 170
C.4 Software implementation . 171

C.4.1 Why Fortran? . 171
C.4.2 Command line . 172
C.4.3 Dynamic library . 172
C.4.4 Graphic user interface . 172
C.4.5 MATLAB . 172

C.5 Validation . 173
C.5.1 Scenario 1 . 174
C.5.2 Scenario 2 . 174

Appendix D Numerical profiling 177

Bibliography 181

Acknowledgments

I started writing this manuscript with the “simple” purpose of digesting the work of four and
a half years (the duration of my doctoral studies) into approximately 200 pages. Almost
immediately, I realized that I was not the only contributor to this work. In the following few
paragraphs I will try to acknowledge the people that played a role, smaller or bigger, in making
this PhD a reality. I will undoubtedly forget or omit some of them, and I apologize and thank
them in advance.

First and foremost I offer my sincerest gratitude to my advisor, Professor Thierry Van
Cutsem. When I arrived in Liège in 2010, I had little knowledge of what research is. Over
the next years, he devoted much of his time to transfer to me his theoretical and practical
understanding of power systems, and to help me develop valuable skills as a researcher and
as an academic. He has always encouraged and trusted me to venture on new ideas, even
when those diverted from my original research plans. In addition to our academic interests,
we also shared a love for photography; on several occasions we would spent our spare time
exchanging moments captured on “film” and discussing some new photography equipment
or technique. Overall, he has been an exceptional mentor and an outstanding friend, on
whom I could always rely for help and guidance.

I wish to express my gratitude to each member of the examining committee, for devot-
ing their time to read this report. During my stay in Liège, Professors Patricia Rousseaux,
Christophe Geuzaine, and Damien Ernst have offered concrete support both as members
of my dissertation committee but also through our enriching discussions. A special thanks
to Professor Costas Vournas who was the first one to introduce me to the world of power
system dynamics and has supported and advised me over the years. I would also like to
thank Dr. Mevludin Glavic for the insightful discussions during our coffee breaks outside the
department entrance, but also for transferring his experience to help me make some impor-
tant decisions in my life. I wish to thank Professor Xavier Guillaud, his support and feedback
on my work have been valuable for my PhD. Many thanks to Simon Lebeau (TransÉnergie di-
vision, Hydro-Québec) and Patrick Panciatici (RTE) for providing a valuable input to my work
based on real engineering problems. Upon arriving in Liège, I was welcomed by Professor

v

vi Acknowledgments

Mania Pavella, who showed great interest in my academic development and my general well-
being, and I’m thankful for that. I am also really grateful to the Bodossaki Foundation and Mr.
Sotiri Laganopoulo, for the invaluable support and guidance they offered.

Throughout the process, I have greatly benefited from the work and feedback of Professor
Van Cutsem’s former and current students and visitors. I would like to thank Dr. Davide
Fabozzi for his support during my first two years in Liège. He has proved to be a valuable
source of information (on technical and non-technical topics alike) and a dear friend. I tried
to match his enthusiasm and provide the same level of support to my junior PhD colleagues
Lampro Papangeli and Hamid Soleimani. Their collaboration and friendship made the last
two years more enjoyable. Special thanks to Frédéric Plumier, for being a close friend and a
great colleague. He patiently allowed me to “torture” his mother language so I can practice my
French, and introduced me into his family as the godfather of Antoine; for that, I will always be
indebted. Also, I would like to thank Professor Gustavo Valverde, from whom I have learned
many lessons, a superb researcher and most importantly an exceptional friend, and of course
to his lovely wife, Rebecca. My thanks to all the researchers who briefly joined the Liège
group, amongst which, Benjamin Saive, Dr. Tilman Weckesser, Dr. Spyros Chatzivasileiadis,
and Theodoros Kyriakidis. Your support and friendship are cherished. I am also grateful to
Dr. Efthymios Karangelos and Panagiotis Andrianesis, for promptly offering their support and
advice whenever needed.

I cannot list everyone here, but I am grateful to all my friends, the ones from Cyprus and
Greece, as well as the people I befriended during these last years in Belgium. My thoughts
are with you, wherever you are.

The last thanks go to my family, my sister Maria with whom we spent a big amount of time
consulting and listening to each other during our parallel PhD journeys; my sister Angela,
an inspiration and beacon to my academic ventures, and her husband Alex, for being my
unofficial academic advisors over the years, and for bringing to life Stella, a shinning star of
joy and happiness in our family. A warm thank you to Dafni, for all her love and support that
made these years more enjoyable and gave me the strength to see this journey through.

The end of my doctoral studies in Belgium signals 12 years since I left my parents’ home
in Pissouri, Cyprus. Nevertheless, my parents Christos and Stella, have been by my side
every single day since then; through my days in the military service, my diploma studies in
Athens, and my doctoral studies in Liège. Their love and support (material and emotional)
have allowed me to constantly leap forward in new endeavors without any fear, as I always
know that “they have my back”. I also want to thank my beloved grandmother Angeliki for
her heart-warming discussions over the phone and the delicious food she prepared for me at
every opportunity.

Thank you all,

Abstract

Dynamic simulation studies are used to analyze the behavior of power systems after a dis-
turbance has occurred. Over the last decades, they have become indispensable to anyone
involved in power system planning, control, operation, and security. Transmission system
operators depend on fast and accurate dynamic simulations to train their personnel, analyze
large sets of scenarios, assess the security of the network in real-time, and schedule the
day-ahead operation. In addition, those designing future power systems depend on dynamic
simulations to evaluate proposed reinforcements, whether these involve adding new trans-
mission lines, increasing renewable energy sources, or implementing new control schemes.

Even though almost all computers are now parallel, power system dynamic simulators
are still based on monolithic, circuit-based, single-process algorithms. This is mainly due to
legacy code, written in the 80’s, that is still today in the core of the most important commercial
tools and does not allow them to fully exploit the parallel computational resources of modern
computers.

In this thesis, two parallel algorithms belonging to the family of Domain Decomposition
Methods are developed to tackle the computational complexity of power system dynamic
simulations. The first proposed algorithm is focused on accelerating the dynamic simulation
of large interconnected systems; while, the second algorithm aims at accelerating dynamic
simulations of large combined transmission and distribution systems.

Both proposed algorithms employ non-overlapping decomposition schemes to partition
the power system model and expose parallelism. Then, “divide-and-conquer” techniques
are utilized and adapted to exploit this parallelism. These algorithms allow the full usage
of parallel processing resources available in modern, inexpensive, multi-core machines to
accelerate the dynamic simulations. In addition, some numerical acceleration techniques
are proposed to further speed-up the parallel simulations with little or no impact on accuracy.

All the techniques proposed and developed in this thesis have been thoroughly tested on
academic systems, a large real-life system, and a realistic system representative of the conti-
nental European synchronous grid. The investigations were performed on a large multi-core
machine, set up for the needs of this work, as well as on two multi-core laptops computers.

vii

Nomenclature

Abbreviations
ADN Active Distribution Network
API Application Programming Interface
ASRT Automatic Shunt Reactor Tripping
BDF Backward Differentiation Formulae
BEM Backward Euler Method
COI Center of Inertia
DAE Differential-Algebraic Equation
DCTL Dscrete controller
DDM Domain Decomposition Method
DG Distributed Generator
DN Distribution Network
DNV Distribution Network Voltage
DSA Dynamic Security Assessment
EMA Exponential Moving Average
EMT ElectroMagnetic Transients
GPU Graphics Processing Unit
HPC High-Performance Computing
HQ Hydro-Québec
IN Inexact Newton
IVP Initial Value Problem
LTC Load Tap Changer
LVFRT Low Voltage and Fault Ride Through
NUMA Non-Uniform Memory Access
ODE Ordinary Differential Equation
OHC OverHead Cost
OXL OvereXcitation Limiters
PV PhotoVoltaic

ix

x Nomenclature

RHS Right-Hand Side
T&D Transmission and Distribution
TN Transmission Network
TSO Transmission System Operator
UMA Uniform Memory Access
VDHN Very DisHonest Newton
WR Waveform Relaxation

Mathematical Symbols
D matrix that includes the real and imaginary parts of the bus admittance matrix
Γ diagonal matrix with (Γ)`` equal to 1 if the l-th equation is differential and 0 if it

is algebraic
ΓC, ΓSi projection of Γ on the Central or i-th Satellite sub-domain
Γi projection of Γ on the i-th injector sub-domain
Ai Jacobian matrix of injector i
Bi matrix of sensitivities of injectors equations to voltages in injector i
Ci trivial matrix with zeros and ones linking injector i currents to network equations
I sub-vector of x containing the bus currents
J Jacobian matrix of both network and injectors
V vector of rectangular components of bus voltages
x state vector containing the differential and algebraic variables
xC, xSi projection of x on the Central or i-th Satellite sub-domain
xi projection of x on the i-th injector sub-domain
L number of Satellite sub-domains
M number of parallel workers
NC, NSi number of injectors attached on the Central or i-th Satellite sub-domain network
T∗1 run-time of a program with one worker using the fastest (or a very fast) sequen-

tial algorithm
T1 the time an algorithm takes to run in sequential execution (M = 1)
T∞ the time an algorithm takes on an ideal machine with an infinite number of par-

allel workers (M = ∞)
TP percentage of time spent in parallel execution
TS percentage of time spent in sequential execution

CHAPTER 1
Introduction

1.1 Motivation

Dynamic simulations under the phasor approximation are routinely used throughout the world
for the purpose of checking the response of electric power systems to large disturbances.
Over the last decades, they have become indispensable to anyone involved in the planning,
design, operation, and security of power systems. Power system operators depend on fast
and accurate dynamic simulations to train operators, analyze large sets of scenarios, assess
the dynamic security of the network in real-time, or schedule the day ahead operation. On the
other hand, those designing future power systems depend on dynamic simulations to eval-
uate the proposed changes, whether these involve adding new transmission lines, increas-
ing renewable energy sources, implementing new control schemes, or decommissioning old
power plants.

Such simulations require solving a large set of nonlinear, stiff, hybrid, Differential-Alge-
braic Equations (DAEs) that describe the physical dynamic characteristics, interactions, and
control schemes of the system. A large interconnected transmission or a detailed transmis-
sion and distribution system may involve hundreds of thousands of such equations whose
dynamics span over very different time scales and undergo many discrete transitions im-
posed by limiters, switching devices, etc. Consequently, dynamic simulations are challenging
to perform, computationally intensive and can easily push any given computer to its limits.

In applications targeting the real-time monitoring and security of the system, for example
Dynamic Security Assessment (DSA), the speed of simulation is a critical factor. In the
remaining applications, speed is not critical but desired as it increases productivity. This is
the main reason why energy management systems often resort to faster, static simulations.

However, the operation of non-expandable grids closer to their stability limits and the
unplanned generation patterns stemming from renewable energy sources require dynamic
studies. Furthermore, under the pressure of electricity markets and with the support of active
demand response, it is likely that system security will be more and more guaranteed by
emergency controls responding to the disturbance. Thus, checking the sequence of events

1

2 CHAPTER 1. INTRODUCTION

that take place after the initiating disturbance is crucial; a task for which the static calculation
of the operating point in a guessed final configuration is inappropriate.

All modern computers are now parallel. Even the smallest ones, such as mobile phones,
offer at least one parallel feature, such as vector instructions, multithreaded cores, multi-
core processors, multiple processors, graphic processing units, or parallel co-processors.
The advent of parallel processing represents a revolutionary opportunity for power system
dynamic simulation software.

Unfortunately, the traditional approach to perform these simulations is based on mono-
lithic, circuit-based, single-process schemes. This is mainly due to legacy code, written in the
80’s, that is still today at the heart of the most important commercial tools for power system
dynamic simulations. Many of these programs are serial not because it was natural to solve
the problem serially, but because the programming tools demanded it and the programmers
were trained to think that way. This approach hinders the simulation performance, decreasing
productivity and increasing the overall cost.

Among the commercial software, PowerWorld, Digsilent Power Factory, ETAP (Electrical
Transient Analyzer Program), PSLF, EuroStag, PSS/E, Simpow, and CYME are well-known
simulators. To our knowledge, none of these widely used software offers multithreaded dy-
namic simulations yet. This means that they run only on one core of one processor, and
therefore far from fully utilize the whole power of the new parallel computers. On the other
hand, existing commercial parallel simulators (such as Opal-RT ePHASORsim) are based
on specialized parallel computers. Finally, due to their closed source, commercial software
do not provide full flexibility for experimentation and prototyping.

1.2 Power system modeling

Power system dynamic simulations fall in basically two categories: ElectroMagnetic Tran-
sients (EMT) and quasi-sinusoidal (or phasor mode) approximation. In the former, fast elec-
tromagnetic transients are simulated and in steady state, voltages and currents evolve si-
nusoidally with time at a frequency close to the nominal value (50 or 60 Hz). The network
itself is modeled through differential equations relative to its inductors and capacitors. On
the other hand, in the quasi-sinusoidal (or phasor mode) approximation, the network is rep-
resented through algebraic equations corresponding to sinusoidal regime. During transients,
all phasors vary with time while in steady-state they take on constant values [Kun94, MBB08].
The dynamic model describes how the phasors evolve with time.

The work presented in this thesis falls in the second category. It is the one commonly
used in stability studies, where the simulated time interval can extend up to several minutes,
if not more. Thus, the models presented hereafter are based on the following assumptions:

1. power system components are modeled by a set of nonlinear DAEs,

2. AC devices operate in three-phase balanced fundamental frequency, and

1.2. POWER SYSTEM MODELING 3

3. the analyzed dynamics have time constants of tenths to tens of seconds or equivalently
0.1 to 10 Hz.

1.2.1 Model overview

An electric power system, under the quasi-sinusoidal approximation, can be described in
compact form by the following DAE Initial Value Problem (IVP):

0 = Ψ(x,V) (1.1a)

Γẋ = Φ(x,V) (1.1b)

x(t0) = x0,V (t0) = V0 (1.1c)

where V is the vector of voltages through the network and x is the state vector containing the
remaining (except voltages) differential and algebraic variables of the system. Furthermore,
Γ is a diagonal matrix with:

(Γ)`` =

0 if `-th equation is algebraic

1 if `-th equation is differential
(1.2)

The algebraic Eq. 1.1a describes the network and can be rewritten as:

0 = DV − I , g(x,V) (1.3)

where D includes the real and imaginary parts of the bus admittance matrix and I is a
sub-vector of x containing the bus currents [Fab12].

The initial voltages V0 and currents I0 are usually obtained by performing a power-flow
computation of the static power system model or are received from a state estimation soft-
ware. Next, the remaining DAE states x0 are computed through an initialization procedure.

Equation 1.1b describes the remaining DAEs of the system including the dynamics of
generating units, their controls, dynamic loads, and other devices. Together these equations
form a complete mathematical model of the system, which can be solved numerically to
simulate the system behavior.

1.2.2 Numerical integration methods

The analytical solution of Eqs. 1.1 is not generally possible [MBB08]. Therefore, a numerical
solution consisting of a series of values (V1,x1), (V2,x2), ..., (Vk,xk) that satisfies the equa-
tions (1.1) at the time instants t1, t2, ..., tk must be found. This requires the use of a numerical
integration formula that calculates the value of (Vk+1,xk+1) knowing all the previous values.

Problem (1.1) is characterized as a semi-explicit DAE of index-1 (or Heisenberg index-1)
[BCP95]. The differential index of the system is the minimal number of analytical differenti-
ations needed such that the DAE equations can be transformed by algebraic manipulations
into a system of explicit Ordinary Differential Equation (ODE) system [BCP95]. In power

4 CHAPTER 1. INTRODUCTION

system transient stability simulations the index-1 condition is assured for most of practical
cases except for some operating conditions close to voltage collapse [LB93]. The theory be-
hind numerical methods for general DAE systems is very complex. Fortunately, semi-explicit
index-1 systems can be directly discretized using classical numerical integration methods
for ODEs, while adapting the solution algorithm to take take into account the algebraic con-
straints [BCP95]. These integration methods fall into two general categories: explicit or
implicit, the latter of which will be detailed in the sequel.

Power system dynamic simulation models involve stiff DAEs. A stiff problem is one in
which the underlying physical process contains components evolving on widely separated
time scales [BCP95], or equivalently the dynamics of some part of the process are very fast
compared to the interval over which the whole process is studied. In linear systems, stiffness
is measured by the ratio of the largest to the smallest eigenvalue. Practically, this feature of
system (1.1) requires integration methods with properties such as A-stability and stiff decay
(or L-stability) [BCP95, MBB08].

1.2.2.1 Implicit methods

Ideally, a numerical integration method should mimic all properties of the differential problem,
for all types of problems. However, this is not possible. Thus, the integration method used
should captures at least the essential properties of a class of problems. In this section, the
discussion is concentrated on implicit integration methods because they can be effectively
used to solve stiff DAEs [BCP95].

Let us consider the following ODE:

ẏ = c (t, y) (1.4)

where the dependence to the time variable t will be omitted hereon.

Many frequently used implicit integration formulas can be written in the general form
[BCP95]:

yk+1 = βk + hβ0c (yk+1) (1.5)

where h is the integration step length, β0 is a coefficient that depends on the actual integration
method, c (yk+1) is the right-hand side of the differential equation calculated at the value yk+1,
and:

βk = yk + ∑
j

ajc(yk+1−j) (1.6)

is a coefficient depending on all the previous steps [BCP95, MBB08].

As mentioned previously, one of the desired properties of integration formulae is A-stabil-
ity. This property can be defined using the scalar test equation:

ẏ = λy (1.7)

1.2. POWER SYSTEM MODELING 5

-15 -10 -5 0 5 10 15 20 25 30 35

-25

-20

-15

-10

-5

0

5

10

15

20

25

Stability region in SHADED area

(a) Trapezoidal method
0 2 4 6 8 10

-6

-4

-2

0

2

4

6

Stability region OUTSIDE the curves

4

3

2
1

(b) BDF orders 1-4

Figure 1.1: Area of absolute stability

where λ ε C is a complex constant. For an integration to be A-stable, it is required that when-
ever the exact solution of (1.7) is stable (i.e. λ has negative real part), so is the simulated
one whatever the step size h. In other words, a stable system is always simulated as stable.

In addition, it is also desirable that, whenever the exact solution of (1.7) is unstable (i.e.
λ has positive real part), so is the simulated one. That is, an unstable system is always
simulated as unstable. The area for which this does not hold true is called area of hyper-
stability [BCP95].

The most well-known A-stable method is the Trapezoidal rule method. The latter is for-
mulated as:

yk+1 = yk +
h
2

c (yk+1) +
h
2

c (yk) (1.8)

This method has been widely used in power system applications, mainly because it is sym-
metrically A-stable. That is, it is A-stable and doesn’t include any region of hyper-stability, as
shown in Fig. 1.1a [SCM98].

However, the most popular methods for stiff problems are the Backward Differentiation
Formulae (BDF). Their distinguishing feature is that c(y) is evaluated only at the right end of
the current step. This leads to formulae with the stiff decay (or L-stability) property. Let us
generalize the test equation to:

ẏ = λ(y− c(t)) (1.9)

where c(t) is a bounded function. Assuming that the system is stable, an integration method
has stiff decay if, for a given tk > 0:

|yk − c(tk)| → 0 as h<e(λ)→ −∞ (1.10)

6 CHAPTER 1. INTRODUCTION

The practical advantage of stiff decay methods lies in their ability to skip fine-level (or
fast varying) dynamics and still maintain a good description of the solution on a coarse level
[BCP95]. Thus, the choice of the time-step size is not dictated strictly by accuracy, but
by what should be retained in the final response [Fab12]. Conversely, integration methods
without stiff decay (such as the Trapezoidal method) need to be used with small enough time
steps even if only the coarse behavior of the solution is sought, otherwise errors propagate
and numerical oscillations occur [GSD+03].

The simplest BDF method is the Backward Euler Method (BEM), formulated as:

yk+1 = yk + hc (yk+1) (1.11)

A very important feature of BEM is that it allows to integrate over a discontinuity. In the
corresponding Eq. 1.11, if the discontinuity takes place at time tk, only the derivative at time
tk+1 is used to compute yk+1. Therefore, this scheme can be used for the time step that
immediately follows a discontinuity.

Another well-known member method of this family is the second-order BDF (BDF-2),
formulated as:

yk+1 =
4
3

yk −
1
3

yk−1 +
2
3

h c (yk+1) (1.12)

As seen in Fig. 1.1b, BDFs of order larger than two are not A-stable. Moreover, all BDFs
have a region of hyper-stability (although it decreases when the order increases).

Further analysis on the properties and applications of ODE methods can be found in
dedicated references, such as [Gea71, BCP95, HW96]. More specific and recent develop-
ments on numerical integration methods used in power system applications can be found in
[SCM08, MBB08, Mil10, ES13]. The integration formula of choice in this thesis is the sec-
ond-order BDF, both for the benchmark and the proposed methods. This formula is initialized
by BEM, which is also used in case of discontinuities.

1.2.3 Time-step selection

The integration step h is usually not constant throughout the simulation. In the short-term
period following a disturbance, the fast dynamics dominate the system behavior and a small
time-step size is needed to simulate them correctly. In the long-term period, the time-step
size may increase, if the integration method allows it, since the period is dominated by slow
dynamics. Finally, a new event could initiate again fast dynamics, leading to a decrease of
the time-step size.

Algorithms that can change the step size during the simulation are called “variable time
step algorithms”. There exist two main strategies for selecting the time-step size: according
to desired error or effort. A popular way to achieve the desired precision is through the
estimation of the Local Truncation Error (LTE) [Gea71, BCP95]. The LTE for a method of
order p and time-step size h is in the order of hp and can be estimated directly using the
current and previous values of the simulation [BCP95]. The error estimate can be used to

1.2. POWER SYSTEM MODELING 7

decide whether to accept the results of the current step or to redo with a smaller step size.
Alternatively, it can be used to select the next time-step size to be as big as possible within
the LTE tolerance.

The second strategy consists in varying the time-step size according to the estimated
computational effort, based on the assumption that the computational effort varies with the
step size. This can be done either by relying on the magnitude of the mismatch vector
[FV09], or on the number of Newton iterations [Fab12], originally proposed in [Sto79], for
error estimation. In this work, the latter is followed.

Although variable time step algorithms allow increasing the step size (provided that the
error estimation remains within the desired bounds), they do so assuming a continuous,
non-discrete, system of DAEs. However, power system models are hybrid systems1: during
the simulation they undergo discrete transitions. The occurrence of these discrete changes
should be factored in the selection of the time-step size as discussed in the following section.

1.2.4 Treatment of discrete events

The hybrid nature of power system models [HP00] makes them more problematic to handle
as the discrete changes force discontinuities in Eqs. 1.1. In the general case, whether the
solver uses constant or variable step size, those instants where discrete variables change
do not coincide with a simulation time step. From a strict mathematical viewpoint, it is not
correct to integrate over these discontinuities; in fact, all numerical integration methods are
based on polynomial expansions which cannot reproduce discontinuities [Fab12].

One option is to identify the time t∗ of the discrete event (e.g. using zero-crossing function
analysis) and adjust the step size to coincide with the upcoming event. Next, Eqs. 1.1 are
updated and the resulting discontinuity is solved appropriately. Then, the solution proceeds
with next time step [Cel06]. This mechanism leads to accurate simulations but imposes a limit
on the time-step size allowed and a reduction of the average step size. Moreover, it increases
the computational burden for the identification of discrete event timings (e.g. solution of zero-
crossing functions).

On the other hand, if the step size is not reduced, the discrete event and the update of
equations are shifted in time. This may cause variables to converge to wrong values, or even
not converge, if some modeling and solving precautions are not taken. An appropriate ex post
treatment of these shifted discrete events has been proposed in [FCPV11]. In brief, the time
step t→ t + h is computed and the solution is checked for any occurring discrete transitions
within this interval. If it is detected that a discrete change has occurred, Eqs. 1.1 are updated
accordingly and the same time step is computed again. This procedure is repeated until no
discrete transitions occur any longer or a maximum number of jumps is reached. Then, the
simulation proceeds with a new step. This approach is followed in this work.

1The term “hybrid system” shouldn’t be confused with hybrid transient simulations that indicates tools that
integrate together EMT and phasor mode models

8 CHAPTER 1. INTRODUCTION

DAEs

Partitioned

(Alternating)

Simultaneous

(Direct)

Explicit

integration

Implicit

integration

Implicit

integration

One set of

Algebraic Equations

Non-linear and/or linear solvers

Solution

One set of

Algebraized Equations

Two sets of

Algebraized Equations

Figure 1.2: Categories of solution approaches for dynamic simulation

1.2.5 Dealing with algebraic and differential equations

The schemes to solve (1.1) are characterized by:

• the way that algebraic and differential equations are interfaced: partitioned or simulta-
neous

• the type of integration methods used: explicit or implicit.

Thus, the solution approaches can be divided into two main categories [DS72, Sto79, MBB08,
FMT13] as shown in Fig. 1.2.

1.2.5.1 Partitioned approach

In the partitioned approach, the differential and the algebraic equations in (1.1) are solved
independently. At each step of the numerical integration procedure the partitioned scheme
alternates between the solutions of respectively the differential and the algebraic equations.
The latter are usually solved with a Newton method (see Appendix A) while the differential
equations are usually solved by functional iterations [MBB08]. However, the convergence of
this scheme significantly limits the allowed time-step size [BCP95].

The partitioned scheme is attractive for short-term simulations. It is flexible, easy to
organize and allows a number of simplifications to be introduced in order to speed up the
solution [MBB08]. For these reasons, quite a number of dynamic simulation programs are
still based on partitioned solution methods.

1.2. POWER SYSTEM MODELING 9

However, this alternating procedure introduces a “delay” between these variables. That is,
when computing the differential variables, the algebraic are “frozen” and vice-versa. There-
fore, unless care is taken, this process can lead to numerical instabilities or decreased per-
formance [Mil10].

1.2.5.2 Simultaneous approach

Unlike the partitioned approach, the simultaneous one combines the algebraized differential
and the algebraic equations of (1.1) into one set of nonlinear, algebraic equations. This
approach is used in conjunction with implicit numerical methods that require, at each time
step, the solution of a set of nonlinear equations. The solution is generally obtained through
a Newton’s method (see Appendix A), which requires iteratively computing and factorizing a
Jacobian matrix [Mil10].

Using (1.5) to algebraize Eqs. 1.1, the following equations are obtained:

g (xk+1,V k+1) = Ψ (xk+1,V k+1) = 0 (1.13a)

f (xk+1,V k+1) = Φ (xk+1,V k+1)−
1

hβ0
Γ (xk+1 − βk) = 0 (1.13b)

where βk is a column vector containing the values βk of Eq. 1.6.
The formula for the l-th iteration of Newton’s method for the k-th time step is given as

follows: V (l+1)
k+1

x
(l+1)
k+1

 =

V (l)
k+1

x
(l)
k+1

−
ΨV Ψx

ΦV Φx − 1
hβ0

Γ

−1 g

(
x
(l)
k+1,V (l)

k+1

)
f
(
x
(l)
k+1,V (l)

k+1

)
 (1.14)

where Φx = ∂Φ/∂x, ΦV = ∂Φ/∂V , Ψx = ∂Ψ/∂x, and ΨV = ∂Ψ/∂V are the Jacobian
sub-matrices. The Jacobian matrix is sparse, so computer programs that simulate large
systems do not explicitly invert this matrix. Instead, Eq. 1.14 is reformulated as:ΨV Ψx

ΦV Φx − 1
hβ0

Γ

∆V (l)

k+1

∆x(l)
k+1

 = −

g
(
x
(l)
k+1,V (l)

k+1

)
f
(
x
(l)
k+1,V (l)

k+1

)
 (1.15)

and solved using a sparse linear solver.
The simultaneous solution methods are especially attractive for simulations that cover a

long time period [MBB08, Mil10]. Newton’s method, together with a stiff decay integration
formulae, allow the integration step size to be increased when the changes in the variables
are not very steep. The so-called Very DisHonest Newton (VDHN) method, described in Ap-
pendix A, can be used to further speed up the calculations. Finally, interfacing the algebraic
and differential equations is not a problem as both the algebraic and differential variables are
updated together [MBB08].

The convergence criteria used to stop the Newton iterations significantly impacts the
overall efficiency of the solution scheme. The vector in the Right-Hand Side (RHS) of (1.15)

10 CHAPTER 1. INTRODUCTION

is usually referred to as “mismatch vector” (of the f and g equations, respectively). To ensure
that all equations are solved within the specified tolerance, the infinite norm (i.e. the largest
component magnitude) of each mismatch vector should be brought below some value. Thus,
the Newton iterations are stopped if:∥∥∥g (x(l)

k+1,V (l)
k+1

)∥∥∥
∞
< εg (1.16a)∥∥∥f (x(l)

k+1,V (l)
k+1

)∥∥∥
∞
< ε f (1.16b)

In power system dynamic simulations it is usual that the network variables and parame-
ters are set in the per -unit system [MBB08]. That is, a base power is selected (Sbase) for the
entire system and using the base voltage levels (usually the nominal voltage of a bus), all the
network parameters and variables are scaled accordingly. Thus, for the network equations
g, the choice of εg is rather easy. For the remaining equations, however, it may be difficult to
choose an appropriate ε f value as they include a variety of models and controls for which the
solver does not know whether a mismatch is “negligible” or not. This issue can be resolved
by checking the normalized corrections instead. Thus, Eq. 1.16b is replaced by:∣∣∣(∆x(l)

k+1

)
i

∣∣∣ < max
(

ε f abs, ε f rel

∣∣∣(x(l)
k+1

)
i

∣∣∣) i = 1, ..., dim(x) (1.17)

where the relative correction is checked against ε f rel. Of course, when
∣∣∣x(l)

k+1

∣∣∣ becomes small,
the absolute correction should be checked against ε f abs to avoid numerical exceptions. The
price to pay is the computation of ∆x(l)

k+1, which requires making at least one iteration before
deciding on the convergence [Fab12, FCHV13].

1.2.6 System reference frame

The network equations are usually expressed in rectangular form in the system’s rotating
reference frame, that is V =

(
Vx,Vy

)
and I =

(
Ix, Iy

)
. The selection of the speed (ωre f)

at which the x− y reference axes rotate is arbitrary; hence, it can be taken for convenience
of the computations. Standard practice for short-term (e.g. transient stability) analysis is to
choose the nominal angular frequency ω0 = 2π f0, where fo is the nominal system frequency.
However, this reference frame suffers from a major drawback in long-term studies. After a
disturbance that modifies the power balance, the system settles at a new angular frequency
ω 6= ω0. Thus, when projected to axes rotating at the speed ω0, all phasors rotate at the
angular speed ω − ω0. Consequently, even though the system settles at a new equilibrium,
the current and voltage components (Vx,Vy, Ix, and Iy) oscillate with a period T = 2π|ω −
ω0|−1. This behavior can trigger more solutions of the system and impose the time step to
remain small compared to T, in order to track the oscillations and avoid numerical instability.

This problem can be partially solved by adopting the Center-Of-Inertia (COI) reference
frame initially proposed in [TM72]. The underlying idea is to link the reference axes to the

1.3. DESCRIPTION OF POWER SYSTEM MODELS USED IN THIS WORK 11

rotor motion of synchronous machines. The COI speed is defined as:

ωcoi =
1

MT

m

∑
i=1

Miωi (1.18)

where Mi and ωi are respectively the inertia and rotor speed of the i-th synchronous machine

and MT =
m

∑
i=1

Mi is the total inertia. Thus, if the system settles at a new equilibrium with

angular frequency ω, all machines and the x− y reference axes rotate at the same angular
speed and the current and voltage components become constant.

However, the exact COI reference frame is computationally expensive as it introduces
Eq. 1.18 which couples the rotor speeds of all synchronous machines in the network, while
the motion equation of each machine involves ωcoi. If the simulation is performed with the
simultaneous approach, it adds a dense row and column to the Jacobian of (1.15). Moreover,
this coupling impedes the decomposition of the system as it introduces a coupling between
components all over the system. To alleviate this dependency, it has been proposed in [FV09]
to use the ωcoi value of the previous time instant. This value can be computed explicitly as it
refers to past, already known speed values. The advantages of the COI reference frame are
also preserved, because a slightly delayed COI angle is as good as the exact COI in making
the current and voltage components very little dependent on the system frequency [FV09].
This reference frame is used in this work.

1.3 Description of power system models used in this work

In this section the power system models used in the following chapters are briefly presented.
Their diagrams are presented in Appendix B.

1.3.1 Nordic system

This is a variant of the so-called Nordic32 test system [VP13]. Its one-line diagram is pre-
sented in Fig. B.2. It is a fictitious system inspired of the Swedish system in a past config-
uration. The test system includes 54 generator and transmission buses and 80 branches.
When including the distribution buses and transformers, there are a total of 77 buses and
105 branches, respectively. Furthermore, 20 synchronous machines are represented along
with generic excitation systems, voltage regulators, power system stabilizers, speed gover-
nors, and turbine models. Finally, 23 dynamically modeled loads are included, attached to
the distribution buses. The model sums to 750 DAEs.

Two variants of this model will be used in Chapter 5 to simulate combined transmission
and distribution systems. In the first variant, the Nordic model is expanded with 146 Distribu-
tion Networks (DNs) that replace the aggregated distribution loads. The model and data of
each DN (shown in Fig. B.1) were taken from [Ish08] and scaled to match the original loads
seen by the Transmission Network (TN). Multiple DNs were used to match the original loads,

12 CHAPTER 1. INTRODUCTION

taking into account the nominal power of the TN-DN transformers. Each one of the 146 DNs
is connected to the TN through two parallel transformers equipped with Load Tap Changer
(LTC) devices. Each DN includes 100 buses, one distribution voltage regulator equipped with
LTC, three PhotoVoltaic (PV) units [WEC14], three type-2, two type-3 Wind Turbines (WTs)
[EKM+11], and 133 dynamically modeled loads, namely small induction machines and ex-
ponential loads. In total, the combined transmission and distribution system includes 14653
buses, 15994 branches, 23 large synchronous machines, 438 PVs, 730 WTs, and 19419 dy-
namically modeled loads. The resulting model has 143462 differential-algebraic states. The
one-line diagram is sketched in Fig. B.3.

In the second variant, six of the aggregated DN loads in the Central area are replaced by
40 detailed Active Distribution Networks (ADNs), each equipped with the Distribution Network
Voltage (DNV) controller described in [VV13]. Each DN is a replica of the same medium-volt-
age distribution system, whose one-line diagram is shown in Fig. B.4. It consists of eight
11-kV feeders all directly connected to the TN-DN transformer, involving 76 buses and 75
branches. The various DNs were scaled to match the original (aggregate) load powers,
while respecting the nominal values of the TN-DN transformers and other DN equipment.
The combined transmission and distribution model includes 3108 buses, 20 large and 520
small synchronous generators, 600 induction motors, 360 type-3 WTs [EKM+11], 2136 volt-
age-dependent loads, and 56 LTC-equipped transformers. The resulting model has 36504
differential-algebraic states. The one-line diagram is sketched in Fig. B.5.

1.3.2 Hydro-Québec system

Hydro-Québec (HQ) is the Transmission System Operator (TSO) of the Québec province,
Canada. This real-life model has been provided by the TransÉnergie division of HQ. The
transmission system includes 2565 buses, 3225 branches, and 290 power plants with a de-
tailed representation of the synchronous machine, its excitation system, automatic voltage
regulator, power system stabilizer, turbine, and speed governor. During this thesis, the
model was expanded to include 4311 dynamically modeled loads (different types of induc-
tion motors, voltages sensitive loads, etc.), to better capture the dynamic response of the
real system.

In the long-term the system evolves under the effect of 1111 LTCs, 25 Automatic Shunt
Reactor Tripping (ASRT) devices [BTS96], as well as OvereXcitation Limiters (OXL). The
resulting model has 35559 differential-algebraic states. The map of the 735-kV grid is shown
in Fig. B.6.

1.3.3 PEGASE system

The Pan European Grid Advanced Simulation and State Estimation (PEGASE) project was a
four-year R&D collaborative project funded by the Seventh Framework Program (FP7) of the
European Union [VLER12]. It was coordinated by Tractebel Engineering and composed of 21

1.4. THESIS OBJECTIVE 13

Topological

Decomposition

Projection of global DAE system on sub-domains

and formulation of local DAE systems

Independent solution of sub-domain DAEs

using parallel programming techniques

Update sub-domain interface variables

using a Schur-complement formulation

to maintain good convergence

Use of acceleration techniques

Fast parallel

dynamic simulations

Figure 1.3: Layout of proposed parallel simulation algorithms

partners, including TSOs, expert companies and leading research centers in power system
analysis and applied mathematics. The University of Liège was the fourth in terms of budget
member of this project.

Within this framework, a test system comprising the continental European synchronous
area (see Fig. B.8) was set up by Tractebel Engineering and RTE, the French TSO, start-
ing from network data made available by the European Network of Transmission System
Operators for Electricity (ENTSO-E).The dynamic components and their detailed controllers
were added in a realistic way. This system includes 15226 buses, 21765 branches, and 3483
synchronous machines represented in detail together with their excitation systems, voltage
regulators, power system stabilizers, speed governors and turbines. Additionally, 7211 user-
defined models (equivalents of distribution systems, induction motors, impedance and dy-
namically modeled loads, etc.) and 2945 LTC devices were also included. The resulting
model has 146239 differential-algebraic states.

1.4 Thesis objective

In this work, two parallel algorithms belonging to the family of Domain Decomposition Meth-
ods (DDMs) are developed to tackle the computational complexity of dynamic simulations of
power systems. Both algorithms follow the layout of Fig. 1.3.

The first proposed algorithm is focused on accelerating the dynamic simulation of large in-
terconnected systems. In brief, a non-overlapping, topological-based, decomposition scheme
is applied on the model, splitting the network according to the power system components con-
nected to it. This decomposition reveals a star-shaped sub-domain layout and leads to the
separation of the DAEs describing the system. Next, the nonlinear DAE system describing
each sub-domain is solved independently by algebraizing and using a Newton method with
infrequent matrix update and factorization. The interface variables shared between sub-do-
mains are updated using a Schur-complement-based approach.

The most noticeable developments foreseen in power systems involve DNs. Future DNs

14 CHAPTER 1. INTRODUCTION

are expected to host a big percentage of the renewable energy sources and actively sup-
port the transmission grid through smart grid technologies. Despite this, in present-day DSA
simulations, it is common to represent the bulk generation and higher voltage (transmis-
sion) levels in detail, while the lower voltage (distribution) levels are equivalenced (simplified
models are used). On the contrary, when the study concentrates on a DN, the TN is often
represented by a Thévenin equivalent. One of the motivations behind this practice has been
the lack of computational performance of existing simulation software and the still modest
penetration of active DNs.

The second proposed algorithm targets to accelerate dynamic simulations of large com-
bined transmission and distribution systems. It employs a two-level system decomposition.
First, the combined system is decomposed on the boundary between the transmission and
the DNs revealing a star-shaped sub-domain layout. This first decomposition is reflected to a
separation of the DAEs describing the system projecting them onto the sub-domains. Next, a
second decomposition scheme is applied within each sub-domain, splitting the sub-domain
network from the power system components connected to it, similarly to the first algorithm.
This second decomposition further partitions the DAEs describing the system. Finally, the
solution of the decomposed DAE systems describing the sub-domains is performed hierarchi-
cally with the interface variables being updated using a Schur-complement-based approach
at each decomposition level.

The proposed algorithms augment the performance of the simulation in two ways. First,
the independent calculations of the sub-systems are parallelized providing computational
acceleration. Second, some acceleration techniques are employed, exploiting the locality
of the decomposed sub-systems to avoid unnecessary computations and provide numerical
acceleration.

The algorithms are first presented with a certain level of abstraction, focusing on the math-
ematical properties of DDMs, to avoid limiting the implementation to a particular computer
architecture. Next, the details concerning their implementation using the shared-memory
parallel computing model are presented. Finally, some scenarios are simulated, using the
test systems presented above, to show the accuracy and performance of the algorithms.

Both algorithms have been implemented in the academic simulation software RAMSES2,
developed at the University of Liège since 2010, and are used in the context of academic
research, as well as in collaborations with industry. The implementation targets common, in-
expensive, multi-core machines without the need of expensive dedicated hardware. Modern
Fortran and the OpenMP Application Programming Interface (API) are used. The imple-
mentation is general, with no hand-crafted optimizations particular to the computer system,
operating system, simulated electric power network, or disturbance.

2Acronym for “RApid Multithreaded Simulator of Electric power Systems”.

1.5. THESIS OUTLINE 15

1.5 Thesis outline

Chapter 2 In this chapter, a summary of parallel architectures and techniques is presented.
First, the types of parallelism available in modern computers are listed with an effort to
categorize them. The theory behind the performance assessment of parallel algorithms
and implementations is recalled, followed by some common pitfalls that can hinder their
efficiency. Finally, the shared-memory parallel programming model used in this work is
detailed.

Chapter 3 This chapter is devoted to DDMs and their applications to power systems. First,
the motivation behind the development of DDMs and the essential components that
describe these methods are introduced. Next, an effort is made to present previous
work on power system dynamic simulation using DDMs and parallel computing.

Chapter 4 In this chapter, the first proposed algorithm is presented. First, the power sys-
tem decomposition and the formulation of the sub-domain DAEs is described. Next,
the solution of the decomposed system and the treatment of the interface variables is
detailed. Then, the numerical acceleration techniques are introduced, followed by the
description of parallel implementation of the algorithm. Finally, the performance of the
algorithm is assessed using the test systems described above.

The mathematical aspects of the algorithm were published in [AFV14] (material ac-
cepted for publication in 2012) while, its application to parallel power system dynamic
simulations was presented in [AFV13b]. Next, the acceleration techniques were pre-
sented in [AFV13a]. A paper focusing on the real-time performance capabilities of the
algorithm was presented in [AV14c]. Finally, the complete algorithm was presented at
the panel session "Future Trends and Directions in Dynamic Security Assessment" at
the 2014 IEEE Power & Energy Society General Meeting in Washington DC [AV14b].

Chapter 5 In this chapter, the second proposed algorithm is presented, featuring a two-level
power system decomposition. The hierarchical solution of the decomposed systems
and the treatment of the interface variables is detailed, followed by some numerical
acceleration techniques used to speedup the procedure. Next, details on the parallel
implementation of the algorithm are given. Finally, the performance of the algorithm
is assessed using the combined transmission and distribution test systems described
above, as well as the Hydro-Québec real system.

Some initial investigations were presented in [AV13], proposing a sequential version
of the algorithm with some numerical acceleration techniques. Next, a single-level de-
composition algorithm was presented in [AV14a], followed by a journal paper in [AV15].
Finally, a journal paper detailing the proposed two-level DDM has been submitted and
is currently under review (see Ref. [16], next page).

16 CHAPTER 1. INTRODUCTION

Chapter 6 In this chapter, the contribution of this thesis is summarized and some plans for
future work are suggested.

Overall, this thesis expands the following material which has been published, submitted, or
is under preparation, in various journals and conferences:

Under preparation:

[17] T. Kyriakidis, P. Aristidou, D. Sallin, T. Van Cutsem, and M. Kayal. A Linear Algebra
Enabled Mixed-Signal Computer for Power System Applications. To be submitted to
ACM Journal on Emerging Technologies in Computing Systems, 2015

Under review:

[16] P. Aristidou, S. Lebeau, and T. Van Cutsem. Fast Power System Dynamic Simulations
using a Parallel two-level Decomposition Algorithm. Submitted to IEEE Transactions on
Power Systems (under review), 2015.

[15] P. Aristidou, G. Valverde, and T. Van Cutsem. Contribution of distribution network
control to voltage stability: A case study. Submitted to IEEE Transactions on Smart
Grids (under 2nd review), 2015.

[14] F. Plumier, P. Aristidou, C. Geuzaine, T. Van Cutsem, "Co-simulation of Electromag-
netic Transients and Phasor Models: a Relaxation Approach", Submitted to IEEE Trans-
actions on Power Delivery (under 2nd review), 2015.

Published:

[13] F. Olivier, P. Aristidou, D. Ernst, and T. Van Cutsem. Active management of low-voltage
networks for mitigating overvoltages due to photovoltaic units. IEEE Transactions on
Smart Grid (in press), 2015. Available at: http://hdl.handle.net/2268/172623

[12] P. Aristidou and T. Van Cutsem. A parallel processing approach to dynamic simula-
tions of combined transmission and distribution systems. International Journal of Elec-
trical Power & Energy Systems, vol. 72, pp. 58–65, 2015.
Available at: http://hdl.handle.net/2268/178765

[11] P. Aristidou, S. Lebeau, L. Loud, and T. Van Cutsem. Prospects of a new dynamic sim-
ulation software for real-time applications on the Hydro-Québec system. In Proceed-
ings of 2015 CIGRÉ Canada conference (accepted, final paper due June 15, 2015),
Winnipeg, September 2015.

[10] P. Aristidou, L. Papangelis, X. Guillaud, and T. Van Cutsem. Modular modeling of
combined AC and DC systems in dynamic simulations. In Proceedings of 2015 IEEE
PES PowerTech conference (in press), Eindhoven, July 2015.

http://hdl.handle.net/2268/172623
http://hdl.handle.net/2268/178765

1.5. THESIS OUTLINE 17

[9] F. Plumier, P. Aristidou, C. Geuzaine, and T. Van Cutsem. A relaxation scheme to
combine phasor-mode and electromagnetic transients simulations. In Proceedings of
the 18th Power System Computational Conference (PSCC), Wroclaw, August 2014.
Available at: http://hdl.handle.net/2268/168630

[8] P. Aristidou and T. Van Cutsem. Dynamic Simulations of Combined Transmission and
Distribution Systems using Parallel Processing Techniques.In Proceedings of the 18th
Power System Computational Conference (PSCC), Wroclaw, August 2014.
Available at: http://orbi.ulg.ac.be/handle/2268/168618

[7] P. Aristidou and T. Van Cutsem. Algorithmic and computational advances for fast
power system dynamic simulations. In Proceedings of the 2014 IEEE PES General
Meeting, Washington DC, July 2014. Available at: http://hdl.handle.net/2268/163168

[6] P. Aristidou, F. Olivier, D. Ernst, and T. Van Cutsem. Distributed model-free control of
photovoltaic units for mitigating overvoltages in low-voltage networks. In Proceedings
of 2014 CIRED workshop, Rome, June 2014.
Available at: http://hdl.handle.net/2268/165629

[5] P. Aristidou and T. Van Cutsem. Parallel computing and localization techniques for
faster power system dynamic simulations. In Proceedings of 2014 CIGRÉ Belgium
conference, Brussels, March 2014. This paper received the Best Paper student award.
Available at: http://hdl.handle.net/2268/161322

[4] P. Aristidou, D. Fabozzi, and T. Van Cutsem. Dynamic simulation of large-scale power
systems using a parallel Schur-complement-based decomposition method. IEEE Trans-
actions on Parallel and Distributed Systems, 25(10):2561–2570, Oct 2013.
Available at: http://hdl.handle.net/2268/156230

[3] P. Aristidou and T. Van Cutsem. Dynamic simulations of combined transmission and
distribution systems using decomposition and localization. In Proceedings of 2013
IEEE PES PowerTech conference, Grenoble, June 2013. This paper received the High
Quality Paper award. Available at: http://hdl.handle.net/2268/145092

[2] P. Aristidou, D. Fabozzi, and T. Van Cutsem. Exploiting localization for faster power
system dynamic simulations. In Proceedings of 2013 IEEE PES PowerTech confer-
ence, Grenoble, June 2013. Available at: http://hdl.handle.net/2268/145093

[1] P. Aristidou, D. Fabozzi, and T. Van Cutsem. A Schur complement method for DAE
systems in power system dynamic simulations. In Domain Decomposition Methods in
Science and Engineering XXI , volume 98 of Lecture Notes in Computational Science
and Engineering, Springer International Publishing, 2014 (material accepted for publi-
cation in 2012). Available at: http://hdl.handle.net/2268/154312

http://hdl.handle.net/2268/168630
http://orbi.ulg.ac.be/handle/2268/168618
http://hdl.handle.net/2268/163168
http://hdl.handle.net/2268/165629
http://hdl.handle.net/2268/161322
http://hdl.handle.net/2268/156230
http://hdl.handle.net/2268/145092
http://hdl.handle.net/2268/145093
http://hdl.handle.net/2268/154312

CHAPTER 2
Think parallel

2.1 The motivation for multi-core processors

Parallelism is a natural feature to humans: we always expect parallel checkout lanes in a
supermarket when the number of customers (workload) is sufficiently large. Roads are built
with multiple lanes to avoid congestion and few of us would attempt to undertake a huge
project (e.g. the construction of a major building) alone.

Serialization is the act of putting some set of operations into a specific order. Decades
ago, computer architects started designing computers using serial machine languages to
simplify the programming interface. The most important benefit of serial programs is their
simplicity: one can read a piece of serial code from top to bottom and understand the tempo-
ral order of operations from the structure of the source code. In addition, serial programs are
inherently deterministic: they always do the same operations, in the same order, and give
the same answer every time you run them with the same inputs. This notion of determinism
is useful for debugging, verification, and testing. Deterministic behavior is not guaranteed in
parallel programs [MRR12].

Up until the recent past, frequency scaling was the dominant reason for improvements in
computer performance. The runtime of a program is equal to the number of instructions mul-
tiplied by the average time per instruction. Maintaining everything else constant, increasing
the clock frequency decreases the average time it takes to execute an instruction. Thus, an
increase in frequency decreases runtime for all compute-bound programs [HP02].

However, this is not the case anymore. Modern processors tend to increase the number
of cores on the chip rather than the performance of a single core. The reason for the shift
to multi-core processors is the increasing difficulty of manufacturers to improve serial perfor-
mance [Gov10]. Three factors (also known as “walls”) limit the growth in serial performance:

Power wall: unacceptable growth in power usage with clock rate. The power wall results
because power consumption (and heat generation) increases nonlinearly as the clock
rate increases. Increasing clock rates any further would exceed the power density that

19

20 CHAPTER 2. THINK PARALLEL

can be dealt with by air cooling, and result in power-inefficient computation [MRR12].

Instructional parallelism wall: limits to available low-level parallelism (see Section 2.2.3).
It becomes increasingly more difficulty to find enough parallelism in a single instruction
stream to keep a high-performance single-core processor busy.

Memory wall: a growing discrepancy of processor speeds relative to memory speeds [McK04].
This, in effect, pushes for cache sizes to be larger in order to mask the latency of mem-
ory. However, it only helps to the extent that memory bandwidth is not the bottleneck in
performance.

Nevertheless, the number of transistors that can be put on a single chip is still expected
to grow exponentially for many years (Moore’s law). So, a simple idea is to use this extra
area of silicon to add multiple cores on the same chip, each of lower frequency and power
consumption. Thus, the processor now has the potential to do multiple times the amount of
work. Moreover, when the processor clock rate falls, the memory wall problems become less
noticeable [McK04].

On the one hand, unparallelized applications under-utilize current multi-core processors
and leave significant performance on the table. In addition, such serial applications will not
improve in performance over time. On the other hand, efficiently parallelized applications can
fully exploit multi-core processors and should be able to scale automatically to even better
performance on future processors. Over time, this will lead to large and decisive differences
in performance between sequential and parallel programs.

Knowing the “arsenal” at hand, that is the available parallel computing tools and tech-
niques, permits to detect parallelization possibilities in a computational problem and assess
whether the available parallelism is exploitable (is worth the trouble). However, parallel com-
puting is a very active research field with new architectures being invented and new tools
implemented every day. It is thus impossible to exhaustively list and detail all of them here.

In this chapter we first try to categorize the main parallel architectures. Then, the theory
behind the performance assessment of parallel algorithms and implementations is outlined,
followed by some common pitfalls that can hinder their efficiency. Emphasis is given on
shared-memory parallel computing techniques and equipment, as these are used later on
for this work.

2.2 Types of parallelism

The computations performed by a given program may provide opportunities for parallel ex-
ecution at different levels: algorithm-level, data-and task-level, instruction-level, or bit-level.
Depending on the level considered, tasks of different granularity result.

2.2. TYPES OF PARALLELISM 21

2.2.1 Algorithm-level parallelism

This is the top-level or coarse-grain parallelism and pertains to a certain level of machine-
independent abstraction. In scientific computing problems, algorithm-level parallelism is
closely coupled to the mathematical formulation of the problem and the methods used in
its solution. It is known that the same scientific problem might be solved with a variety of
mathematical tools. However, some of these tools offer higher potential for parallelism than
others. Thus, even though a certain method might be the fastest in sequential execution,
it is sometimes useful to chose a different method that can be more efficiently parallelized.
A well known family of solution methods that offer high potential of parallelism are Domain
Decomposition Methods (DDMs) and will be later examined in Chapter 3.

This type of parallelism requires a good knowledge of the underlying problem and its
solution mechanics. It is thus impossible for an automatic tool to reformulate an algorithm so
as to expose algorithm-level parallelism.

2.2.2 Data-level and task-level parallelism

Data Level Parallelism (DLP) is parallelism in which the same operations are being performed
on different pieces of data concurrently. Because the operations are on different data, they
are known to be independent, which means that dependence checking is not needed. Task
Level Parallelism (TLP) focuses on faster execution by dividing calculations onto multiple
cores. TLP programs might execute the same or different code on the same or different data.

There is no clear separation between the two and a typical program exhibits both types
of parallelism. Moreover, compilers cannot easily find TLP and DLP to exploit in a program,
so the programmer must usually perform extra work to specify when this parallelism exists.

2.2.3 Instructional parallelism

Instruction Level Parallelism (ILP) typically refers to how a sequential program run on a sin-
gle core can be split into micro-instructions. Multiple micro-instructions from subsequent
instructions of the same program are then executed concurrently in a pipeline. This type
of parallelism is driven by the compiler. For the programmer, this has the advantage that
sequential programming languages can lead to a parallel execution of instructions without
his/her intervention.

However, the degree of parallelism obtained by ILP is limited, since it is not possible to
partition the execution of the instruction into a very large number of steps of equal size. This
limit has already been reached for some time for typical processors [RR13] and it becomes
increasingly more difficulty to find enough ILP in a single instruction stream to keep a high-
performance single-core processor busy.

22 CHAPTER 2. THINK PARALLEL

2.2.4 Bit-level parallelism

At the lowest level is bit-level parallelism. This form of parallel computing is based on in-
creasing processor word size. Increasing the word size reduces the number of instructions
the processor must execute in order to perform an operation on variables whose sizes are
greater than the length of the word. For example, consider a case where an 8-bit processor
must add two 16-bit integers. The processor must first add the 8 lower-order bits from each
integer, then add the 8 higher-order bits, requiring two instructions to complete a single op-
eration. A 16-bit processor would be able to complete the operation with a single instruction.

It was a major source of speedup until 32-bit processors became mainstream. While,
contemporary desktop processors usually operate on 64-bit data, the main drive behind the
32-bit to 64-bit move was not computational power but rather the need to index more memory.

2.2.5 Types of parallelism used in this thesis

In this dissertation, the algorithm-level, data-level, and task-level parallelisms are used. In
Chapters 4 and 5, the parallel algorithms will be first presented using notions from DDMs to
outline them in an abstract but concise way. Next, TLP and DLP will be used to describe the
parallel algorithm and its implementation.

2.3 Parallel computer hardware

Networks of workstations, massively parallel supercomputers, and multi-processor worksta-
tions are just a few of the dozens of different parallel architectures. We will briefly list some of
these architectures and try to organize them into a coherent and simple taxonomy. Our pri-
mary interest in parallel computer taxonomies is just to help understand the pertinent issues
raised by parallel computer hardware and their general applicability to specific algorithms or
programming models.

2.3.1 Flynn’s taxonomy

By far the most commonly used taxonomy is Flynn’s [Fly72]. All computers are characterized
according to how many instruction and data streams they have. In Flynn’s taxonomy, there
are four possibilities:

• Single Instruction, Single Data (SISD): This is just a standard non-parallel processor.

• Single Instruction, Multiple Data (SIMD): A single operation (task) executes simul-
taneously on multiple elements of data. SIMD processors are also known as array
processors, since they consist of an array of functional units with a shared controller.

• Multiple Instruction, Multiple Data (MIMD): Separate instruction streams, each with
its own flow of control, operate on separate data. This characterizes the use of multiple

2.3. PARALLEL COMPUTER HARDWARE 23

Parallel Computers

SIMDMIMD

Shared Memory Distributed Memory

SMP NUMA DSM Scalable Linear Fixed

Figure 2.1: Hardware taxonomy according to [MSM04]

cores in a single processor, multiple processors in a single computer, and multiple
computers in a cluster. When multiple processors using different architectures are
present in the same system, it is called an heterogeneous computer.

• Multiple Instruction, Single Data (MISD): This last possible combination is not par-
ticularly useful and is not used.

The advantage of Flynn’s taxonomy is that it is very well established. Every parallel program-
mer is familiar with the terms MIMD and SIMD. There are, however, some serious problems,
the biggest one being that it provides only four slots to categorize a huge variety of existing
systems. This granularity doesn’t give us enough ways to separate systems [MSM04].

2.3.2 Further characterization according to memory organization

Unfortunately, computer scientists haven’t converged on a single taxonomy for parallel com-
puters. The only consensus is to use Flynn’s taxonomy as a starting point. There also
seems to be wide agreement that MIMD systems can be further divided based on memory
organization [Gur88, MSM04]:

• Shared Memory:

– Symmetric MultiProcessing (SMP): The memory is physically shared, and all pro-
cessors access the memory equally at equal speeds. These are sometimes called
Uniform Memory Access (UMA).

– Non-Uniform Memory Access (NUMA): The memory is physically shared, but not
distributed in a one to one relation with the processors. Access to different portions
of the memory may require significantly different times.

– Distributed Shared Memory (DSM): The memory is distributed among the proces-
sors, but the system gives the illusion that it is shared. It is also called virtual
shared memory.

24 CHAPTER 2. THINK PARALLEL

• Distributed Memory:

– Fixed: The number of connections is fixed as more processors are added (e.g.,
Ethernet-connected workstations, since the Ethernet interconnection is a single
resource that all processors share).

– Linear: The number of connections grows linearly with the number of nodes (e.g.,
mesh-connected multicomputers such as the Intel Paragon).

– Scalable: The number of connections grows as P logP (where P the number of
nodes) or greater (e.g., hypercubes such as the Intel iPSC/860).

The above classification is sketched in Fig. 2.1.

However, even this -more fine- classification is not enough to capture all the different
types of parallel architectures available. It is usual that parallel computers fall into more than
one category, for example, almost all shared-memory parallel computers also feature SIMD
capabilities.

2.4 Selecting a parallel programming model

In computer software, a parallel programming model is a model for writing parallel programs
which can be compiled and executed. The selection of this model defines the parallel com-
puter architectures targeted by the application.

The purpose of this work is to accelerate power system dynamic simulations. Such sim-
ulations are usually performed using ordinary computers (i.e. desktop workstations or lap-
tops). Most of these computers are already shared-memory multi-core machines (actually, it
is almost impossible to purchase a sequential computer nowadays). However, to our knowl-
edge, none of the widely used commercial software offers multithreaded dynamic simula-
tions. This means that they run on one core only, and therefore do not fully utilize the whole
power of these parallel computers.

Moreover, the majority of the people performing these simulations do not have access
to expensive supercomputers or specialized computer architectures. Thus, while other com-
puter architectures might yield higher performance, we decided early on that our parallel pro-
gramming model should at least target these easily accessible and low-cost shared-memory
machines.

Once the type of targeted parallel machines was selected, the available parallel program-
ming models were assessed according to the following criteria:

• Performance: It should be possible to predictably achieve good performance and to
scale that performance to larger systems.

2.4. SELECTING A PARALLEL PROGRAMMING MODEL 25

• Productivity: It should be easy to program, debug, and maintain. A parallel program-
ming model could be rejected if the outcome source code is obscure, unreadable, and
awkward or programming effort is too high in order to achieve the parallelization.

• Portability: Functionality and performance, across operating systems and compilers. It
should work on a range of targets, now and in the future. Unfortunately, there is no
global consensus on the programming models used. Some models have become de
facto standards for particular computer architectures but in many cases the selection
of a model is strictly a personal choice.

In the following subsections a summary of the parallel programming models considered for
this work will be presented.

2.4.1 General purpose computing on graphics processing units

Graphics Processing Units (GPUs) are highly parallel vector processors with local memory
for each of the processing cores. The total amount of memory is usually smaller than tradi-
tional multi-core CPUs (across different levels of cache) but the number of processing cores
is normally larger [LDTY11]. They were originally developed for rendering real-time visual
effects in the video gaming industry and are present in all modern computers. Recently, they
have become programmable to the point where they can be used as a general purpose pro-
gramming platform. General purpose programming on the GPU (GPGPU) [FM04, HA11] is
currently getting a lot of attention in the scientific community due to the low cost, high avail-
ability and computational power. GPUs are really good for fine-grained parallelization and
have been used in many linear algebra applications [HKB12, BHSt13].

Power system applications that have GPU-accelerated linear algebra operations have
been presented, e.g. power flow studies [GNV07, Gar10, SA10, VMMO11, ADK12, GJY+12,
LL14]; state estimation [TDL11, KD13]; transient stability/electromechanical transients sim-
ulation [JMD10, JMZD12, BWJ+12, QH13]; electromagnetic transients simulation [DGF12,
Cie13, GO13, ZD14]; and optimization, e.g. Optimal Power Flow [RR14].

However, GPUs are not as good in handling the irregular computation patterns (unpre-
dictable branches, looping conditions, irregular memory access patterns, etc.) that most
engineering software deal with. Hence, in all cases, the heterogeneous computing concept
is used: the CPU assumes main control of the application and the GPU is accelerating the
burdensome linear algebra operations. The CPU to GPU data transfer link has relatively high
latency introducing a significant bottleneck in the execution of the program [TOG14].

Finally, there is a high effort needed to develop and maintain GPGPU code and low
portability as no default standard exists among GPU vendors. Although some programming
models have been implemented trying to facilitate programming on such architectures and
increase portability of the code (e.g. OpenCL), at the moment of starting this project in 2011

26 CHAPTER 2. THINK PARALLEL

they were still in the early stages without any accumulated experience and documentation.
For all the above reasons, this programming model was rejected.

2.4.2 Message passing interface

Message Passing Interface (MPI) has become a de facto standard for communication among
processes. It is used in the majority of parallel high performance scientific computer pro-
grams due to its high performance. In this model, parallel tasks exchange data by passing
messages (asynchronous or synchronous) to one another. Although it was designed for exe-
cution on distributed memory machines (large networks of workstations or massively parallel
supercomputers), this model can also work on shared-memory multi-core machines. It is
thus very useful when the programmer expects the application to scale from smaller shared-
memory multi-core machines to very large computer clusters in the future.

Among the related power system applications, let us quote: power flow studies [WC76,
TAT81, RSI85, SL85, KRF94, AZS96, ZCC96, WHS99, Cha01a, Flu02b, Flu02a, SW03];
voltage stability studies [LT95]; transient stability/electromechanical transients simulation [FP78,
OKS90, KPG92, VCB92, CB93, TC95, OO96, WHS99, LBTT90, CI90, LST91, DFK92, LB93,
GMLT94, LSS94, DFK96, YXZJ02, CDC02, SXZ05, JMD09, KM09]; optimization, e.g. Opti-
mal Power Flow [KB00, BBMP05]; dynamic security assessment [ABLS97]; state estimation
[AT90, KSY+91]; and, electromagnetic transients simulation [VCB92, FKA93].

However, the high communication burden associated to message passing, makes MPI
more suitable for coarse-grained parallel algorithms. Algorithms with high rate of data ex-
change among parallel tasks, as the ones proposed in Chapters 4 and 5, are not likely to
be efficient with this parallel programming model. Moreover, in MPI all the message passing
is explicit and an experienced programmer is required to implement them correctly, thus the
programming effort needed is increased. For these reasons, this programming model was
rejected.

2.4.3 Shared-memory models

There exists a plethora of shared-memory parallel programming models. Some well-known
examples are OpenCL, Cilk Plus, Intel Threading Building Blocks (TBB), and OpenMP.

OpenCL is a standard organized by Khronos and supported by implementations from
multiple vendors. It was primarily designed to allow offload of computation to GPU-like de-
vices, and its memory and task grouping model reflects this. However, OpenCL can also
be used for other co-processors as well as shared-memory multi-core CPUs. OpenCL is
not intended for mainstream programmers the way TBB, Cilk Plus, or OpenMP are. Lacking
high-level programming models for heterogeneous platforms, application programmers often
turn to OpenCL. However, over time, higher level models will likely emerge to support main-
stream application programmers and OpenCL will be restricted to specialists implementing
these higher level models or for detailed performance-oriented libraries [MRR12].

2.5. PERFORMANCE THEORY 27

The Cilk (pronounced “silk”) project originated in the mid-1990s at M.I.T. Its successor,
Cilk Plus, is integrated with a C/C++ compiler and extends the language with the addition
of keywords and array section notation. It uses the fork–join pattern [MRR12] to support ir-
regular parallel programming patterns, parallel loops to support regular parallel programming
patterns, and, supports explicit vectorization via array sections, pragma simd, and elemental
functions [MRR12].

TBB is a library, not a language extension, and thus can be used with any compiler
supporting ISO C++. It relies on templates and generic programming and uses C++ features
to implement its “syntax.” TBB requires the use of function objects (also known as functors)
to specify blocks of code to run in parallel. Like Cilk Plus, TBB is based on programming in
terms of tasks, not threads. This allows it to reduce overhead and to more efficiently manage
resources. As with Cilk Plus, TBB implements a common thread pool shared by all tasks and
balances load via work-stealing [MRR12].

OpenMP is a standard organized by an independent body called the OpenMP Architec-
ture Review Board. It is based on a set of compiler directives or pragmas in Fortran, C,
and C++ combined with an API for thread management. OpenMP is designed to simplify
parallel programming for application programmers working in High-Performance Computing
(HPC), including the parallelization of existing serial codes. Prior to OpenMP (first released
in 1997), computer vendors had distinct directive-based systems. OpenMP standardized
common practice established by these directive-based systems and is supported by most
compiler vendors including the GNU compilers and other open source compilers [MRR12].

The previous three models are suitable to implement the fork-join parallel pattern asso-
ciated with “divide-and-conquer” algorithms. Moreover, all three models exhibit high perfor-
mance, have increased compatibility with existing platforms and compilers, and are widely
adopted on shared-memory multi-core computers. However, out of these candidates, the
OpenMP API was chosen for our application. The main reason behind this choice is the
model’s support of modern Fortran language which is the language of the simulation soft-
ware RAMSES. More details about the selection of the programming language and the par-
allel programming model are given in Appendix C.

Some typical power system applications have been investigated using this model, such
as: power flow studies [Bos95, DS11, LDTY11, NAA11, Fra12, ASC13]; state estimation
[NMT+06, LDTY11, DN12]; transient stability/electromechanical transients simulation [CZBT91,
BVL95, HB97, XCCG10, AF12, LDG+12]; and, electromagnetic transients simulation [UBP10,
UH11, UD13].

2.5 Performance theory

The primary purpose of parallelization, as discussed in this work, is performance. But what
is performance? Usually it is about one of the following:

28 CHAPTER 2. THINK PARALLEL

1. reducing the total time it takes to compute a single result (latency);

2. increasing the rate at which a series of results can be computed (throughput);

3. reducing the power consumption of a computation.

All these valid interpretations of performance can be achieved by parallelization [MRR12].
There is also a distinction between improving performance to reduce costs or to meet

a deadline. To reduce costs, one wants to get more done within a fixed machine or power
budget and usually is not willing to increase the total amount of computational work. Alter-
natively, to meet a deadline, it might be necessary to increase the total amount of work if it
means the jobs gets done sooner. For instance, in an interactive application (operator train-
ing, controller-in-the-loop tests, etc.), it might be required to complete the work fast enough
to meet a certain frame rate or response time. In this case, extra work such as redundant or
speculative computation [MRR12] might help meet the deadline.

Validation should be given careful thought, in light of the original purpose of the program.
Fast computation of wrong answers is pointless, so continuous validation is strongly recom-
mended to avoid wasting time tuning a broken implementation [MRR12]. On the other hand,
obtaining results “bit-by-bit identical” to the serial program is sometimes unrealistic. Indeed,
the parallel program results, though different, may be as good for the overall purpose as the
original serial program, or even better [MRR12].

Frequently, people tend to discuss algorithm performance with all attention focused on
the minimization of the total amount of computational work. However, computation may not
be the limiting bottleneck. The access to shared memory (or equivalently communication)
may constrain performance. Moreover, the potential for scaling performance on a parallel
computer is constrained by the algorithm’s span. The span is the time it takes to perform the
longest chain of tasks that must be performed sequentially. This chain, also known as the
critical path, cannot be speeded up with parallelism no matter how many parallel processors
are used. Thus, getting improved performance often requires finding an alternative way to
solve a problem that shortens the span [MRR12].

Unsurprisingly, parallel programming is simplest when the parallel tasks are completely
independent. In such cases, the span is just the longest task and communication is usually
negligible (not zero, because we still have to check that all tasks are done). Parallel pro-
gramming is much more challenging when tasks are not independent, because that requires
communication between tasks, and the span becomes less obvious [MRR12].

2.5.1 Scalability, speedup and efficiency

Three important metrics related to performance and parallelism are speedup, scalability, and
efficiency. Scalability can be defined as:

ScalabilityM =
T1

TM
(2.1)

2.5. PERFORMANCE THEORY 29

where T1 is the runtime of the program with one worker and TM is the runtime of the same
program, using the same algorithm, with M workers . This index shows how well the parallel
implementation scales when the number of available workers is increased.

Optimally, scalability would be linear, i.e. with double the number of processing units
the program should execute in half the runtime, and doubling it a second time should again
halve the runtime. However, very few parallel algorithms achieve optimal scalability except
embarrassingly parallel problems (where there exists no dependency or communication be-
tween parallel tasks). Most real-life parallel programs exhibit a near-linear scalability for small
numbers of processing units, which flattens out into a constant value for large numbers of
workers.

The speedup of a parallel implementation expresses the relative saving of execution time
that can be obtained by using a parallel execution on M processing units compared to the
best sequential implementation. This can be formulated as:

SpeedupM =
T∗1
TM

(2.2)

where T∗1 is the runtime of the program with one worker using the fastest (or a very fast)
sequential algorithm. For power system dynamic simulations, the popular VDHN scheme
(see Appendix A) has been suggested as the sequential benchmark [CB93]. Although there
is no proof that this is the fastest sequential algorithm, it is employed by many industrial and
academic software and its capabilities and performance are well-known.

Moreover, the sequential algorithm needs to be solving exactly the same problem as
the parallel with the same accuracy. For this reason, all the algorithms considered in this
work (proposed parallel and sequential VDHN) have been implemented in the same soft-
ware (RAMSES). More precisely, they solve exactly the same model equations, to the same
accuracy, using the same algebraization method (namely the second-order BDF), way of
handling the discrete events, mathematical libraries (e.g. sparse linear solver), time-stepping
strategy, etc. Keeping the aforementioned parameters the same allows for a more rigorous
evaluation of the proposed algorithm’s performance.

Finally, the efficiency of a parallel algorithm is defined as:

E f f iciencyM =
ScalabilityM

M
=

T1

MTM
(2.3)

It is a value, typically between zero and one, estimating how well-utilized the processors
are in solving the problem, compared to how much effort is wasted in communication and
synchronization. Ideally, efficiency should be equal to one, which corresponds to a linear
scalability, but many factors can reduce it (as already mentioned) [MRR12]. Algorithms with
linear speedup and algorithms running on a single processor have an efficiency of one, while
many difficult-to-parallelize algorithms have efficiency such as 1

ln M that approaches zero as
the number of processors increases.

In the following subsections, the three main theories for predicting or assessing the per-
formance of parallel algorithm are outlined.

30 CHAPTER 2. THINK PARALLEL

 1
 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 1 2 4 6 8 10 12 14 16 18 20 22 24

T
he

or
et

ic
 s

ca
la

bi
lit

y

of workers

P=100%

P=99%

P=95%

P=90%

P=80%
P=70%

P=40%

Figure 2.2: Amdahl’s formula for scalability

2.5.2 Amdahl’s law

The potential scalability of an algorithm executed on a parallel computer can be given by
a formula originally presented by Gene Amdahl in the 1960s. It states that the portion of
the program which cannot be parallelized will limit the overall scalability available from par-
allelization. A program solving a large mathematical or engineering problem will typically
consist of several parallelizable and several non-parallelizable (sequential) parts. The total
execution time is described by [Gov10]:

TM = TS +
TP

M
(2.4)

where TS is the time spent in the serial part of the code and TP the time spent in the parallel
part. Of course, TP and TS have to account for 100% of T1, that is T1 = TP + TS. Based on
(2.1) and (2.4), scalability is rewritten as:

ScalabilityM =
TS + TP

TS +
TP
M

(2.5)

Software profiling can give a measurement of TP and TS based on the portions of the code
scheduled for parallelization. However, if only the semantics (“blueprint”) of the algorithm are
available, then these values have to be estimated from the mathematical formulation and the
expected computation times1.

1For the calculations presented in Chapters 4 and 5, the profiling software Intel VTune Amplifier was used on
a version of the algorithms executed on one core to obtain the values of the parallel and sequential portions.

2.5. PERFORMANCE THEORY 31

Using Eq. 2.5, the expected performance of a parallel algorithm can be calculated for
a varying number of workers. Figure 2.2 shows these calculations for different values of
P = TP

TS+TP
. It can be seen why linear scalability is extremely difficult to achieve: even with 1%

of the computations in sequential execution, the scalability variation differs significantly from
linear. Moreover, if the limit M → ∞ is taken on Eq. 2.5, the resulting value shows that the
maximum scalability is bounded by the serial time TS.

Unfortunately, Eq. 2.5 gives an optimistic upper bound of the algorithm’s scalability. It
assumes that the parallel computations are infinitely divisible and ignores the OverHead
Cost (OHC) associated to making the code run in parallel and managing the threads and
the communication between them. The communication might be the command for all the
threads to start, the exchange of information, or it might represent each thread notifying the
main thread that it has completed its work. To compensate for this OHC, Amdahl’s law is
modified to [Gov10]:

TM = TS +
TP

M
+ OHC(M) (2.6)

where the OHC(M) is proportional to memory latency for those systems that communicate
through memory, or cache latency if all the communicating threads share a common level of
cache.

This modified formula suggests that the scalability of an application can be increased
either by increasing the percentage of computations in the parallel portion or by reducing the
synchronization and communication costs. Also, when OHC is large enough and for small
amounts of parallel work (TP), situations can be encountered where increasing the number
of available threads will actually slow down the application. That is, if:

TM − TM+1 =

(
TP

M
− TP

M + 1

)
︸ ︷︷ ︸
incremental gain

+ (OHC(M)−OHC(M + 1))︸ ︷︷ ︸
incremental OHC

< 0 (2.7)

then adding extra workers to a parallel program can be detrimental to its performance. Unfor-
tunately, there is no way to calculate the exact value of OHC before implementing the parallel
code.

2.5.3 Gustafson-Barsis’ law

Amdahl’s law considers a program as fixed and the parallel computing resources can be
varied. However, as computational power increases, applications tend to change to exploit
these new features. For example, the demands of power system dynamic simulations have
significantly increased compared to 10 or 20 years ago. Simulations today use more detailed
power system models. Synchronous machines that were described with the classical model
are now much more detailed. Simplified static load models are now replaced by their dynamic
counterparts. Distributed energy sources are not anymore just portrayed as negative loads.

32 CHAPTER 2. THINK PARALLEL

1 2 3

S

P1 P1 P1

P2
P2

P2

P3

P3 P3

S S

of workers

TM

Sequential task that needs to be

executed before the parallel portion

(e.g. data reading, initialization, etc.)

Independent tasks that can be

performed in parallel but

are not further divisible

work=T1=S+P1+P2+P3

span=T∞=T3=S+P3

Figure 2.3: Work-span: scalability is limited due to the discretized nature of the parallel tasks

Gustafson-Barsis’ law notes that as the problem size grows to take advantage of more
powerful computers, the work required for the parallel part of the problem usually grows faster
than the serial part. Consequently, the fraction TS

TP
decreases and scalability improves. This

observation should be used as a guideline when deciding the algorithm-level parallelism. If a
parallel algorithm is designed correctly, it should take advantage of the future problem scaling
to increase its performance automatically.

As mentioned above, the trend in power system simulations is to model in higher detail
the electric components. Another target is to include detailed models of DNs and perform
combined simulations of TN and DN systems to obtain more consistent results among them
[Hed14]. The algorithms proposed in Chapters 4 and 5 were designed to accommodate for
this future model expansion in their parallel part, thus leading to higher scalability as the
modeling demands increase, with the same parallel computing resources.

Both Amdahl’s and Gustafson-Barsis’ laws are correct. The difference lies in whether the
aim is to make a program run faster with the same workload or run in the same time with
a larger workload. History clearly favors programs getting more complex and solving larger
problems, so Gustafson’s observations fit the historical trend. Nevertheless, Amdahl’s law
still haunts us when the target is to make an application run faster on the same workload to
meet some latency (e.g. real-time simulations) [MRR12].

2.5.4 Work-span model

As mentioned earlier, Amdahl’s law makes the assumption that computations in the parallel
portion of the algorithm are infinitely divisible. However, this is not true for most applications.
In the work-span model, time T1 is called the work of an algorithm. It is the time that the
algorithm would take running on one core. Time T∞ is called the span of an algorithm and
is the time a parallel algorithm would take on an ideal machine with an infinite number of
processors. Alternatively, the span gives the longest chain of tasks that must be executed
one after each other [MRR12].

2.6. SHARED-MEMORY COMPUTERS PERFORMANCE CONSIDERATIONS 33

This analysis takes into consideration situations where the parallel computations are dis-
crete, thus increasing the workers beyond a certain number has no effect on scalability.
Figure 2.3 shows one such example: increasing the workers to more than three has no effect
on the execution time as the parallel tasks are not further divisible, thus T∞ = T3 = S + P3.
So, the serial and the largest indivisible parallel tasks dictate the algorithm’s span.

This model gives a more realistic upper limit to the scalability as:

ScalabilityM =
T1

TM
≤ work

span
(2.8)

as well as a lower bound, given by Brent’s Lemma [Bre74]:

TM ≤
T1 − T∞

M
+ T∞ (2.9)

2.6 Shared-memory computers performance considerations

As mentioned previously, this work targets shared-memory multi-core computers, in which
all parallel workers have access to the same shared-memory address space. This machine
model makes communication implicit: it happens automatically when one parallel worker
writes a value and another one reads it. Thus, shared memory is convenient and facilitates
parallel programming.

However, even if the algorithm has high parallelization potential, a careless implementa-
tion can easily destroy the performance of the program. Unintended communication, exces-
sive use of synchronization, lack of locality, and load imbalance can lead to increased OHC
or, even worse, wrong results.

In this section we will briefly review some of these issues that were investigated for the
implementation of the proposed parallel algorithms in RAMSES.

2.6.1 Synchronization

A race condition occurs when concurrent tasks perform operations on the same memory
location without proper synchronization, and one of the memory operations is a write. Code
with a race may sometimes fail unpredictably. Races are not limited to memory locations but
can also happen with I/O operations. For example, if two tasks try to print Hello at the same
time, the output might look like HeHelllloo, or might even crash the program [MRR12].

To avoid such problems, the programmer should clearly map the data dependencies of
the algorithm parallel tasks. Once this is done, the first priority should be to eliminate as
many of these dependencies as possible to avoid introducing synchronization that leads
to increased OHC. Then, for the remaining dependencies, the appropriate synchronization
mechanisms should be used to ensure the correct execution of the program.

OpenMP offers several mechanisms to help the programmer with this task. For exam-
ple, when a parallel segment is defined, all the data variables accessed by the parallel tasks

34 CHAPTER 2. THINK PARALLEL

can be categorized as shared (which means visible and accessible by all threads simultane-
ously), private (which means each thread will have a local copy and use it as a temporary
variable), and firstprivate (like private except initialized to original value). The clause default
assigns the default property for all variables.

Other mechanisms available in OpenMP to eliminate data races are the critical sections,
which define portions of the code to be executed only by one thread at a time, and atomic,
which ensures that a specific storage location is updated atomically (by only one thread).

Another synchronization technique in OpenMP uses locks. Locks are a low-level way to
eliminate races by enforcing limits on access to a resource in an environment where there
are many threads of execution. A lock is designed to enforce a mutual exclusion concurrency
control policy. However, the extensive use of locks can lead to strangling scalability or even
deadlocks (when at least two tasks wait for each other and each cannot resume until the
other task proceeds). Such low-level mechanisms are not used in RAMSES and thus will not
be detailed here.

Finally, it might be useful to use a data race detection program that can identify potential
problems in the code. One such program is Intel Inspector XE, which has been routinely
used to detect data racing problems in RAMSES.

2.6.2 Lack of locality

Locality is another important factor to increase scalability. It refers to two assumptions on
future memory accesses, after a worker accesses a location:

• Temporal locality: A worker is likely to access the same location again in the near future.

• Spatial locality: A worker is likely to access nearby locations in the near future.

The locality model asserts that memory accesses close in both time and space are cheaper
than those that are far apart. Having good locality in a program can significantly reduce
communication OHC [MRR12].

The cost of communication is not uniform and varies depending upon the type of shared-
memory architecture and the location of the worker. Small shared-memory machines (e.g.
multi-core laptops and office desktops) have UMA architecture; thus each individual proces-
sor can access any memory location with the same speed. On the contrary, larger shared-
memory machines usually have NUMA architecture, hence some memory may be “closer to”
one or more of the processors and accessed faster by them [CJV07].

The main benefit of NUMA computers over UMA is scalability, as it is extremely difficult to
scale UMA computers beyond 8-12 cores. At that number of cores, the memory bus is under
heavy contention. NUMA is one way of reducing the number of CPUs competing for access
to a shared memory bus by having several memory buses and only having a small number
of cores on each of those buses.

2.6. SHARED-MEMORY COMPUTERS PERFORMANCE CONSIDERATIONS 35

�������������	
���

���	�
�����

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!����

�����

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!�����

������

���	�������

�
�	
����

 �!�����

������

�
�	
����

 �!����"

�����"

Figure 2.4: cc-Numa architecture used in some of our tests

The cache coherent NUMA (cc-NUMA) node presented in Fig. 2.4 is part of a 48-core
NUMA parallel computer, based on 6238 AMD Opteron Interlagos, available at the University
of Liège. The computer has four identical sockets, each hosting two NUMA nodes with six
cores (as sketched in Fig. 2.4). So, even though the system physically has four CPU sockets
with 12 cores each, there are in fact eight NUMA nodes with six cores each.

Resources within each node are tightly coupled with a high speed crossbar switch and
access to them inside a NUMA node is fast. Moreover, each core has dedicated L1 cache,
every two cores have shared L2 cache and the L3 cache is shared between all six cores.
These nodes are connected to each other with HyperTransport 3.0 links. The bandwidth
is limited to 12GB/s between the two nodes in the same socket and 6GB/s to other nodes.
Thus, the cost is minimal for lanes of a vector unit, relatively low for hardware threads on
the same core, more for those sharing an on-chip cache memory, and yet higher for those in
different sockets [MRR12].

Parallel applications executing on NUMA computers need special consideration to avoid
high OHC. First, given the large remote memory access latency, obtaining a program with
a high level of data locality is of the utmost importance. Hence, some features of the ar-
chitecture and Operating System (OS) affect the application’s performance (bind threads to
particular CPUs, arrange the placement and migration of memory pages, etc.) [CJV07].

Data accessed more frequently by a specific thread should be allocated “close” to that
thread. First Touch memory allocation policy, which is used by many OS, dictates that the
thread initializing an object gets the page associated with that item in the memory local to the
processor it is currently executing on. This policy works surprisingly well for programs where
the updates to a given data element are typically performed by the same thread throughout
the computation. Thus, if the data access pattern is the same throughout the application, the
initialization of the data should be done inside a parallel segment using the same pattern so
as to have a good data placement in memory. This data initializing procedure is followed in
RAMSES.

36 CHAPTER 2. THINK PARALLEL

Some further consideration is needed when large amount of data are read from files to
avoid page migration during the initialization. This problem usually affects NUMA machines
with low link speed and applications with intensive I/O procedures. In power system dynamic
security assessment the data reading is usually done once and then used numerous times
to asses several different contingencies on the same system, thus this feature is not critical
to their overall performance.

The second challenge on a cc-NUMA platform is the placement of threads onto the com-
puting nodes. If during the execution of the program a thread is migrated from one node to
another, all data locality achieved by proper data placement is destroyed. To avoid this we
need some method of binding a thread to the processor by which it was executed during
the initialization. In the proposed implementation, the OpenMP environment variable OMP_-
PROC_BIND is used to prevent the execution environment from migrating threads. Several
other vendor specific solutions are also available, like kmp_affinity in Intel OpenMP imple-
mentation, taskset and numactl under Linux, pbind under Solaris, bindprocessor under IBM
AIX, etc.

2.6.3 Load imbalance

One of the most important tasks of parallel programming is to make sure that parallel threads
receive equal amounts of work [Cha01b, CJV07]. Imbalanced load sharing among threads
will lead to delays, since some of them will be still working while others will have finished and
be idle. This is shown in Fig. 2.3, where in the case of three cores, the two of them finish
their jobs faster. Load imbalance can be mitigated by further decomposition of the parallel
tasks and properly sharing them among the workers [MRR12]. Like packing suitcases, it is
easier to spread out many small items evenly than a few big items.

Fortunately, OpenMP offers some mechanisms to facilitate load balancing. For example,
when considering the loop-level parallelization (a construct frequently used in engineering
problems), the schedule clause allows for the proper assignment of loop iterations to threads.
However, the best load balancing strategy depends on the computer, the actual data input,
and other factors not known at programming time. In the worst case, the best strategy may
change during the execution time due to dynamic changes in the behavior of the loop or in
the resources available in the system. Even for advanced programmers, selecting the best
load balancing strategy is not an easy task and can potentially take a large amount of time.

OpenMP offers three default strategies to assign loop iterations (where each iteration is
treated as a task) to threads. With the static strategy, the scheduling is predefined and one
or more successive iterations are assigned to each thread rotationally prior to the parallel
execution. This decreases the overhead needed for scheduling but can introduce load im-
balance if the workload inside each iteration is not the same. With the dynamic strategy,
the scheduling is dynamic during the execution. This introduces a high OHC for managing
the threads but provides the best possible load balancing. Finally, with the guided strategy,

2.7. DESCRIPTION OF COMPUTERS USED IN THIS WORK 37

the scheduling is again dynamic but the number of successive iterations assigned to each
thread are progressively reduced in size. This way, scheduling OHC is reduced at the be-
ginning of the loop and good load balancing is achieved at the end. Of course, many other,
non-standard, scheduling strategies have been proposed in literature [Cha01b].

In general, when deciding the scheduling strategy, the following should be considered:

• optimizing work balancing on the available threads;

• optimizing spatial locality, by assigning tasks that access continuous memory segments
to the same thread whenever possible; and,

• optimizing temporal locality, by applying the same schedule in subsequent execution
instances of the parallel section to maximize data re-use.

The above performance considerations will be revisited in Chapters 4 and 5, after the parallel
algorithms have been defined. The selection of the proper synchronization and scheduling
methods will be justified based on the proposed parallel algorithm specifications.

2.7 Description of computers used in this work

In this work, the following computer platforms were used to acquire the simulation results:

1. AMD Opteron Interlagos CPU 6238 @ 2.60GHz, 16KB private L1, 2048KB shared per
two cores L2 and 6144KB shared per six cores L3 cache, 64GB RAM, Debian Linux 8
(Fig. 2.4)

2. Intel Core i7 CPU 4510U @ 3.10GHz, 64KB private L1, 512KB private L2 and 4096KB
shared L3 cache, 7.7GB RAM, Microsoft Windows 8.1

3. Intel Core i7 CPU 2630QM @ 2.90GHz, 64KB private L1, 256KB private L2 and
6144KB shared L3 cache, 7.7GB RAM, Microsoft Windows 7

Machine 1 is a scientific computing equipment with NUMA architecture, while Machines 2
and 3 are ordinary laptop computers with UMA architecture.

2.8 Summary

Programmers can no longer depend on rising clock rates (frequency scaling) to achieve
increasing performance for each new processor generation, due to the power wall. Moreover,
they cannot rely on automatic mechanisms to find parallelism in naive serial code, due to
the instructional parallelism wall. Thus, to achieve higher performance, they have to write
explicitly parallel programs [MRR12].

To achieve this, engineers need to revisit the algorithms used for each problem and try
to extract the maximum possible algorithm-level parallelism. If necessary, algorithms that

38 CHAPTER 2. THINK PARALLEL

cannot be parallelized should be replaced by more suitable ones. When doing so, the future
scaling of the problem size should be considered to ensure that the algorithm’s scalability will
increase as well. Based on the granularity of the parallel algorithm and the targeted computer
architectures, the proper parallel programming model should be selected.

Finally, the programmer should study the communication and memory access patterns to
avoid unnecessary OHC that could strangle the scalability of the program.

CHAPTER 3
Domain decomposition methods and

applications to power systems

3.1 Introduction

Domain Decomposition Methods (DDMs) refers to a collection of techniques which revolve
around the principle of “divide-and-conquer”. They were primarily developed for solving
large boundary-value problems of Partial Differential Equations (PDEs) by splitting them into
smaller problems over sub-domains and iterating between them to coordinate the solution
[TW05]. These sub-domains can be overlapping, meaning that some parts of the domain
belong to more than one sub-domain, or non-overlapping.

One of the first applications was described by Schwarz in 1869 and consisted of three
parts: alternating between two overlapping sub-domains, solving the Dirichlet problem on
one sub-domain at each iteration, and taking boundary conditions based on the most recent
solution obtained from the other domain [Saa03]. Since then, such methods have been used
extensively in problems deriving from physics and structural engineering [Woh01, Saa03,
TW05], while the solution over non-overlapping sub-domains through sub-structuring was
introduced in the 60’s [Prz63].

Next, because of their high efficiency and performance, DDMs became popular in ini-
tial value problems coming from the multi-domain mechanical/electrical design and are de-
scribed by systems of Ordinary Differential Equations (ODEs) or Differential-Algebraic Equa-
tions (DAEs). In these problems, the solution domain refers to the states describing the
physics and mechanisms of the underlying process and not to the space domain as usually
in PDE problems.

In the computer era, DDMs were originally used due to the lack of memory in comput-
ing systems: data needed for smaller portions of a problem could fit in the memory while
for the whole problem they could not. Moreover, solving smaller problems could prove ad-
vantageous as the complexity of several solvers grows more than linearly with the size of

39

40 CHAPTER 3. DDMS AND THEIR APPLICATION TO POWER SYSTEMS

the problem. However, they lost their appeal as larger memory and better scaling solvers
became available, only to resurface in the age of parallel computing. These methods are
inherently suited for execution on parallel architectures and many parallel implementations
have been proposed on multi-core computers, clusters, GPUs, etc.

In this chapter we overview some of the features that define any given DDM. Then, we
focus on DDMs proposed for dynamic simulations of power systems.

3.2 DDM characteristics

Any DDM needs to answer three questions: how is the problem domain partitioned into sub-
domains, how are the sub-domain problems formulated and solved, and how are the sub-
domain interface variables processed. The answers to these questions provide the “blueprint”
of the method. These DDM features are described next, with focus on the peculiarities
appearing in DAE problems.

3.2.1 Sub-domain partitioning

The first step in designing a DDM is to identify the preferred characteristics of sub-domains.
This includes choosing the number of sub-domains, the type of partitioning, and the level of
overlap. Each of these choices depend on a variety of factors such as size and type of the
domain, the number of parallel processors, communication cost, and the system’s underlying
dynamics.

The main target when partitioning the domain is to minimize the interfaces between the
sub-domains. This will allow for lower communication requirements and a simpler handling
of interface variables. In PDE problems, where DDMs have been mostly applied, the decom-
position is usually based on the geometrical data and the order of the discretization scheme
used [Saa03, TW05]. Conversely, in DAE/ODE problems (such as the one under considera-
tion in this work), no a priori knowledge of the coupling variables is available since there are
no regular data dependencies (such as those defined by geometric structures). In several
cases, the so-called dependency matrix (D) can be used. For a system with N equations
and N unknown variables, D is an NxN matrix with D(i, j) = 1, if the i-th equation involves
the j-th variable, and D(i, j) = 0 otherwise. However, each system model can be composed
of several sub-models which are sometimes hidden, too complex, or used as black boxes.
Hence, an automatic calculation of D is not trivial to implement [GTD08].

Moreover, in so far as the sub-problems obtained from a given partitioning are solved in
parallel, there are some restrictions regarding the type of partitioning needed. For example,
the DAE model of a power system component (e.g. synchronous machine, wind turbine, etc.)
has a dense dependency matrix. Thus, the component should not be split between sub-
domains as it will create a very strong connection between different sub-domains, increase
the communication cost, and decrease the efficiency of the DDM.

3.2. DDM CHARACTERISTICS 41

SD1 SD2

SD3 SD4

Figure 3.1: Example of decomposed system

Overall, decomposition schemes for DAE/ODE systems have to rely on problem specific
techniques which require good knowledge of the underlying system, the models composing
it, and the interactions between them. A bad selection of the system partitioning can lead to
the DDM solution not converging or converging very slowly.

3.2.2 Problem solution over sub-domains

The second feature that characterizes a DDM is the way of solving the sub-problems for-
mulated after the partitioning. Given the decomposed system sketched in Fig. 3.1, the i-th
sub-domain SDi (i = 1, .., 4) is described by a local problem (sub-problem) involving three
kind of variables:

1. interior variables which are coupled through local equations (xint
i) only;

2. local interface variables which are coupled through both local and non-local (external
to the sub-domain) equations (xext

i); and,

3. external interface variables that belong to other sub-domains and are coupled through
local equations (xext

j).

In general, standard methods for treating PDE, ODE, or DAE problems are employed to
solve each sub-system. For example, to solve DAE systems coming from dynamic simula-
tions of power systems, the techniques presented in Section 1.2 can be used.

Next, it is decided whether the sub-problems will be solved approximately or exactly be-
fore exchanging information (updating the interface values) with other sub-domains. This
decision always leads to a compromise between numerical convergence speed and data ex-
change rate. If the interface values are frequently exchanged, global convergence is usually
better since the sub-domain solution methods always use recent values of interface variables.
However, this leads to higher data exchange rate. If the interface values are infrequently ex-
changed, there is lower data exchange rate. Nevertheless, the global convergence might
degrade since the sub-domain solution methods use older interface values.

Usually, when the sub-domains are weakly connected, solving accurately and avoiding to
update often the interface values is better. This kind of partitioning, though, might be very
difficult, or even impossible, to obtain. So, updating the interface values more often might be
required to improve the convergence rate.

42 CHAPTER 3. DDMS AND THEIR APPLICATION TO POWER SYSTEMS

Parallel threads

With most recent interface values:

 Update the local linear systems of SDi (i=1,..,M)

 Eliminate the interior variables of SDi (i=1,..,M)

Initialize interior and interface variables

Build and solve reduced system

to obtain the interface values

global

convergence
With most recent interface values:

 Solve local linear system for interior values of SDi (i=1,..,M)

Parallel threads

yes

no

Figure 3.2: Schur-complement-based DDM template

3.2.3 Sub-domain interface variables processing

No matter the partitioning chosen, the sub-domains need to communicate information be-
tween them through the interface variables (unless totally disconnected sub-domain par-
titioning is possible). The values of these variables can be either successively updated
through iterations during the solution procedure or computed directly. In general there are
two main families of methods for treating the interface values of a decomposed system:
Schur-complement and Schwartz alternating methods.

3.2.3.1 Direct solution with Schur-complement method

When applying the Schur-complement method, also called iterative sub-structuring, the orig-
inal physical domain is split into non-overlapping sub-domains. Next, an iterative method
(e.g. Newton’s method) is used to solve the sub-problems by formulating a, corresponding
to each sub-domain, local linear system. The Schur-complement technique is a procedure
to eliminate the interior variables in each sub-domain and derive a global, reduced in size,
linear system involving only the interface variables. This reduced system can be solved to
obtain the interface variables [Saa03].

Once the interface values are known, the sub-problems are decoupled and the remain-
ing, interior to each sub-domain, unknowns can be computed independently. In many cases,
building and solving the reduced system involves high computational cost. Many methods
have been proposed to speed up the procedure, such as approximately solving the re-
duced system [SS99], assembling the matrix in parallel using the “local” Schur-complements
[Saa03], using Krylov solvers [GTD08], or exploiting the structure of the decomposition to
simplify the problem.

In general, the Schur-complement method can be described by the flowchart of Fig. 3.2
(where M is the number of sub-domains). This method can be easily parallelized as sketched

3.2. DDM CHARACTERISTICS 43

Parallel threads

With most recent interface values as constants:

 Solve problem on SDi (i=1,..,M) until local convergence

Initialize interior and interface variables

global

convergence Update interface values

no

yes

Figure 3.3: Schwarz Alternating procedure DDM template

in the same figure. Operations without data dependencies, such as the formulation and
update of the local linear systems, the elimination of the interior variables and the solution of
the local systems can be performed concurrently. Nevertheless, the solution of the reduced
system introduces an unavoidable sequential bottleneck in the algorithm, which can hinder
its scalability (see Section 2.5.2).

3.2.3.2 Schwarz Alternating procedures

As noted in Section 3.1, among the simplest and oldest techniques are the Schwarz Alter-
nating procedures. In general, these methods can be described by the flowchart of Fig. 3.3.

These methods work by freezing the external interface variables during the solution of
each sub-domain, thereby making the sub-problems totally decoupled. Hence, no reduced
system has to be formulated and solved. This formulation is more attractive for parallel
implementations since the solutions of the sub-domains can be performed in parallel and
information exchange happens only when updating the interface values and checking global
convergence. Other variants of this method can be found in the literature depending on how
often and in which order the interface variables are updated, for instance the Additive or
Multiplicative Schwartz procedures [Saa03].

Although these algorithms allow for a more coarse-grained1 parallelization and have a
smaller data exchange rate than the Schur-complement ones, the speed of global conver-
gence of the system can suffer if certain aspects are not taken into consideration [BK99,
PLGMH11]. For example, even if the method converges for any chosen partitioning, the
choice of the partitioning has a great influence on the rate of the convergence: tightly cou-
pled sub-domains can initiate many iterations as the interface values change strongly and,

1Parallel applications are often classified according to how often their subtasks need to synchronize or com-
municate with each other. An application exhibits fine-grained parallelism if its subtasks must communicate many
times per second; it exhibits coarse-grained parallelism if they do not communicate many times per second, and
it is embarrassingly parallel if they rarely or never have to communicate. Embarrassingly parallel applications
are considered the easiest to parallelize and in this category belongs the simulation of several independent
contingencies during a dynamic security assessment.

44 CHAPTER 3. DDMS AND THEIR APPLICATION TO POWER SYSTEMS

eventually, slow down the procedure. Choosing carefully the partitioning scheme and the
initial values, using preconditioners and overlapping sub-domains can remedy some of these
problems. Other, problem specific, considerations involve choosing the right interface vari-
able transmission conditions and discretization method [Woh01, TW05, CRTT11].

3.3 Existing approaches in power system dynamic simulations

DDMs have been contemplated in power system dynamic simulations since the early 1960’s.
In Fig. 3.4 we attempt to classify these methods according to their decomposition granularity
and the way of handling the interface variables.

A clear distinction between them is not always possible. For example, a coarse-grain
scheme can be always reformulated as a fine-grain scheme, if the decomposition is exploited
only for the solution of the sparse linear system involved in the simulation. This is shown by
the dotted lines in Fig. 3.4, where the coarse-grain methods can lead back to the fine-grain
ones. However, a coarse-grain scheme allows to parallelize more than just the linear system
solution: other steps such as discretization and linearization of the DAE systems, handling
of discrete events, convergence check, etc. can be performed concurrently as well, thus
increasing the granularity.

The remaining of this section is devoted to commenting on the classification in Fig. 3.4.

3.3.1 Partitioning

The choice of the decomposition plays important role in the speed of convergence, the load
balancing among parallel tasks and the overall performance of the DDM. As discussed in
Section 3.2, the automatic partitioning of systems described by DAEs is not trivial. Several
partitioning schemes have been proposed in power system dynamic simulations.

Some partitioning methods are based on coherency analysis [Pod78, HR88, KRF92,
YRA93, JMD09] and take into consideration the dynamic behavior of the system to en-
sure that the resulting sub-domains are “weakly” coupled. However, this type of partition-
ing is strongly dependent on the post-fault power system topology and the initial operating
point. It is also computationally demanding to update the coherent groups after major system
changes.

Other algorithms try to partition the power system in order for the admittance matrix of
the resulting sub-networks to be in block border diagonal form (see Fig. 3.5). Such methods
are factorization path tree partitioning [Cha95], tearing using simulated annealing [IS90],
clustering by contour tableau [SVCC77], and seed nodes aggregating [VFK92].

Finally, some methods [MQ92, CRTT11, AF12, ASC13] build a graph representation of
the system and try to partition it with the objective of minimizing the edge cuts while having
balanced sub-domains.

3.3. EXISTING APPROACHES IN POWER SYSTEM DYNAMIC SIMULATIONS 45

D
D

M
s
 i
n

P
o
w

e
r

S
y
s
te

m
 S

im
u
la

ti
o
n
s

C
o
a
rs

e
-g

ra
in

e
d

(B
a
s
e
d
 o

n
 t

o
p
o
lo

g
y
)

S
c
h
u

r-
c
o
m

p
le

m
e
n

t

fa
m

il
y
 o

f
m

e
th

o
d
s

P
a
ra

ll
e
l

V
D

H
N

E
x
a
c
t

P
a
ra

ll
e
l

L
U

W
-m

a
tr

ix

R
e
la

x
e
d

F
in

e
-g

ra
in

e
d

(B
a
s
e
d
 o

n
 l
in

e
a
r

s
y
s
te

m
)

S
O

R

N
e
w

to
n

M
a
c
la

u
ri

n

N
e
w

to
n

S
c
h
w

a
rt

z
 f

a
m

il
y

o
f

m
e
th

o
d
s

A
p
p
li
e
d
 t

o
 l
in

e
a
r

s
y
s
te

m
 s

o
lu

ti
o
n

A
p
p
li
e
d
 t

o
 D

A
E

s
y
s
te

m
 s

o
lu

ti
o
n

-S
m

a
ll
 r

a
te

 o
f

c
o
m

m
u
n

ic
a
ti

o
n

 a
m

o
n
g
 t

h
re

a
d
s

-L
a
rg

e
 a

m
o
u
n

t
o
f

w
o
rk

 i
n
 p

a
ra

ll
e
l

-S
e
n
s
it

iv
e
 t

o
 p

a
rt

it
io

n
 s

c
h
e
m

e

-A
v
e
ra

g
e
 r

a
te

 o
f

c
o
m

m
u

n
ic

a
ti

o
n

 a
m

o
n
g
 t

h
re

a
d
s

-A
v
e
ra

g
e
 a

m
o
u
n
t

o
f

w
o
rk

 i
n
 p

a
ra

ll
e
l

-L
e
s
s
 s

e
n

s
it

iv
e
 t

o
 p

a
rt

it
io

n
 s

c
h

e
m

e

-H
ig

h
 r

a
te

 o
f

c
o
m

m
u

n
ic

a
ti

o
n
 a

m
o
n
g
 t

h
re

a
d
s

-S
m

a
ll
 a

m
o
u
n

t
o
f

w
o
rk

 i
n
 p

a
ra

ll
e
l

o
n
e
 t

im
e
-s

te
p

m
u
lt

ip
le

ti
m

e
-s

te
p
s

A
p
p
li
e
d
 t

o
 l
in

e
a
r

s
y
s
te

m
 s

o
lu

ti
o
n

A
p
p
li
e
d
 t

o
 D

A
E

s
y
s
te

m
 s

o
lu

ti
o
n

o
n
e
 t

im
e
-s

te
p

In
s
ta

n
ta

n
e
o
u

s

R
e
la

x
a
ti

o
n

W
a
v
e
fo

rm

R
e
la

x
a
ti

o
n

P
a
ra

ll
e
l-

in
-s

p
a
c
e

a
n
d
 t

im
e

M
e
t
h

o
d

s
 c

o
n

s
id

e
r
e
d

in
 t

h
is

 w
o
r
k

Fi
gu

re
3.

4:
O

ve
rv

ie
w

of
D

D
M

s
in

po
w

er
sy

st
em

dy
na

m
ic

si
m

ul
at

io
ns

46 CHAPTER 3. DDMS AND THEIR APPLICATION TO POWER SYSTEMS

Figure 3.5: Block bordered diagonal form matrix for power system dynamic simulation

3.3.2 Fine-grained methods

With the huge developments in parallel computing in the 80’s, researchers started investigat-
ing the use of parallel resources to accelerate the solution of sparse linear systems, present
in many engineering problems. Several parallel solvers have been developed since then,
either of general purpose or customized addressing a specific matrix structure.

In power system dynamic simulations, decomposition methods have been used to to
identify and exploit the particular structure of sparse matrices and efficiently parallelize the
solution procedure. Some methods, like parallel VDHN [CB93], Newton W-matrix [YXZJ02]
and parallel LU [Cha01a, CDC02], divide the independent vector and matrix operations in-
volved in the linear system solution over the available computing units. These methods solve
the exact linear system (e.g. Eq. 1.15) but in parallel. Other methods, like parallel successive
over relaxed Newton [CZBT91] and Maclaurin-Newton [CB93], use an approximate (relaxed)
Jacobian matrix with more convenient structure for parallelization. Afterwards, several meth-
ods were proposed inspired by different hardware platforms and parallel computing memory
models [TC95, SXZ05, FX06, JMD10].

While the fine-grained parallelization methods provide some speedup, they don’t exploit
the full parallelization potential of power system dynamic simulations. First, only paralleliza-
tion opportunities deriving from linear algebra operations are exploited; leaving the proce-
dures performing the discretization and algebraization of equations, the treatment of discrete
events, the convergence check, etc. in sequential execution. Furthermore, as these methods
handle the sparse matrix directly, it is really hard to perform partial system updates or exploit
the localized response of power systems to certain events (such acceleration techniques will
be presented in Chapters 4 and 5). Finally, due to the fine-grain partitioning of tasks there

3.3. EXISTING APPROACHES IN POWER SYSTEM DYNAMIC SIMULATIONS 47

is a high rate of communication among the different parallel workers, leading to increased
overhead costs. For these reasons, coarse-grained DDMs were preferred in our work.

3.3.3 Coarse-grained methods

In coarse-grain methods the decomposition is not projected to the linear system but to the
power system DAEs of Eq. 1.1. This leads to the formulation of the DAE sub-systems de-
scribing the problem in the resulting sub-domains. Then, the solutions of the decomposed
sub-systems are obtained using a Schwarz or Schur-complement method for treating the
interface variables, as described in Section 3.2.

Historically, Schwarz methods were preferred for almost all coarse-grain DDMs for power
system dynamic simulations. These schemes are easier to formulate and solve, they avoid
the sequentiality of Schur-complement methods, and their low rate of communication leads
to decreased overhead costs. However, their performance is very sensitive to the particular
partitioning and initial operating point.

The first to envisage an application to power systems was probably Kron with the di-
akoptics method [Kro63, Hap74, Ait87]. At the time it was first proposed (1960’s), parallel
computing was not an option and the target was to address memory issues, but, this method
provided the ignition for many of the parallel methods to follow.

First, the network (domain) is teared (decomposed) to create sub-networks (sub-do-
mains). The partitioning is performed using a graph representation of the network and cutting
over connecting lines (edges of the graph). It consists of two types [Hap74]: i) the resulting
sub-domains form a radial network when the cut lines are removed, and, ii) the resulting
sub-domains are no longer connected when the cut lines are removed. Then, the resulting
sub-problems are solved independently as if they were completely decoupled. Finally, their
solutions are combined to yield the solution of the original problem.

The diakoptics belongs to the family of parallel-in-space methods: the formulation of
the problem at a single time instant is decomposed and solved. Moreover, the interface
variables are updated through a Schwarz approach. The performance of this method is
severely decreased as the network to be partitioned is more meshed.

Another family of methods is the parallel-in-time [Alv79, LBTT90, LST91, LSS94, ILM98].
These introduced the idea of exploiting parallelization in time and have their origins in similar
techniques proposed for the solution of ODE problems [Nie64]. So, despite the sequential
character of the initial value problem which stems from the discretization of differential equa-
tions, these techniques propose the solution of multiple consecutive time instants in parallel.
Thus, the DAE systems describing the problem at each instant are solved concurrently. The
interface variables exchanged refer to the transfer of the values needed by the discretization
scheme from one time instant to the next, as shown in Fig. 3.6. For example, with a two-
step discretization scheme information from the two previous time instants would be always
needed.

48 CHAPTER 3. DDMS AND THEIR APPLICATION TO POWER SYSTEMS

Solutions

ti ti+1 ti+2 ti+3

1

2

3

4

P1 P2 P3 P4

Figure 3.6: Parallel-in-time techniques: propagation of information on four processors

Later on, the Waveform Relaxation (WR) [ISCP87, CIW89, CI90] method proposed to de-
compose the system in space and solve each sub-domain for several time instances before
exchanging the interface values. Hence, these values consist of waveforms from neighboring
sub-systems (i.e. a sequence of interface values over a number of consecutive time instants).
After each solution, waveforms are exchanged between neighboring sub-systems, and this
process is repeated until global convergence. Thus, these schemes follow a Schwarz ap-
proach to treat the interface variables.

Consider the DAE initial value problem of (1.1) solved over the time window [t0, t0 + TW]:

Γẋ = Φ(x,V)

0 = Ψ(x,V)

x(t0) = x0, V (t0) = V0

Decomposing the power system into M sub-domains yields M sets of equations, each
one describing the problem inside its partition:

Γ1ẋ
k+1
1 = Φ1(x

k+1
1 ,xk

2, ...,xk
r ,V k+1

1 ,V k
2 , ...,V k

M)

0 = Ψ1(x
k+1
1 ,xk

2, ...,xk
r ,V k+1

1 ,V k
2 , ...,V k

M)

Γ2ẋ
k+1
2 = Φ2(x

k
1,xk+1

2 , ...,xk
r ,V k

1 ,V k+1
2 , ...,V k

M)

0 = Ψ2(x
k
1,xk+1

2 , ...,xk
r ,V k

1 ,V k+1
2 , ...,V k

M)

...
... (3.1)

ΓMẋ
k+1
M = ΦM(xk

1,xk
2, ...,xk+1

r ,V k
1 ,V k

2 , ...,V k+1
M)

0 = ΨM(xk
1,xk

2, ...,xk+1
r ,V k

1 ,V k
2 , ...,V k+1

M)

The variables with superscript k + 1 in the sub-sets are unknowns and have to be calcu-
lated over the window [t0, t0 + TW], while the variables with superscript k are known from the
previous WR iteration and make up the interface variables exchanged between the systems
at the end of each iteration.

For the solution of the system (3.1) two algorithms were proposed [CI90]: Gauss-Jacobi
WR Algorithm and Gauss-Seidel WR Algorithm (see Fig. 3.7). The former uses boundary

3.3. EXISTING APPROACHES IN POWER SYSTEM DYNAMIC SIMULATIONS 49

Figure 3.7: WR algorithms over the time interval [t0, t0 + TW]

conditions only from the previous iteration while the latter uses the most recent boundary
conditions available. This way, the first one is inherently suitable for parallel implementation,
while the latter for sequential. The convergence of these algorithms strongly depends on
the partitioning and on the window time interval TW [PLGMH11]. Their properties have been
thoroughly investigated in [CIW89, BDP96, BK99, GHN99, JW01, EKM08, CRTT11] and
some techniques to accelerate this method in [PLGMH11].

If the time interval [t0, t0 + TW] of the WR is restricted to only one time step, then the In-
stantaneous Relaxation (IR) method [JMD09] is formulated. However, as a Schwartz method,
the convergence properties of IR heavily depend on the proper selection of the partition. Fur-
thermore, in the proposed IR method, each sub-system is solved until convergence but the
global convergence of the system is not checked before proceeding to the next time instant.
This is made possible due to the small time steps used for the simulation (~1 ms), but could
lead to inaccuracies. An extension of this method was proposed in [JMZD12], combining both
coarse-grained and fine-grained parallelization in a nested way to increase performance.

Finally, methods such as parallel-in-time-and-space [LBTC90], Parareal-Waveform Re-
laxation [CM11], and Two-Stage Parallel Waveform Relaxation [LJ15] propose the decompo-
sition of the system in space and in time, to exploit a higher level of parallelization and further
speed-up the simulations.

The DDMs proposed in this thesis are coarse-grain and, unlike most of the algorithms
proposed until now, make use of the Schur-complement approach to treat the interface vari-

50 CHAPTER 3. DDMS AND THEIR APPLICATION TO POWER SYSTEMS

ables. This approach makes the algorithm performance less dependent on the selected
partition and allows to achieve high convergence rate. These will be detailed in Chapters 4
and 5.

3.4 Summary

DDMs have been extensively used in engineering for the solution of complex problems de-
scribed by PDEs, ODEs, and DAEs. The various proposed methods might differ in the type of
domain partitioning, the procedure to solve the sub-problems formulated over the partitions,
and the way of handling the interface variables. However, the common factor is that they try
to exploit parallel computational resources and accelerate the simulation procedure.

A classification of DDMs applied for power system dynamic simulations has been pro-
posed in this chapter followed by a brief description of these methods. Even though several
parallel DDMs have been proposed over the years, to our knowledge, industry-grade soft-
ware do not employ such methods. We believe that the main reason for this absence is the
lack of robustness in the solvers and the need for the user to go through a highly complex
procedure of parameter and partition selection. Most of the proposed DDMs heavily depend
on the selected partition scheme and the latter can easily lead to convergence problems or
inaccuracy.

CHAPTER 4
Parallel Schur-complement-based

decomposition method

4.1 Introduction

In this chapter, a parallel, Schur-complement-based Domain Decomposition Method (DDM)
is presented for the dynamic simulation of power systems. In brief, a non-overlapping, topo-
logical-based, decomposition scheme is applied, splitting the system network from the com-
ponents connected to it. This decomposition reveals a star-shaped sub-domain layout and
leads to the separation of the Differential-Algebraic Equations (DAEs) describing the system.
Then, the nonlinear DAE system describing each sub-domain is solved independently by al-
gebraizing and using a Newton method with infrequent matrix update and factorization. The
interface variables shared between sub-domains are updated using a Schur-complement
approach, at each iteration.

The proposed algorithm augments the performance of the simulation in two ways. First,
the independent calculations of the sub-systems are parallelized providing computational ac-
celeration. Second, three acceleration techniques are employed, exploiting the locality of the
decomposed sub-systems to avoid unnecessary computations and provide numerical accel-
eration. The algorithm is first presented with a certain level of abstraction, focusing on its
mathematical formulation. Next, the details concerning its implementation using the shared-
memory parallel computing model are presented. Finally, some results are presented from
the test systems of Section 1.3 to assess the accuracy and performance of the algorithm.

It has to be noted that the solution algorithm and the localization techniques proposed
in this chapter have their origins in [FCHV13]. However, this work extends and enhances
these ideas. First, the solution algorithm is presented using DDM semantics; thus, allowing
to better classify and analyze the algorithm. Second, the sequential procedure presented in
[FCHV13] is parallelized to fully exploit computational resources. Third, the criteria used in
the “latency ” localization technique (to be presented in Section 4.6.3) are revised to make it

51

52 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

Network
M

InjectorsTwoport injectors

~
 /

 =
 /

 ~

M

Figure 4.1: Decomposed power system

more accurate and robust. Finally, the theoretical basis is set to analyze the convergence of
the proposed algorithm and how it is affected by the localization techniques.

4.2 Power system decomposition

The first step in applying a DDM is to select the domain partitioning. For the proposed al-
gorithm, the electric network is first separated to create one sub-domain by itself. Then,
each component connected to the network is separated to form the remaining sub-domains.
The components considered in this study refer to devices that either produce or consume
power in normal operating conditions and can be attached to a single bus (e.g. synchronous
machines, motors, wind-turbines, etc.) or on two buses (e.g. HVDC lines, AC/DC convert-
ers, FACTS, etc.). Hereon, the former components will be simply called injectors and the
latter twoports. In the following material, twoports will be explicitly referred only when their
treatment is different from the injectors; otherwise, only the injectors will be referred.

Components with three or more connecting buses have not been considered in this work;
however, such components can be treated as a combination of twoports. For instance, a
component connected to three buses can be treated as three twoports. Nevertheless, such
components are rarely used in phasor mode power system dynamic simulations and are not
present in the test systems considered in Section 1.3.

The proposed decomposition can be visualized in Fig. 4.1. The scheme chosen reveals
a star-shaped, non-overlapping, partition layout. At the center of the star, the network sub-
domain has interfaces with many smaller sub-domains; while, the latter interface only with the
network sub-domain and not between them. As it will be seen later on, this type of partitioning
facilitates and simplifies the use of the Schur-complement approach to treat the interface
variables. Based on this partitioning, the problem described by Eq. 1.1 is decomposed as
follows.

The network sub-domain is described by the algebraic equations:

4.3. SUB-SYSTEM SOLUTION 53

0 = Ψ(xext,V)

xext(t0) = xext
0 , V (t0) = V0

(4.1)

while the sub-problem of each injector can be described by a DAE IVP (i = 1, ..., N):

Γiẋi = Φi(xi,V ext)

xi(t0) = xi0, V ext(t0) = V ext
0

(4.2)

where xi and Γi are the projections of x and Γ, defined in (1.1), on the i-th sub-domain. Fur-
thermore, the variables of each injector xi are separated into interior xint

i and local interface
xext

i variables and the network sub-domain variables V are separated into interior V int and
local interface V ext variables. The external interface variables of the network are the rect-
angular components of the injector currents (see Section 1.2.6), while, the external interface
variables of each injector are the coordinate voltage components of the connection bus.

An important benefit of this decomposition is the modeling modularity added to the sim-
ulation software and the separation of the injector modeling procedure from the solver. The
predefined, standardized interface between the network and the injectors permits for the
addition or modification of an injector in an easy way.

4.3 Sub-system solution

For the solution of each sub-system, the techniques detailed in Section 1.2 are used. First, for
the solution of the network sub-system, its algebraic equations are formulated as described
in (1.3):

0 = DV − I = DV − xext = DV −
N

∑
i=1
Cixi , g(xext,V) (4.3)

where the external interface variables are the rectangular components of the injector currents
(Ii) and Ci is a trivial matrix with zeros and ones whose purpose is to extract the interface
variables from xi.

Then, the injector DAE sub-systems (4.2) are algebraized using a differentiation formula
(in this work the second-order BDF) to get the corresponding non-linear algebraized systems:

0 = fi(xi,V ext), i = 1, . . . , N. (4.4)

Next, at each discrete time instant tn, each of the N + 1 sub-systems is solved using a
Newton method. Thus, at the k-th Newton iteration the following linear systems are solved:

D ∆V k −
N

∑
i=1
Ci∆xk

i = −g(xk−1,V k−1) (4.5)

Ai∆xk
i +Bi∆V k = −f i(x

k−1
i ,V k−1), i = 1, . . . , N. (4.6)

54 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

which can be detailed as (the iteration superscripts have been ignored for better legibility):(
D1 D2

D3 D4

)
︸ ︷︷ ︸

D

(
4V int

4V ext

)
︸ ︷︷ ︸
4V

−

 0
N

∑
i=1
C̃i4xext

i

︸ ︷︷ ︸

N

∑
i=1
Ci∆xi

= −
(

gint(V int,V ext)

gext(V int,V ext,xext)

)
︸ ︷︷ ︸

g

(4.7)

(
A1i A2i

A3i A4i

)
︸ ︷︷ ︸

Ai

(
4xint

i

4xext
i

)
︸ ︷︷ ︸
4xi

+

(
0

B̃i4V ext

)
︸ ︷︷ ︸

Bi∆V

= −
(

f int
i (xint

i ,xext
i)

f ext
i (xint

i ,xext
i ,V ext)

)
︸ ︷︷ ︸

fi

(4.8)

where, A1i (resp. D1) accounts for the coupling between the sub-domain’s interior variables;
A4i (resp. D4) express the coupling between local interface variables; A2i and A3i (resp. D2

and D3) represent the coupling between the local interface and the interior variables; and,
B̃i (resp. C̃j) describe the coupling between the local interface variables and the external
interface variables of the adjacent sub-domains.

The iterative solution of the above Newton equations gives the values V (tn) and x(tn).
However, it can be seen that these solution steps are coupled through the interface variables(
V ext,xext) and cannot be solved independently. Thus, a Schur-complement approach is

used at each iteration to build and solve a reduced system to obtain the interface variables.
Once these are computed, the treatment of the N injector sub-domains is decoupled and
can be performed independently.

4.4 Schur-complement treatment of interface variables

To treat the interface variables using a Schur-complement approach, the interior variables
of each sub-domain need to be eliminated to formulate a reduced system involving only the
interface variables (see Section 3.2.3.1).

First, the interior variables of the injector sub-domains are eliminated, which yields for the
i-th injector (i = 1, ..., N):

Si4xext
i + B̃i4V ext = −f̃i (4.9)

with Si = A4i −A3iA
−1
1i A2i, the local Schur-complement matrix and f̃i = f ext

i −A3iA
−1
1i f

int
i

the corresponding adjusted mismatch values.
The matrix D of the electric network is very sparse and structurally symmetric [MBB08].

Eliminating the interior variables of the network sub-domain requires building the local Schur-
complement matrix SD = D4 −D3D

−1
1 D2 which in general is not a sparse matrix. In addi-

tion, SD is large due to the high number of buses with injectors connected to them. Hence,
the computational burden of solving this big and dense matrix can prove prohibitive.

Alternatively, the interior variables of the network sub-domain can be included in the
solution of the reduced system, that is SD = D. This approach increases the size of the

4.4. SCHUR-COMPLEMENT TREATMENT OF INTERFACE VARIABLES 55

Figure 4.2: Fill-in terms of D4 due to the Schur-complement terms

reduced system by the size of V int but retains sparsity. In this work, this second option was
chosen as it allows to use fast sparse linear solvers for the solution of the reduced system.

So, the reduced system to be solved, with the previous considerations, takes on the form:

S1 0 0 · · · 0 B̃1

0 S2 0 · · · 0 B̃2

0 0 S3 · · · 0 B̃3
...

...
...

. . .
...

...
0 0 0 · · · D1 D2

−C̃1 −C̃2 −C̃3 · · · D3 D4

4xext
1

4xext
2

4xext
3

...
4V int

4V ext

= −

f̃1

f̃2

f̃3
...
gint

gext

(4.10)

Due to the star layout of the decomposed system, the resulting global Schur-complement
matrix is in the so-called block bordered diagonal form. Manipulating this structure, which
is a unique characteristic of star-shaped layout decomposition, the interface variables of the
injector sub-domains can be eliminated and only the variables associated to the network
sub-domain remain. This results in the simplified, sparse, reduced system: D1 D2

D3 D4 +
N

∑
i=1
C̃iS

−1
i B̃i

︸ ︷︷ ︸

(
∆V int

∆V ext

)
︸ ︷︷ ︸ = −

 gint

gext +
N

∑
i=1
C̃iS

−1
i f̃i

︸ ︷︷ ︸

D̃ ∆V g̃

(4.11)

The reduced system (4.11) can be solved efficiently using a sparse linear solver to acquire
∆V . Then, the network sub-domain interface variables are backward substituted in (4.8) and
the latter are used to compute the variables ∆xi of each injector sub-domain independently.

56 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

The nonzero structure of the elimination terms C̃iS
−1
i B̃i depends on the number of buses

the injector is attached to. If it is an injector attached to a single bus, the elimination con-
tributes four elements; the interfacing variables are the two injector current components
(ix, iy) and the two bus voltage components (vx, vy). This term modifies only four, already
non-zero, elements of sub-matrix D4, thus retaining its original sparsity pattern. This is
shown in Fig. 4.2a for an injector attached to the k-th bus.

On the contrary, if the injector is attached to two buses (twoport), the elimination term
C̃iS

−1
i B̃i contributes with 16 non-zero elements: eight of them modifying already non-zero

elements of sub-matrix D4 and the other eight creating a fill-in connecting the two buses.
Of course, if the two buses were already connected, for instance with a line or transformer,
the aforementioned elements are already non-zero and no fill-in terms are created by the
Schur-complement terms. This is shown in Fig. 4.2b for a twoport attached to the k-th and
l-th buses.

Even though the twoports might introduce a fill-in to D̃, the computational burden of
solving (4.11) is not significantly affected by them. First, the number of twoports in com-
mon power system models is limited compared to their overall size, thus the percentage of
fill-ins is also small. Moreover, only sub-matrix D4 is affected by the fill-ins leaving the re-
maining sub-matrices unaffected. Finally, the sparsity pattern of matrix D̃ remains the same
throughout the entire simulation, thus the sparse matrix structure analysis (optimal ordering)
is performed only once.

Similarly, the mismatch correction term C̃i S
−1
i f̃i contributes only with two elements to

gext for an injector attached to one bus or with four elements for a twoport.

For the sake of generality and to create a link to publications [AFV13a, AV13, AV14b],
Eq. 4.11 can be rewritten as:

(D+
N

∑
i=1
CiA

−1
i Bi)∆V k =− g(xk−1,V k−1)−

N

∑
i=1
CiA

−1
i f i(x

k−1
i ,V k−1) (4.12)

where:

CiA
−1
i Bi =

[
0 0

0 C̃i

] [
A1i A2i

A3i A4i

]−1 [
0 0

0 B̃i

]

=

0 0

0 C̃i

(
A4i −A3iA

−1
1i A2i

)−1
B̃i

=

[
0 0

0 C̃iS
−1
i B̃i

]

and:

4.5. PARALLEL ALGORITHM 57

CiA
−1
i f i =

[
0 0

0 C̃i

] [
A1i A2i

A3i A4i

]−1 [
f int

i

f ext
i

]

=

 0 0

−C̃i

(
A4i −A3iA

−1
1i A2i

)−1
A3iA

−1
1i C̃i

(
A4i −A3iA

−1
1i A2i

)−1

 [f int
i

f ext
i

]

=

[
0

C̃iS
−1
i

(
f ext

i −A3iA
−1
1i f

int
i

)]

=

[
0

C̃iS
−1
i f̃ i

]

In both derivations, the following formula [BIG76] was used:

[
A1i A2i

A3i A4i

]−1

=

(
A1i −A2iA

−1
4i A3i

)−1
−A−1

1i A2i

(
A4i −A3iA

−1
1i A2i

)−1

−
(
A4i −A3iA

−1
1i A2i

)−1
A3iA

−1
1i

(
A4i −A3iA

−1
1i A2i

)−1

While both Eqs 4.11 and 4.12 are equivalent, the latter doesn’t make any assumption

on the ordering of the interior and interface variables. Hence, the elimination of the interior
variables shown in (4.9) is implied through the proper selection of matrices Ci and Bi.

4.5 Parallel algorithm

As discussed in Chapter 3, the main reason to employ a DDM is the parallelization opportu-
nities inherent to this type of algorithms. The overall solution algorithm is sketched in Fig. 4.3
with the parallel segments being shaded. For each discrete time instant tn, the parallel DDM
described below is used to solve the sub-systems and obtain V (tn) and x(tn).

First, the sub-domain local systems (4.7) and (4.8) are updated, their matrices are factor-
ized, and their contributions to the reduced system (4.11) are computed. The sub-systems
are processed in parallel as there are no data dependencies between them during the update
procedure. This can be seen in BLOCK A of Fig. 4.3.

Then, the reduced system (4.11), whose consisting elements were computed in parallel,
is solved in BLOCK B to obtain the voltage corrections ∆V . The solution is performed by a
sparse linear solver and its computational burden amounts for 5-8% of the total simulation
time (more information will be given in Section 4.8.2). This is an unavoidable sequential
bottleneck introduced by Schur-complement-based methods and can possibly impose a limit
to the algorithm’s scalability (see Section 2.5.2).

Next, the voltage corrections are introduced into the injector sub-systems (4.8), thus de-
coupling them. The latter are then solved in parallel, as shown in BLOCK C of Fig. 4.3, to
obtain the injector variable corrections ∆xi. At the end of this block, both the voltage vector
(V) and DAE states (x) have been updated.

58 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

BLOCK A

BLOCK B
BLOCK C

BLOCK D

Remaining

Figure 4.3: Parallel solution algorithm

Figure 4.4: BLOCK B and C with skipping converged sub-systems

Finally, the convergence of the sub-systems is checked in parallel in BLOCK D using
the updated voltage and state vectors. If all sub-systems have converged, the algorithm
proceeds to the next time instant, otherwise, a new parallel solution is initiated.

4.6 Localization techniques

The concept of localization results from the observation that in large power systems a dis-
turbance often affects a small number of components while the remaining are only slightly
influenced [Bra93]. Similar observations have been made in other fields [HSV81]. In this
work, this fact is exploited in three ways. These techniques are made possible due to the
decomposition of the system that allows to detect and treat individually the sub-domains.

4.6. LOCALIZATION TECHNIQUES 59

BLOCK A

Figure 4.5: BLOCK A with asynchronous update of sub-domain matrices

4.6.1 Skipping converged sub-systems

First, this technique is used within one discretized time instant solution to stop computations
of injectors (resp. reduced system) who have already been solved with the desired tolerance.
That is, after one decomposed solution of (4.5) and (4.6), the convergence of each injector
and the reduced system is checked individually. If the convergence criterion is satisfied,
then the specific sub-systems are flagged as converged. For the remaining iterations of the
current time instant, the sub-system is not solved, although its mismatch, computed with (4.4)
or (4.11), is monitored to guarantee that it remains converged. This technique decreases the
computational effort within one discretized time instant without affecting the accuracy of the
solution (see Sections 4.7 and 4.9). Thus, BLOCKS B and C in Fig. 4.3 are replaced by the
block in Fig. 4.4.

From a mathematical point of view, the state corrections of converged injectors are set to
zero (∆xi = 0), thus the RHS fi of (4.6) and the sensitivity to voltage deviations Bi are set
to zero. At the same time, for a converged reduced system the voltage corrections are set to
zero (∆V = 0), thus in Eq. 4.11 the RHS g̃ is set to zero.

4.6.2 Asynchronous update of sub-domain matrices

Taking advantage of the fact that each sub-domain is solved by a separate quasi-Newton
method (in this work, the VDHN presented in Section 1.2.5.2), the sub-system update criteria
are decoupled and their local matrices (such as Ai, Bi, D), as well as their Schur-comple-
ment terms, are updated asynchronously. In this way, sub-domains which converge fast keep
the same local system matrices for many iterations and even time-steps, while sub-domains
which converge slower update their matrices more frequently. Thus, BLOCK A in Fig. 4.3 is
replaced by the block in Fig. 4.5.

60 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

Γiẋi =Φi(xi,V)
Ii =Cixi

V

∆I i =−Gi∆V

V

Dynamic Model Linear Model

Active Injector Latent Injector

Figure 4.6: Active VS latent injector models

Traditional update criteria of VDHN methods are reused to trigger the sub-system ma-
trices computation. That is, if the sub-system has not converged after five iterations of the
algorithm presented in Section 4.5, the local matrices are updated. Moreover, an update
of the matrices is triggered if a change of the sub-system equations, caused by a discrete
event, is detected. Of course, after a severe event in the system (such a short-circuit, the
tripping of a generator, etc.) or when the time step used for the discretization of Eqs. 4.2 is
changed, an update of all the matrices and the Schur-complement terms is forced to avoid
convergence problems.

4.6.3 Latency

Localization is also exploited over several time steps by detecting, during the simulation, the
injectors marginally participating to the system dynamics (latent) and replacing their dynamic
models (4.2) with much simpler and faster to compute sensitivity-based models. At the same
time, the full dynamic model is used if an injector exhibits significant dynamic activity (active).
The two models are shown in Fig. 4.6.

The sensitivity-based model is derived from the linearized Eqs. 4.6 when ignoring the
internal dynamics, that is fi(x

k−1
i ,V k−1) ' 0, and solving for the state variation ∆xi:

∆xi ' −A−1
i Bi∆V

The corresponding current variation ∆I i is given by:

∆I i = −EiA
−1
i Bi∆V = −Gi∆V (4.13)

where Ei (similarly to Ci) is a trivial matrix with zeros and ones whose purpose is to extract
the injector current variations from ∆xi and Gi is the sensitivity matrix relating the current
with the voltage variation.

Selecting an arbitrary instant t∗, the linear relation (4.13) can be rewritten as:

I i(tn) = Ii(t∗)−Gi(t∗) [V (tn)− V (t∗)] (4.14)

for any discrete time tn ≥ t∗.

4.6. LOCALIZATION TECHNIQUES 61

The linear model (4.14) is a valid estimate of the full dynamic model (4.2) only when the
injector shows low dynamic activity (thus, the RHS of Eq. 4.6 can be neglected) and only for
small deviations around the linearization point (thus, Gi can be considered constant). How-
ever, as it will be shown later on, this technique can introduce some error into the simulated
response.

It is important to note that, the Schur-complement term contributed by the linear model
(4.14) to matrix D̃ of Eq. 4.11 is the same as the one of model (4.6). This means that
switching from one model to the other doesn’t require to recompute and factorize the Schur-
complement matrix D̃.

4.6.3.1 Monitoring variable and metrics

The essence of the algorithm lies in its ability to detect the switching of injectors from active to
latent, and conversely. During the dynamic simulation the state vector values x(tj) and V (tj)

are known for t1, ..., tj, ..., tn, with tn the last computed discrete time. The injector switching
criteria have to be robust and based only on currently available information. Furthermore, as
the algorithm aims for higher simulation performance, the criteria computations need to be
fast and use as little memory as possible.

Since the injectors interact with the network and between them through the current and
voltage changes (see Eq. 4.3), power flow variations can be used as an indication of dynamic
activity. Therefore, the variation of the per-phase apparent power (Si =

√
Pi

2 + Qi
2) flowing in

each injector was naturally selected as the monitoring variable representative of the injector
dynamic activity. Alternatively, more detailed information could be extracted from the active
(Pi) and reactive (Qi) powers but at the cost of doubling the computing effort and memory
usage.

Simply stated, an injector is declared latent when its apparent power Si has “not changed
significantly for some time” or, in other words, exhibits small variability. The Si values are
available as time-series samples. Thus, traditional methods for analyzing time series data
can be employed to characterize the variability of Si over a pre-specified, moving, time win-
dow (TL). This procedure is shown in Fig. 4.7.

The choice of using a moving time window and not the entire history aims at disregarding
the oldest “behavior” of an injector and involving only recently observed dynamics. However,
if the time window is very small, smooth variations (i.e. with low rates of change) may not be
detected.

The main characteristics extracted from the time-series are the sample average value
(Si,av), variance (Si,var), and standard deviation (Si,std). In particular, the standard deviation is
the measure of volatility that shows how much variation or dispersion exists from the average.
A small standard deviation indicates that the data points tend to be very close to the average,
whereas high standard deviation indicates that the data points are spread out over a large
range of values. Consequently, standard deviation of Si smaller than a selected tolerance

62 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

Current simulation time (tn)

Observation time window (TL)

M discrete time samples

Sample AverageSample Standard Deviation

Measure of volatility, variation from the average

Injector

Figure 4.7: Monitoring injector apparent power to declare latent

εL is an indication that the i-th injector exhibits low dynamic activity and can be considered
latent.

After an injector is classified as latent at time t∗, the apparent power is no longer dictated
by the dynamic model (4.2) but by the linear model (4.14), affected only by the deviation of
the voltage. Therefore, the standard deviation is not reliable to switch the injector back to
active mode since slow voltage changes can gradually “drift” the injector’s operating point
away from the reference without the standard deviation ever increasing. To avoid this, the
absolute deviation of the apparent power from its reference value Si(t∗) is used. If the abso-
lute variation is bigger than the same tolerance εL, meaning that the model has moved away
from the linearization point, the injector returns to active mode.

4.6.3.2 Exponential moving average

Large power systems may involve thousands of injectors, making it inefficient to keep all
injector apparent powers in memory over the moving time window. For example, a small time
window TL = 5 s has 250 points when the system simulated with a time step of 20 ms. Thus,
in the Hydro-Québec system of Section 1.3, which has 4601 injectors, this translates to more
than one million points that need to be kept in memory and updated at every time step.

Furthermore, calculating the exact average and standard deviation values of the time-win-
dow samples at each time-step leads to complex bookkeeping and time consuming compu-
tations. To avoid this, an approximation is considered, which originates from real-time digital
signal processing where computing and memory resources are scarce. When a new sample
Si(tn) is available, a moving average value and standard deviation can be computed with a

4.6. LOCALIZATION TECHNIQUES 63

tn-2tn-3

Si(tn)

Si(tn-1)

Si(tn-2)

Si(tn-3)

tn-1 tn

Figure 4.8: Linear variation of Si values

repeated application of the Exponential Moving Average (EMA) [Mul01]. This is a weighted
moving average with the weights decreasing exponentially. Each sample is valued some
percent smaller than the next more recent sample. With this constraint the moving average
can be computed very efficiently.

There are several definitions of EMA [Eck13]. Due to the fact that the time step hn =

tn − tn−1 between the samples could vary, the weight of each sample changes according to
the fraction of the time step over the observation time window TL. Thus, the EMA operator is
defined recursively as [Mul01]:

Si,av(tn) = EMA (Si, TL, hn) = λ1Si,av(tn−1) + (1− λ1)Si(tn) (4.15)

+ (λ1 − λ2) (Si(tn)− Si(tn−1))

where Si includes the last two values of Si, α =
hn

T
and λ1 = e−α. The variable λ2 depends

on the series type and the interpolation method selected:

λ2 =

1− λ1

α
for the linear interpolation

1 for taking the preceding series value
√

λ1 for taking the nearest series value

λ1 for taking the subsequent series value

λ1 for equally spaced discrete time series (no interpolation)

(4.16)

In this work, it is assumed that the value of Si varies linearly between any two successive

time-steps as shown in Fig. 4.8, thus λ2 =
1− λ1

α
.

Even though the exponential moving variance can be obtained as [HWYC09]:

Si,var(tn) = EMA(S2
i , TL, hn)− (EMA(Si, TL, hn))

2 = EMA(S2
i , T, hn)− S2

i,av(tn) (4.17)

the same reasoning as for formula (4.15) can be also used [Mul01]:

Si,var(tn) = λ1Si,var(tn−1) + (1− λ1)∆S2
i (tn) + (λ1 − λ2)

(
∆S2

i (tn)− ∆S2
i (tn−1)

)
(4.18)

64 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

0 40 80 120 160 200 240
time (s)

44

45

46

47

48

49

M
VA

Si

Si,av

Figure 4.9: Si and Si,av of a synchronous machine after a fault

where ∆Si(tn) = Si(tn)− Si,av(tn). Both formulas were tested in RAMSES and no significant
differences were found. Equation 4.18 is used for the investigation following.

Finally, the standard deviation can be obtained by:

Si,std(tn) =
√

Si,var(tn) (4.19)

This value can be used to assess the volatility and thus the dynamic activity of an injector. For
example, Fig. 4.9 shows the long-term evolution of the apparent power and corresponding
exponential moving average of a synchronous machine, after the occurrence of a three-
phase short-circuit near the generator, which was cleared after five cycles (100 ms).

The observation time window of TL = 5 s used for Fig. 4.9 was found to be the smallest TL

providing smooth averaging. Using smaller time windows with the same time-steps increases
the weight of the new value compared to the older ones. During short-term dynamics, it is
imperative to use the full injector model that can capture the fast transients. However, a
small TL can lead injectors to switch latent during this period and introduce mistakes in the
simulated response. In the cases studied later on, a time-window of TL = 10 s is used as
it provides a compromise between speed of response of Si,std and consideration for recent
dynamic activity.

4.6.3.3 Switching algorithm

The decision for switching between active and latent mode is taken after solving the system
equations for each time step tn. Then, the selected models are used for the computation of
the states at tn+1. During the DDM iterations, the state of each injector (latent or active) does

4.6. LOCALIZATION TECHNIQUES 65

not change, as switching could perturb the Newton iterations and cause divergence. The
complete procedure is given by the following algorithm:

Algorithm 4.1 Injector switching criterion at discrete time tn

1: if injector i is active then
2: Calculate Si(tn) using nonlinear model (4.2)
3: Calculate Si,av(tn) and Si,std(tn) using Eqs. 4.15, 4.18 and 4.19
4: if Si,std(tn) ≤ εL then
5: t∗ = tn
6: injector i ←latent
7: end if
8: else
9: Calculate Si(tn) using linear model (4.14)

10: if | Si(tn)− Si,av(t∗) |≥ εL then
11: injector i ←active
12: end if
13: end if

An example of the switching procedure is shown in Fig. 4.10. In the upper plot, the Si,std

is shown along with the latency threshold εL, here set to 0.1 MVA. At time t = 107 s, the
threshold is crossed and the injector switched to latent. In the lower plot, it can be seen
that the apparent power of the latent injector remains within the deadband centered on the
linearization point, until t = 125 s when it is switched back to active mode.

If latency is used during the simulation in combination with the previous technique, the
BLOCK C of Fig. 4.3 is replaced by the block of Fig. 4.11.

The parameter εL controls the approximation introduced into the simulation (εL = 0 re-
sults in fully accurate simulation). If the power system includes injectors of both very small
and very large powers then εL must remain small to keep the error bounded. On the other
hand, if the system involves similarly sized injectors, then εL can be increased without intro-
ducing large errors.

Figure 4.12 shows the apparent power of a synchronous machine with latency εL =

0 MVA and εL = 0.1 MVA applied to the entire system. The portions with gray background
denote the areas when the pictured generator has turned latent. The corresponding relative
error on the simulated evolution is shown in Fig. 4.13. It can be seen that the inaccuracy
introduced by latency is negligible, and it is so for most dynamic simulations.

The injector shown in Fig. 4.12 switches to latent for first time at t ≈ 130 s. However, other
injectors in the system get latent earlier. This is the reason for the error shown in Fig. 4.13
prior to t ≈ 130 s.

From a mathematical point of view, the effect of latency to the convergence of the simu-
lations will be examined in the next section; while, a more practical analysis of the error in-
troduced, the simulation performance and the proper selection of parameter εL will be given
in Section 4.9.

66 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

Figure 4.10: Switching procedure between latent and active modes

Figure 4.11: BLOCK C with skipping converged injectors and latency techniques

4.7 Effects of localization techniques on convergence

By using the Schur-complement approach detailed in Section 4.4, an exact solution of Eqs. 4.5-
4.6 is performed at each iteration of the parallel algorithm of Fig. 4.3 (BLOCKS A-D). If these
equations are grouped a unique linear system, the following equivalent integrated system is

4.7. EFFECTS OF LOCALIZATION TECHNIQUES ON CONVERGENCE 67

0 40 80 120 160 200 240
time (s)

36

38

40

42

44

46

48

50

S
(M

VA
)

εL: 0.0 MVA

εL: 0.1 MVA

90 100 110
45.5

46.5

47.5

48.5

Figure 4.12: Apparent power of synchronous machine with and without latency

0 40 80 120 160 200 240
time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S
er

r
(%

)

Relative error (ǫL =0.1 MVA, T=5 s)

Figure 4.13: Relative error of apparent power output

formulated for the k-th iteration:

A1 0 0 · · · B1

0 A2 0 · · · B2

0 0 A3 · · · B3
...

...
...

. . .
...

−C1 −C2 −C3 · · · D

k

︸ ︷︷ ︸
J k

4x1

4x2

4x3
...
4V

k

︸ ︷︷ ︸
4yk

= −

f1

f2

f3
...
g

k

︸ ︷︷ ︸
F k

(4.20)

This system is the same as the linear system (1.15), solved by a classical simultaneous
solution presented in Section 1.2.5.2, using the same discretization scheme as the DDM

68 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

and performing some row and column permutations. That is, the DDM-based solution pre-
sented in this chapter is mathematically equivalent to solving together the set of non-linear,
discretized Eqs. 4.3 and 4.4 with a quasi-Newton method.

This equivalence between the DDM-based and the simultaneous approach, allows using
the extensive theory behind quasi-Newton schemes to assess the proposed algorithm’s con-
vergence. Under some well-studied requirements [Bro70, BDM73, DM74, GT82, Mor99], the
iterative Newton schemes converge to the solution at a super-linear rate.

However, the localization techniques modify the equivalent system (4.20). First, the ma-
trices of each injector and of the network are not updated synchronously but according to the
local convergence of each sub-system (see Section 4.6.2). Thus, modifying the system into:

Ak1
1 0 0 · · · Bk1

1

0 Ak2
2 0 · · · Bk2

2

0 0 Ak3
3 · · · Bk3

3
...

...
...

. . .
...

−CkN+1
1

−CkN+1
2

−CkN+1
3 · · · DkN+1

k

4x1

4x2

4x3
...
4V

k

= −

f1

f2

f3
...
g

k

(4.21)

where ki ≤ k (i = 1, ..., N + 1) is the iteration at which the i-th injector or the network matrices
were last updated. It should be noted that the matrices are often unchanged over several
time instants, not only iterations. Thus, this modified system can be treated a quasi-Newton
method with a special Jacobian update scheme. The error introduced to the Jacobian by
the asynchronous update of the sub-domain matrices is minimal, and while it can affect the
convergence rate of the Jacobian, it does not affect the final solution.

Next, by also considering the skip-converged and latency techniques (see Sections 4.6.1
and 4.6.3) the system (4.21) is modified to:

Ak1
1 0 0 · · · Bk1

1

0 Ak2
2 0 · · · Bk2

2

0 0 Ak3
3 · · · Bk3

3
...

...
...

. . .
...

−CkN+1
1

−CkN+1
2

−CkN+1
3 · · · DkN+1

k

4x1

4x2

4x3
...
4V

k

= −

f1

f2

f3
...
g

k

+

r1

r2

r3
...

rN+1

k

(4.22)
That is, skipping the solution of a converged injector or the reduced system is equivalent to
setting to zero the off-diagonal blocks and the mismatches of (4.22). In addition, when an
injector is considered latent, it is equivalent to setting ri = fi. Thus, both techniques consist
in setting:

ri =

fi if latent or converged

0 otherwise
Bki

i =

0 if converged

Bki
i otherwise

4.8. PARALLELIZATION SPECIFICS 69

rN+1 =

g if converged

0 otherwise
C

kN+1
i =

0 if converged

C
kN+1
i otherwise

These changes lead to an inexact Newton scheme and its convergence properties and
assumptions can be examined as shown in Appendix A.

Comparing the skip-converged and latency techniques, it can be seen that the former
applies more strict criteria and does not affect the final solution of the algorithm. More specif-
ically, in RAMSES if the i-th injector has converged and is not solved anymore, its mismatch
is still computed at each iteration and rk

i is updated. If at any iteration rk
i increases compared

to rk−1
i , then the injector is solved again. Thus, relating to Eq. A.11, if skip-converged is used

alone, the following condition can be easily checked to ensure the convergence:∥∥rk
∥∥

‖F (yk)‖ < η < 1 ∀k ≥ 0 (4.23)

On the contrary, the latency technique does not rely on numerical criteria but rather on
observations of the component dynamic response. The methods detailed in Section 4.6.3.2
to switch between active and latent injectors are approximate. Although a small standard
deviation of the apparent power output of an injector is an indication of low dynamic activity,
it does not guarantee that the equivalent model used will provide exactly the same results
as the full dynamic model. Especially when a large latency tolerance is used, the error
introduced in the system (4.22) could affect the accuracy of the solution.

4.8 Parallelization specifics

As discussed in Chapter 2, for the parallel implementation of the algorithm the OpenMP API
has been used. The shaded blocks shown in Fig. 4.3 have been parallelized using the fork-
join pattern. That is, when the master computational thread reaches the shaded block, it forks
into M computational threads (where M is selected by the user or set equal to the number
of cores). When all computations within the block are finished, the threads join again. This
procedure for one iteration of the DDM-based algorithm is shown in Fig. 4.14, in a fictitious
example with N = 8 injectors, and M = 1 or M = 4 threads.

The squares in the figure denote the independent tasks within each algorithmic block.
That is, in BLOCK A the red square denotes an update of the sub-domain local matrices and
the Schur-complement terms; in BLOCK B, the solution of the Schur-complement system;
in BLOCK C, the solution of the injector sub-systems; and, in BLOCK D, the convergence
check. Let us assume, for reasons of simplicity, that i) the computational burden of each red
square is the same and equal to one; ii) the work is shared in the best possible way among
the threads (minimum imbalance); and, iii) there is no OverHead Cost (OHC) related to the
fork and join procedures. Then, according to Amdahl’s law (Section 2.5.2) scalability can be

70 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

BLOCK A BLOCK B BLOCK C BLOCK D

Figure 4.14: Fork-join pattern for parallelization of algorithm in Fig. 4.3

computed as:

Scalability4 =
TS + TP

TS +
TP
4

=
TB + TA + TC + TD

TB + TA
4 + TC

4 + TD
4

=
1 + 9 + 8 + 9
1 + 9

4 +
8
4 +

9
4

= 3.6 (4.24)

where TS + TP = T1 = 27 is the sequential execution time (M = 1) and TS +
TP
4 = 7.5 is the

expected execution time on four threads. The maximum scalability can be computed with:

Scalability∞ = lim
M→∞

(
TS + TP

TS +
TP
M

)
=

27
1

= 27 (4.25)

On the other hand, according to the work-span model (Section 2.5.4):

Scalability4 =
T1

T4
=

27
9

= 3 ≤ work
span

=
T1

T∞
=

27
4

= 6.75 = Scalability∞ (4.26)

As explained in Section 2.5.4, the work-span model gives a more realistic upper bound of
scalability as it takes into consideration that the parallel tasks are not infinitely divisible. That
is, the red squares cannot be further divided. Nevertheless, the work-span model is harder
to compute in realistic situations as the actual amount of work within each task needs to be
known, as well as the way of splitting the work over threads.

4.8.1 Localization techniques

It is important to investigate how the localization techniques of Section 4.6 would affect the
performance of the parallel algorithm. These techniques invalidate the assumption that all
tasks have the same computation cost. This is sketched in Fig. 4.15. First, due to the infre-
quent and asynchronous updates of the sub-domain local matrices, some tasks in BLOCK A
take less time to be performed and are noted with circles. Next, in BLOCK C, some injectors
are latent, thus the linear equivalent model (4.14) is used and the corresponding tasks are

4.8. PARALLELIZATION SPECIFICS 71

BLOCK A BLOCK B BLOCK C BLOCK D

Figure 4.15: Variant of Fig. 4.14 with localization techniques

noted with triangles. Finally, some injectors have already converged in this iteration, thus
they are noted in rhombus and are skipped. The fictional computation costs assumed are
given in Fig. 4.15.

Therefore, using the work-span model to recompute scalability gives:

Scalability4 =
T1

T4
=

20.2
7.2

= 2.8 ≤ work
span

=
T1

T∞
=

20.2
4

= 5.05 = Scalability∞ (4.27)

where it can be seen that both the execution on one thread (T1) and on four threads (T4) are
accelerated. Again, for this calculation the assumptions of ideal load balancing and no OHC
were used.

Nevertheless, while the localization techniques decrease the overall simulation time (T1 =

20.2 < 27 and T4 = 7.2 < 9), the scalability of the algorithm is also decreased. The reason
behind this is that the work (T1) decreases immediately even with one reduced task (skip-
converged, latent, etc.), while the span is harder to decrease. Taking the upper limit, T∞

will only decrease if all tasks are reduced. That is, if only a single task per parallel BLOCK
remains unreduced, T∞ will be the same as if no task was reduced (in our case T∞ = 4).

This observation introduces a trade-off between scalability and using localization tech-
niques to accelerate the simulation. However, as long as TM is decreasing, the speedup
which is calculated against T∗1 (the run-time of the program with one worker using the fastest
-or a very fast -sequential algorithm), is increasing. This complex behavior will be further
examined in Section 4.9 using time measurements from the test systems.

4.8.2 Load balancing

In this subsection, the assumption of ideal load balancing considered above will be exam-
ined. First, it is obvious that all the tasks cannot have the same computational burden. For in-

72 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

BLOCK A BLOCK B BLOCK C BLOCK D

BLOCK A BLOCK B BLOCK C BLOCK D

Figure 4.16: Variant of Fig. 4.14 with three different types of injectors

stance, BLOCK A involves the computation, discretization and factorization of sub-systems,
which is in general more time consuming than a system solution performed in BLOCK C.
Moreover, even within the same BLOCK, depending on the type and size of the injector
model, the effort can vary. For example, the solution of voltage-sensitive exponential load
model, that includes two algebraic equations, is much lighter than the solution of a type-3
wind turbine model involving more than 50 DAEs. Finally, the localization techniques also
modify the cost of each task leading to even higher variation.

Let us consider another modified version of Fig. 4.14, with three different types of equip-
ment, each with different computing cost, as shown in Fig. 4.16. With these costs, scalability
can be computed for the two balancing schemes shown. In the first one, the tasks were
naively split among threads according to their order in sequential execution (M = 1). Thus,
with the work-span model:

Scalability4 =
T1

T4
=

47
17
' 2.8 ≤ work

span
=

T1

T∞
=

47
9
∼= 5.2 = Scalability∞ (4.28)

In the second balancing, the tasks are split among threads so as to decrease T4, that is the
balancing mechanism is aware of the individual cost of each task. This leads to an improved

4.8. PARALLELIZATION SPECIFICS 73

scalability:

Scalability4 =
T1

T4
=

47
15
' 3.1 ≤ work

span
=

T1

T∞
=

47
9
∼= 5.2 = Scalability∞ (4.29)

Of course the maximum scalability is exactly the same as it is dictated by the most compu-
tationally costing task of each BLOCK, and this does not change due to different balancing
strategies.

In the test systems considered in Section 4.9, the size of injector models varies from 2 to
60 variables. This means that the computational tasks will also vary significantly. If the tasks
are not split over the threads properly, scalability will suffer. However, building a task-size-
aware balancing strategy is difficult and would need a lot of bookkeeping and rearranging of
tasks from one parallel segment to the next. In addition, the localization techniques modify
the cost of each task from iteration to iteration, depending on the dynamic behavior of the
system (which is unknown beforehand), thus making the task size less predictable.

In such situations, the dynamic balancing strategy of OpenMP can offer the desirable
load balancing results (see Section 2.6.3). With this strategy, a set of consecutive tasks
called chunk is given to each thread. When a thread has completed its assigned tasks, a
new chunk of tasks is given to it. For example, if the dynamic strategy with a single task per
chunk is used in Fig. 4.16, the best result of “Balancing 2” is obtained. Although the small
chunk selected guarantees a close to optimal balancing, it also means that the threads need
to frequently return and ask for more work, which translates to increased OHC. Moreover,
spatial locality (see Section 2.6.2) suffers as the tasks assigned to each thread are “far” from
each other, thus their data in memory are probably “far” as well.

These problems can be addressed by defining the chunk to be larger than one. This way,
the threads do not return as often to ask for more work, and by treating several consecutive
tasks it is more likely that their data are also consecutive in memory (this is the case in RAM-
SES). Larger chunks decrease the OHC but can cause imbalance among threads as some
chunks might contain more computationally expensive tasks than others. Usually, a compro-
mise is made with a chunk small enough to achieve good load balancing but adequately large
to decrease the OHC and exploit spatial locality. In the simulations of Section 4.9, a default
size of chunk equal to max

(⌈ N
4M

⌉
, 1
)

was found to be satisfactory through a trial-and-error
procedure.

While the dynamic scheduling strategy of OpenMP can address load balancing and spa-
tial locality, temporal locality (see Section 2.6.2) cannot be easily achieved. The reason is
that the tasks treated by each thread, and thus the data accessed, are decided at run-time
and can change from one parallel segment of the code to the next. When executing on UMA
architecture computers, where access time to a memory location is independent of which
processor makes the request, the lack of temporal locality is not crucial.

On the other hand, when executing on NUMA architecture computers, the lack of tempo-
ral locality can introduce a high OHC. In this case, the static scheduling strategy of OpenMP

74 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

Table 4.1: Balancing strategies used in RAMSES

Computer architecture Scheduling Bind thread to CPU Chunk
NUMA (1 of Section 2.7) Static yes max

(⌈ N
4M

⌉
, 1
)

UMA (2 and 3 of Section 2.7) Dynamic yes max
(⌈ N

4M

⌉
, 1
)

can be more effective. With this strategy, each thread always handles the same sub-domains
and accesses the same data at each parallel segment, thus increasing temporal locality. Of
course, chunks are also employed to increase spatial locality and to randomize the distribu-
tion of sub-domains to threads, thus decreasing the possibility that all injectors of the same
type are assigned to the same thread.

Summarizing, in the results of Section 4.9, two different balancing strategies have been
used depending on the computing machine used, as shown in Table 4.1.

In both cases, the first touch memory allocation strategy has been used and each compu-
tational thread is bound to a physical core, as explained in Section 2.6.2. These mechanisms
minimize the transfer of data among different cores, which can lead to increased OHC.

4.8.3 Overhead cost

The OHC considered in this work is associated to making the code run in parallel, managing
the threads and the communication between them. In the previous sub-sections, it was
shown that the OHC can be increased by dynamic load balancing (which increases the effort
needed to manage the threads) and the lack of locality (which initiates data transfers and
increases the communication).

However, even if these causes are ignored, there is still OHC relating to the creation and
management of the thread pool1 at the fork points and the synchronization at the join points
in the code. Some implementations of the OpenMP library (like the one provided by Intel and
used in this work) allow keeping the thread pool alive in the background, during the entire
simulation, to decrease the cost. Nevertheless, the OHC is non-negligible and is dependent
on the number of threads, the operating system, and the computer used.

As long as the parallel work of each thread is still divisible (that is, it consists of more
than one task) and we assume “good” load balancing, Eq. 2.5 of Amdahl’s law can be used
to calculate the scalability without OHC. This can be then compared with the real scalability
calculated with Eq. 2.1 and the difference between them is the OHC, given by:

OHC (M) =
TS + TP

TS +
TP
M

− T1

TM
(4.30)

where the values of TS and TP can be acquired through a profiling of the algorithm in sequen-
tial execution (M = 1).

1Group of threads used to compute the tasks.

4.8. PARALLELIZATION SPECIFICS 75

BLOCK A BLOCK B BLOCK C BLOCK D

Figure 4.17: Several consecutive iterations of the algorithm in Fig. 4.3

Finally, when executing on NUMA computers, such as Machine 1 (see Table 4.1), the
OHC varies depending on the location of the computational threads within the computer
sockets. For example, Machine 1 consists of four identical sockets, each hosting two NUMA
nodes with six cores (as sketched in Fig. 2.4). Thus, when using six cores assigned to one
NUMA node, the OHC is small as the communication is faster. When using 6− 12 threads
assigned to a single socket, the OHC is slightly larger. Finally, when threads are assigned
to different sockets, the OHC increases depending on the communication speed between
sockets.

4.8.4 Profiling

In this work, two types of profiling are used: numerical and time. Both profilings consider the
entire simulation and not individual iterations of the algorithm. For example, the operations
sketched in Fig. 4.16 relate to only one out of the thousands of iterations needed to perform
a whole dynamic simulation, while Fig. 4.17 shows several such iterations over three succes-
sive time steps (tn, tn+1, tn+2). Considering each individual iteration in the profiling would be
impossible. Thus, a sum of the same operations over the different iterations is used.

For the numerical profiling, the total number of numerical operations relating to the exe-
cution of the algorithm are considered. For instance, the total numbers of sub-domain matrix
factorizations performed at BLOCK A, of solutions of the reduced system (4.12), etc. The
number of operations does not change when parallelizing them; it changes however when
localization techniques are used. A selection of numerical profilings is shown in Appendix D.

For the time profiling, the time spent in each block of Fig. 4.3 in all iterations is presented
as a percentage of the total time. The profiling is performed using a sequential execution of
the algorithm (M = 1). In addition, there are some other operations shown in the “Remaining
BLOCK ” of Fig. 4.3. These operations relate to updating latency criteria, bookkeeping, treat-

76 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

Table 4.2: Options considered in the simulations

Configuration Skip converged injectors Update sub-domain
matrices asynchronously

Exploit latency

I 7 7 7

II 3 3 7

III 3 3 3

ing the discrete events, computing the actions of Discrete ConTroLlers (DCTL), etc. (more
details about these operations are given in Appendix C). Some of them are performed in
parallel and others not, thus time profiling these “Remaining” operations is also needed to
correctly calculate the sequential and parallel times Ts and TP. A selection of time profilings
is presented alongside the results in the next section.

4.9 Experimental results

In this section some experimental results are given, using the test systems summarized in
Section 1.3. First, the contingency considered in each test system will be described. Next,
several executions of the same simulation will be performed using a combination of simulation
parameters. These are shown in Table 4.2.

In addition, the non-decomposed approach with the use of an integrated VDHN scheme,
described in Section 1.2.5.2, will be used as a benchmark. That is, it will be used to as-
sess the accuracy of the dynamic response and to provide T∗1 in Eq. 2.2, for the speedup
calculation. For simplicity, this benchmark algorithm will be referred to as integrated hereon.

Both the proposed algorithm and the integrated are implemented in RAMSES. The same
models, convergence tolerance, algebraization method (second-order BDF), and way of han-
dling the discrete events are used. For the solution of the sparse systems (the integrated
Jacobian or the reduced system of Eq. 4.12), the sparse linear solver HSL MA41 [HSL14]
is used. For the solution of the much smaller, dense injector linear systems (4.6), Intel MKL
LAPACK library is used. The matrix update criteria are as follows: for the integrated and
Config. I, all the matrices are updated every five iterations until convergence; for Configs. II
and III, the matrices of each sub-domain are updated every five iterations unless it has al-
ready converged. Finally, the convergence checks defined in Eqs. 1.16a and 1.17 are used,
with εg = ε f rel = ε f abs = 10−4. Keeping the aforementioned parameters and solvers of the
simulation constant for both algorithms permits a (more) rigorous evaluation of the proposed
algorithm performance.

The main investigations will be performed on Machine 1 (see Section 2.7), but a perfor-
mance comparison with Machines 2 and 3 will be shown in Section 4.9.4.4.

4.9. EXPERIMENTAL RESULTS 77

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 40 80 120 160

V
 (

pu
)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

 0.8

 0.82

 0.84

 130 135 140 145 150

 0.8

 0.82

 0.84

 130 135 140 145 150

Figure 4.18: Nordic (operating point A): Voltage evolution at bus 1041

4.9.1 Nordic system

This is the smallest test system considered in this work with 750 DAEs. When the aforemen-
tioned decomposition is applied, the network sub-domain is formed including 77 buses with
154 variables and 43 injector sub-domains with the remaining variables. While the proposed
algorithm is designed to tackle large-scale systems, it will be shown that even small systems
such as this one can benefit by the algorithm, to a smaller degree. Moreover, this small
system has been frequently used for the validation of the proposed simulation methods and
localization techniques as its small size makes it easier to detect problems and verify the
dynamic response of the system.

For this system, two different operating points were considered: an N-1 insecure point A
and a secure point B. More details on these operating points can be found in [VP13]. The
disturbance of concern is a three-phase solid fault on line 4032− 4044, near bus 4032, lasting
five cycles (i.e. 100 ms) and cleared by opening the line, which remains opened. Next, the
system is simulated over an interval of 240 s with a time-step size of one cycle. It evolves in
the long term under the effect of 22 automatic Load Tap Changers (LTCs) trying to restore the
distribution voltages as well as the synchronous generator OvereXcitation Limiters (OXLs).

4.9.1.1 Operating point A

The evolution of the transmission system voltage at bus 1041 is shown in Fig. 4.18, the rotor
speed of generator g15 in Fig. 4.19, and the apparent power output of the same generator
in Fig. 4.20. The curves have been computed using the Integrated method as well as the

78 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

 1

 1.002

 1.004

 1.006

 1.008

 1.01

 1.012

 0 40 80 120 160

R
ot

or
 s

pe
ed

 (
pu

)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

Figure 4.19: Nordic (operating point A): Evolution of rotor speed of generator g15

 1100

 1200

 1300

 1400

 1500

 1600

 0 40 80 120 160

A
pp

ar
en

t p
ow

er
 (

M
V

A
)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

Figure 4.20: Nordic (operating point A): Apparent power output of generator g15

configurations listed in Table 4.2. In response to the initial disturbance, the system undergoes
electromechanical oscillations that die out in 20 seconds. Then, the system settles at a short-
term equilibrium, until the LTCs start acting at t = 35 s. Subsequently, the voltages evolve
under the effect of LTCs and OXLs. The system is long-term voltage unstable and eventually
collapses less than three minutes after the initiating line outage. The dynamic behavior is
thoroughly examined in [VP13].

Table 4.3 shows the simulation time, the speedup (computed using Eq. 2.2), and the
maximum inaccuracy over all the bus voltages, compared to the integrated method. From
the sequential execution timings, it can be seen that Config. I performs better than the in-
tegrated, even though the two perform the same number of iterations, matrix updates, etc.
Understanding this performance difference is challenging. First, the decomposed algorithm

4.9. EXPERIMENTAL RESULTS 79

Table 4.3: Nordic (operating point A): Execution times and inaccuracy in simulation

Sequential execution
time (M = 1)

(seconds/speedup)

Fastest parallel
execution time

(seconds/speedup)

Maximum
error on

voltage (pu)
Integrated (T∗1) 5.8 / - - / - -

Config. I 3.7 / 1.6 2.3 / 2.5 0
Config. II 3.7 / 1.6 2.3 / 2.5 0
Config. III

(εL = 0.1 MVA, TL = 10 s)
3.9 / 1.5 2.6 / 2.2 0

Config. III
(εL = 0.2 MVA, TL = 10 s)

3.9 / 1.5 2.6 / 2.2 0

Config. III
(εL = 0.5 MVA, TL = 10 s)

3.9 / 1.5 2.6 / 2.2 0

 1.5

 2

 2.5

 3

 3.5

 1 2 4 6 8 10 12 14 16 18 20 22 24

S
pe

ed
up

of cores

Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

Figure 4.21: Nordic (operating point A): Speedup computed with Eq. 2.2

has extra OHC related to bookkeeping, which penalizes its performance. Second, the inte-
grated method solves a linear system of size 750 (shown in Eq. 4.20) at every iteration using
the sparse solver; while, for the same iteration the decomposed algorithm solves a linear
system of size 154 (two times the number of buses) and 43 smaller, dense linear systems
using the Lapack LU procedures. While the number of linear matrix updates, factorizations,
and system solutions are the same, the two approaches have different execution times, with
the latter being in most of the systems tested faster. Thus, the performance difference be-
tween the two simulations (integrated and Config. I) is a combination of these two factors
and varies from system to system and even from contingency to contingency. However, the
speedup of Config. I in all the test systems and contingencies checked ranges between 0.9
and 1.3 of the integrated.

Configurations II and III do not offer higher performance. This is due to the nature of
the test case: a collapsing scenario, where the entire system is driven to instability does not

80 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 4 6 8 10 12 14 16 18 20 22 24

S
ca

la
bi

lit
y

of cores

Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

Figure 4.22: Nordic (operating point A): Effective scalability computed with Eq. 2.1

allow to exploit localization. In addition, Config. III has the extra burden of computing the
EMA and standard deviation of each injector for the switching Algorithm 4.1. The sequential
performance of all systems will be further discussed in Section 4.9.4.1.

The scalability and speedup for a varying number of computational threads (up to 24)
are shown in Figs. 4.21 and 4.22, respectively. It can be seen that the efficiency of the
parallelization (see Section 2.5.1) is maximum at M = 4 while the best results are acquired
at M = 10 (these are the ones shown at the parallel execution column of Table 4.3). When
using more than ten computational threads, the OHC of creating and managing the extra
threads overtakes the incremental gain, thus the speedup declines. In general, for such
reduced in size systems, small UMA computers of up to four cores provide the best output in
terms of efficiency of parallelism.

Finally, it can be seen from Figs. 4.18-4.20 that all six curves are indiscernible. As ex-
plained in Section 4.7, it is expected that Configs. I and II give exactly the same output as the
Integrated. On the other hand, Config. III is expected to introduce some inaccuracy to the
simulation, especially for larger latency tolerance (εL). However, as this is a collapsing sce-
nario with large dynamic activity, none of the injectors gets latent and the system response
is exactly the same as with the other configurations.

4.9.1.2 Operating point B

Similarly, the evolution of the transmission system voltage at bus 1041 is shown in Fig. 4.23
and the rotor speed of generator g15A in Fig. 4.24. Contrary to Operating point A, the
response at Operating point B is long-term stable. After the electromechanical oscillations
have died out, the system evolves in the long term under the effect of LTC devices acting to
restore distribution voltages. Thus, the decision about the stability of the system can only be
made after the simulation of the entire time horizon.

4.9. EXPERIMENTAL RESULTS 81

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 0 40 80 120 160 200 240

V
 (

pu
)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

 0.98

 0.985

 0.99

 80 90 100 110 120
 0.98

 0.985

 0.99

 80 90 100 110 120

Figure 4.23: Nordic (operating point B): Voltage evolution at bus 1041

 0.9995

 1

 1.0005

 1.001

 1.0015

 1.002

 1.0025

 1.003

 1.0035

 0 40 80 120 160 200 240

R
ot

or
 s

pe
ed

 (
pu

)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

Figure 4.24: Nordic (operating point B): Evolution of rotor speed of generator g15A

Table 4.4 shows the simulation time, the speedup and the maximum inaccuracy over all
the bus voltages compared to the integrated method. From the sequential execution timings,
it can be seen that Config. I performs better than the integrated. For this -non collapsing-
scenario, the localization techniques also offer significant speedup leading up to 1.7 faster
execution compared to the integrated.

Figure 4.25 shows the absolute error on the voltage of transmission bus 1041, i.e. the
absolute difference between the value computed with the Integrated and with Config. III.
By simulating several scenarios with different latency tolerance values, it was found that an

82 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

Table 4.4: Nordic (operating point B): Execution times and inaccuracy in simulation

Sequential execution
time (M = 1)

(seconds/speedup)

Fastest parallel
execution time

(seconds/speedup)

Maximum
error on

voltage (pu)
Integrated (T∗1) 4.0 / - - / - -

Config. I 3.6 /1.1 2.5 / 1.6 0
Config. II 3.3 / 1.2 2.4 / 1.7 0
Config. III

(εL = 0.1 MVA, TL = 10 s)
2.6 / 1.5 2.3 / 1.7 0.0006

Config. III
(εL = 0.2 MVA, TL = 10 s)

2.4 / 1.7 2.3 / 1.7 0.0015

Config. III
(εL = 0.5 MVA, TL = 10 s)

2.3 / 1.7 2.2 / 1.8 0.0020

 0

 0.0004

 0.0008

 0.0012

 0.0016

 0 40 80 120 160 200 240

V
er

r (
pu

)

time (s)

Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

Figure 4.25: Nordic (operating point B): Absolute voltage error on bus 1041

εL ≤ 0.2 MVA gives a good speedup while keeping the inaccuracy introduced at minimum.
Figure 4.26 shows the apparent power output of generator g15A computed with Config. III

for three different values of εL. In Config. III, the power plant is identified as latent (i.e. its
full model is replaced by the sensitivity model) in the time intervals shown in gray and active
in the rest. The vertical black lines show the transitions between modes. Larger values of εL

lead to earlier switching of injectors to latent. However, when latency is used, the increased
speedup comes with some inaccuracy introduced to the simulation results.

From the parallel execution timings of Table 4.4, it can be seen that Configs. I and II gain
when executed in parallel. On the other hand, the simulations with Config. III do not gain
further between the sequential and parallel execution. This is due to the increased number
of injectors becoming latent thus decreasing the amount of parallel work (see Section 4.8.1).

4.9. EXPERIMENTAL RESULTS 83

0 40 80 120 160 200 240
time (s)

530

540

550

560

570

580
S

(M
VA

)
Config. III (ǫL=0.1 MVA, TL=10 s)

0 40 80 120 160 200 240
time (s)

530

540

550

560

570

580

S
(M

VA
)

Config. III (ǫL=0.2 MVA, TL=10 s)

0 40 80 120 160 200 240
time (s)

530

540

550

560

570

580

S
(M

VA
)

Config. III (ǫL=0.5 MVA, TL=10 s)

Figure 4.26: Nordic (operating point B): Apparent power output of generator g15A

84 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

 95 100 105 110 115

Figure 4.27: HQ: Voltage evolution at bus 702

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 40 80 120 160 200 240

V
 (

pu
)

time (s)

 Config. ΙΙ
 Config. ΙΙΙ (εL=0.1 MVA)
 Config. ΙΙΙ (εL=0.2 MVA)
 Config. ΙΙΙ (εL=0.5 MVA)

 0.974

 0.976

 0.978

 0.98

 0.982

 95 100 105 110 115
 0.974

 0.976

 0.978

 0.98

 0.982

 95 100 105 110 115

Figure 4.28: HQ: Voltage evolution at bus 702

4.9.2 Hydro-Québec system

This is the medium test system considered in this work with 35559 DAEs. The system is
decomposed into the network sub-domain, including 2565 buses, and the N = 4601 injectors.
The disturbance consists of a short circuit near bus 702 lasting six cycles (at 60 Hz), that is

4.9. EXPERIMENTAL RESULTS 85

 0.996

 0.998

 1

 1.002

 1.004

 1.006

 1.008

 1.01

 0 40 80 120 160 200 240

R
ot

or
 s

pe
ed

 (
pu

)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

Figure 4.29: HQ: Evolution of rotor speed of generator 294

 0.999

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 1.006

 1.007

 1.008

 1.009

 0 40 80 120 160 200 240

ce
nt

er
 o

f i
ne

rt
ia

 s
pe

ed
 (

pu
)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

Figure 4.30: HQ: Center of inertia speed of the system

cleared by opening a 735-kV line. Then, the system is simulated over an interval of 240 s
with a time-step of one cycle. It evolves in the long term under the effect of 1111 LTCs, 25
Automatic Shunt Reactor Tripping (ASRT) devices, as well as synchronous generator OXLs.

Figures 4.27 and 4.28 show the voltage evolution at the bus nearest to the fault using the
Integrated method and the DDM-based with the three parameter configurations of Table 4.2.
Similarly, Figs. 4.29 and 4.30 show the rotor speed of a generator and the system center of
inertia speed, respectively. From all three figures, it can be seen that the Integrated method
and the DDM-based with Configs. I and II give exactly the same response, as discussed in
Section 4.7.

However, when latency is used (Config. III), it can be seen that the system response
is modified and some inaccuracy is observed. More specifically, with εL = 0.1 MVA, the

86 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

0 40 80 120 160 200 240

time (s)

56

58

60

62

64

S
(M

VA
)

Integrated
Config. III (εL=0.1 MVA, TL=10 s)

75 80 85 90 95 100 105 110
61.6

61.8

62.0

62.2

62.4

62.6

Figure 4.31: HQ: Apparent power output of synchronous generator 8517

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 40 80 120 160 200 240

V
er

r (
pu

)

time (s)

Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

Figure 4.32: HQ: Absolute voltage error on bus 702

difference is almost indiscernible. With εL = 0.2 MVA, the operation of the ASRT device
(which depends on monitoring the voltage magnitude) is delayed from t = 94 s to t = 131 s.
It must be noted that, although the difference seems large at first glance, it is considered
acceptable by the Hydro-Québec (HQ) engineers. In fact, the voltage monitored by the ASRT
device evolves marginally close to the triggering threshold, and a small difference in system
trajectory is enough to postpone its action. However, the final transmission voltage reaches a
value very close to the one obtained without approximation (bringing the final voltage profile

4.9. EXPERIMENTAL RESULTS 87

Table 4.5: HQ: Execution times and inaccuracy in simulation

Sequential execution
time (M = 1)

(seconds/speedup)

Fastest parallel
execution time

(seconds/speedup)

Maximum
error on

voltage (pu)
Integrated (T∗1) 413.8 / - - / - -

Config. I 322.4 / 1.3 57.0 / 7.3 0.0
Config. II 260.7 / 1.6 47.0 / 8.8 0.0
Config. III

(εL = 0.1 MVA, TL = 10 s)
125.9 / 3.3 40.8 / 10.1 0.010

Config. III
(εL = 0.2 MVA, TL = 10 s)

107.3 / 3.9 37.4 / 11.1 0.012

Config. III
(εL = 0.5 MVA, TL = 10 s)

92.3 / 4.5 35.5 / 11.7 0.020

 2

 4

 6

 8

 10

 12

 14

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
pe

ed
up

of cores

Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)

Figure 4.33: HQ: Speedup computed with Eq. 2.2

above some threshold values is the overall objective of the ASRT devices). The delayed
response is observed on the frequency due to load sensitivity to voltage.

An even higher latency tolerance of εL = 0.5 MVA, leads to the ASRT device not being
triggered. Although this case is less satisfactory, a discrepancy of one on the number of
tripped reactors is still considered acceptable by the HQ engineers. The reason for the
ASRT not being triggered is the one exposed above.

Figure 4.31 shows the apparent power of the generator of a hydro power plant close to the
fault location. It can be seen that the plant goes latent at t = 159 s, gets back to active mode
once for a short period of time at t = 185 s and gets latent again at t = 203 s. Figure 4.32
shows the absolute voltage error of transmission bus 702. It can be seen that the error peak

88 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

Table 4.6: HQ: Time profiling of sequential execution (M = 1)

% of execution time
Config. I Config. II Config. III (εL = 0.1 MVA, TL = 10 s)

BLOCK A 13.61 8.66 6.53
BLOCK B 4.14 2.2 4.66
BLOCK C 67.47 68.25 52.06
BLOCK D 3.11 4.88 8.34

Remaining parallel 4.31 3.95 6.21
Remaining sequential 7.36 11.06 22.2

TP (100-TS) 88.5 86.74 73.14
TS (BLOCK B+Rem. Seq.) 11.5 13.26 26.86

 1

 2

 3

 4

 5

 6

 7

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
ca

la
bi

lit
y

of cores

Config. ΙΙ : Theoretic scalability
Config. ΙΙ : Effective scalability
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s): Theoretic scalability
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s): Effective scalability

Figure 4.34: HQ: Effective VS Theoretic scalability

is at t = 94 s due to the shifted ASRT action. By simulating several scenarios with different
latency tolerance values, it was found that an εL ≤ 0.2 MVA gives a good speedup while
keeping the inaccuracy introduced at an acceptable level.

Table 4.5 shows the simulation time, speedup and maximum inaccuracy over all the bus
voltages compared to the integrated method. From the sequential execution timings, it can be
seen that all configurations offer some speedup. Configuration III offers the highest speedup
in sequential execution at the cost of introducing the already mentioned error.

From the parallel execution timings of Table 4.5, it can be seen that all configurations offer
significant speedup when parallelized: up to 8.8 times without any inaccuracy and up to 11.1
times when latency is used and εL ≤ 0.2 MVA. A more detailed view is offered in Fig. 4.33,
where the speedup is shown as a function of the number of cores used.

4.9. EXPERIMENTAL RESULTS 89

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

E
ffi

ci
en

cy

of cores

Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)

Figure 4.35: HQ: Efficiency computed with Eq. 2.3

Table 4.6 shows the time profiling of the sequential execution (M = 1), with the percent-
age of time spent in each block of the algorithm in Fig. 4.3. As expected, using Config. III
leads to lower percentage of parallel work as the DAE models of injectors are replaced by
simple sensitivity models in BLOCKS A and C. Figure 4.34 shows the scalability (computed
with Eq. 2.1) against the theoretic scalability (computed with Eq. 2.5 and TP and TS of Ta-
ble 4.6). The difference between them is due to the OHC of the implementation. In addition,
Fig. 4.35 shows the parallelization efficiency using Eq. 2.3. It can be seen that Configs. I and
II are parallelized more efficiently than Config. III. This is due to the higher percentage of
parallel work in the former and the more difficult load balancing in the latter (as the amount of
work performed by each task is unpredictable and leads to imbalances between the chunks
used). The values given in Table 4.6 should be compared carefully as they relate to different
execution times (as seen in Table 4.5).

Figure 4.36 shows the number of active injectors during the simulation with Config. III.
It can be seen that in the short-term all injectors remain active, thus the main speedup in
this period comes from the parallelization of the algorithm. In the long-term, and as the
electromechanical oscillations fade, the injectors start switching to latent and decrease the
computational burden of treating the injectors as well as the percentage of work in the parallel
sections. Hence, in this part of the simulation, the main source of acceleration is latency.
Consequently, the two sources of acceleration complement each other as they perform better
at different parts of the simulation. This is the reason why, even though Config. III has less
scalability, it is still the fastest in parallel execution (see Fig. 4.33).

Finally, Fig. 4.37 shows the real-time performance of the algorithm with Config. II. When
the wall time curve is above the real-time line, then the simulation is lagging; otherwise, the
simulation is faster than real-time and can be used for more demanding applications, like
look-ahead simulations, training simulators or hardware/software in the loop. On this power

90 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

0 40 80 120 160 200 240
time (s)

0

1000

2000

3000

4000

5000

A
ct

iv
e

In
je

ct
or

s

Config. III (ǫL = 0.1 MVA, TL = 10 s)

Figure 4.36: HQ: Number of active injectors

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 40 80 120 160 200 240

W
al

l t
im

e
(s

)

Simulation time (s)

Real-time
Integrated (1-core)
Config. ΙΙ (1-core)
Config. ΙΙ (6-cores)
Config. ΙΙ (12-cores)
Config. ΙΙ (24-cores)

 1

 2

 3

 4

 5

 1 2 3 4 5

 1

 2

 3

 4

 5

 1 2 3 4 5

Figure 4.37: HQ: Real-time performance of algorithm

system, the algorithm performs faster than real-time when executed on 24 or more cores.
The real-time performance of all systems will be further discussed in Section 4.9.4.3.

4.9.3 Pegase system

This is the largest test system considered in this work with 146239 DAEs. Decomposing the
system leads to a network sub-domain, with 15226 buses, and N = 10694 injectors. The
disturbance illustrated here consists of a bus bar fault, lasting five cycles, that is cleared

4.9. EXPERIMENTAL RESULTS 91

 1.008

 1.01

 1.012

 1.014

 1.016

 1.018

 1.02

 1.022

 1.024

 0 40 80 120 160 200 240

V
 (

pu
)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

 1.019

 1.0195

 1.02

 1.0205

 1.021

 30 40 50 60
 1.019

 1.0195

 1.02

 1.0205

 1.021

 30 40 50 60

Figure 4.38: Pegase: Voltage evolution at bus F0322411

 0.9998

 0.9999

 1

 1.0001

 1.0002

 0 40 80 120 160 200 240

R
ot

or
 s

pe
ed

 (
pu

)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

Figure 4.39: Pegase: Evolution of rotor speed of generator FRHY1689

by opening two double-circuit lines. The system is simulated over a period of 240 s with a
time-step size of one cycle (20 ms).

Figures 4.38 and 4.39 show the voltage evolution of transmission bus F0322411 and the
rotor speed of synchronous generator FRHY1689, respectively. This test case is stable in
the long-term. After the electromechanical oscillations have died out, the system evolves
under the effect of LTCs as well as OXLs. Thus, the decision about the stability of the system
can only be made after the simulation of the whole time horizon. It should be noted that
the discrepancy shown in Fig. 4.39 is insignificant (see scale) and is comparable to the

92 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

Table 4.7: Pegase: Execution times and inaccuracy in simulation

Sequential execution
time (M = 1)

(seconds/speedup)

Fastest parallel
execution time

(seconds/speedup)

Maximum
error on

voltage (pu)
Integrated (T∗1) 1139.9 / - - / - -

Config. I 1228.6 / 0.9 221.6 / 5.1 0.0
Config. II 854.6 / 1.3 159.9 / 7.1 0.0
Config. III

(εL = 0.1 MVA, TL = 10 s)
348.1 / 3.3 137.1 / 8.3 0.001

Config. III
(εL = 0.2 MVA, TL = 10 s)

298.7 / 3.8 134.7 / 8.5 0.010

Config. III
(εL = 0.5 MVA, TL = 10 s)

280.3 / 4.1 129.2 / 8.8 0.015

 0

 0.0004

 0.0008

 0.0012

 0 40 80 120 160 200 240

V
er

r (
pu

)

time (s)

Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.5 MVA, TL=10 s)

Figure 4.40: Pegase: Absolute voltage error on bus F0322411

convergence threshold (in this simulation 10−4).
Table 4.7 shows the simulation time, speedup, and maximum inaccuracy over all bus

voltages compared to the integrated method. From the sequential execution timings, it can
be seen that in this system, Config. I is 10% slower than the integrated while the localization
techniques offers some significant speedup with Configs. II and III.

Figure 4.40 shows the absolute error on the voltage at transmission bus F0322411. By
simulating several scenarios with different latency tolerance values, it was found that an εL ≤
0.2 MVA gives a good speedup while keeping the inaccuracy introduced at an acceptable
level for most power system applications.

From the parallel execution timings of Table 4.7, it can be seen that all configurations offer

4.9. EXPERIMENTAL RESULTS 93

 1

 3

 5

 7

 9

 11

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
pe

ed
up

of cores

Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)

Figure 4.41: Pegase: Speedup computed with Eq. 2.2

Table 4.8: Pegase: Time profiling of sequential execution (M = 1)

% of execution time
Config. I Config. II Config. III (εL = 0.1 MVA, TL = 10 s)

BLOCK A 12.12 8.63 6.8
BLOCK B 6.33 6.81 13.24
BLOCK C 66.76 66.85 46.47
BLOCK D 4.4 6.09 11.34

Remaining parallel 3.68 4.46 6.46
Remaining sequential 6.71 7.16 15.69

TP (100-TS) 86.96 86.03 71.07
TS (BLOCK B+Rem. Seq.) 13.04 13.97 28.93

significant speedup when parallelized: up to 7.1 times without any inaccuracy and up to 8.8
times when latency is used. A more detailed view is offered in Fig. 4.41, where the speedup
is shown as a function of the number of cores used for the simulation.

Table 4.8 shows the time profiling of the sequential execution, with the percentage of time
spent in each block of the algorithm in Fig. 4.3. As noted previously, using Config. III leads
to lower percentage of parallel work in BLOCKS A and C. Figure 4.42 shows the effective
scalability (computed with Eq. 2.1) against the theoretic scalability (computed with Eq. 2.5
and the timings TP and TS of Table 4.8). In addition, Fig. 4.43 shows the parallelization
efficiency using Eq. 2.3. It can be seen that Configs. I and II are parallelized more efficiently
than Config. III due to the higher percentage of parallel work.

94 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
ca

la
bi

lit
y

of cores

Config. ΙΙ : Theoretic scalability
Config. ΙΙ : Effective scalability
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s): Theoretic scalability
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s): Effective scalability

Figure 4.42: Pegase: Effective VS Theoretic scalability

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

E
ffi

ci
en

cy

of cores

Config. Ι
Config. ΙΙ
Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Config. ΙΙΙ (εL=0.2 MVA, TL=10 s)

Figure 4.43: Pegase: Efficiency computed with Eq. 2.3

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0 40 80 120 160 200 240

W
al

l t
im

e
(s

)

Simulation time (s)

Real-time
Integrated (1-core)
Config. ΙΙ (1-core)
Config. ΙΙ (6-cores)
Config. ΙΙ (12-cores)
Config. ΙΙ (24-cores)

 5

 10

 15

 20

 25

 0 5 10 15 20 25

 5

 10

 15

 20

 25

 0 5 10 15 20 25

Figure 4.44: Pegase: Real-time performance of algorithm

4.9. EXPERIMENTAL RESULTS 95

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140 160 180 200 220 240

O
ve

rr
un

 (
s)

Simulation time (s)

Config. ΙΙ (12-cores)
Config. ΙΙ (24-cores)
Config. ΙΙ (30-cores)

Figure 4.45: Pegase: Overrun of simulations

Finally, Fig. 4.44 shows the real-time performance of the algorithm with Config. II. Con-
trary to the previous test system, real-time performance is only achieved after approximately
17 s of simulation time. This means that some applications demanding “hard” real-time (at ev-
ery time instant) are not possible for this 15000-bus system. However, applications with “soft”
real-time demands (allow some limited overrun) are still possible. Figure 4.45 shows the
overrun of the simulations, that is how much they are lagging from real-time. With M = 24,
the overrun is limited to 4 s. The real-time performance of all systems will be further dis-
cussed in Section 4.9.4.3.

4.9.4 Discussion

This subsection presents a discussion concerning the sequential, parallel, and real-time per-
formance of the proposed algorithm. Moreover, the test cases above are simulated with the
UMA Machine 3 to show the performance on a standard office laptop.

4.9.4.1 Sequential performance

In sequential execution (M = 1), the main source of speedup for the proposed algorithm are
the localization techniques presented in Section 4.6. Tables 4.3, 4.4, 4.5, and 4.7 show this
performance in the sequential execution column.

The proposed DDM has some extra OHC compared to the integrated related to the book-
keeping and management of the sub-domains, the Schur-complement computation, etc. In
addition, the memory management and the way of solving of the linear systems differ be-
tween the two algorithms. In the integrated, the entire Jacobian (see Eq. 4.20) is kept in
memory and treated by the sparse solver. On the contrary, in the DDM, the injector matrices
are kept separately in Ai, Bi, and Ci and systems (4.6) are factorized and solved with the

96 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

LAPACK dense linear solvers (DGETRF, DGETRS). These small matrices are more likely to
fit in the L1 cache memory at once, without the need of loading them in segments.

Configuration I does not use any localization techniques and follows the same Jacobian
matrix updates as the integrated; it is in fact equivalent to solving (4.20). It can be seen that
in the Nordic and HQ systems, the sequential execution of Config. I offers some speedup
compared to the integrated. That means that the OHC of the proposed DDM is positively
counteracted by the separate management and solution of the injectors. On the other hand,
in the Pegase test case, Config. I is actually 10% slower than the integrated, meaning that
the OHC of the DDM is higher.

On the contrary, Configs. II and III are always faster than the integrated as they exploit
the localization techniques described in Section 4.6. These techniques strongly rely on the
decomposed nature of the algorithm and would be very hard -if not impossible- to implement
in the integrated method. First, all states are solved in the integrated system (4.20) no matter
if some injectors have converged or not. Second, partially updating the factorized Jacobian of
(4.20) is very complex and a specialized sparse linear solver would be necessary to achieve
this. Finally, replacing the injector DAE models with linear equivalents would require to rebuild
and factorize the integrated Jacobian matrix every time.

It has been shown that the proposed DDM, with the use of localization techniques, can
provide significant acceleration even in sequential execution. This is important when exe-
cuting on legacy single-core machines, or to increase the throughput of DSA schemes by
simulating several contingencies concurrently using one core for each.

4.9.4.2 Parallel performance

One of the main advantages of DDMs is their parallelization potential. Tables 4.3, 4.4, 4.5,
and 4.7 show the maximum speedup achieved by each configuration, while Figs. 4.21, 4.33,
and 4.41 show the speedup as a function of the number of cores.

First, it can be seen that all the configurations gain from the parallelization. The high-
est speedup is achieved by the ones using the localization techniques. Thus, Configs. II
and III already start from a large speedup in sequential execution (as seen in the previous
subsection) and reach even higher speedups in parallel.

However, the scalability of the configurations is in reverse order. That is, the configura-
tions that do not use localization techniques are parallelized more efficiently (see Figs. 4.35
and 4.43) and reach higher scalability values (see Figs. 4.34 and 4.42). The reason for this is
explained in Section 4.8.1, and can be seen in practice in Tables 4.6 and 4.8. In these tables,
the same test case was executed with Configs. I, II, and III and show that the percentage of
time spent in the parallel segments (TP) gets lower when acceleration techniques are used.

Furthermore, Figs. 4.34 and 4.42 show that the Pegase system, even though much larger
in size, achieves the same scalability as HQ. That is because scalability is not proportional to

4.9. EXPERIMENTAL RESULTS 97

the size of the system but depends on TP. Tables 4.6 and 4.8 show that this value is almost
the same for both systems.

In practice, the proposed DDM exploits parallelization for the treatment of the injector sub-
domains. Thus, the higher the percentage of operations involving the injectors, the better the
scalability. This has two contributing factors:

1. The number of network states (which is equal to the size of the sequentially treated
reduced system of Eq. 4.12) compared to the number of injector states (which are
treated in parallel). The biggest the ratio injector states

network states , the better the expected scalability.
HQ has a ratio of 6.9 and Pegase of 4.8. Thus, one would expect HQ to have better
scalability than Pegase.

2. However, as discussed thoroughly in Section 4.8.1, the computational cost of treating
each injector is not equal, it depends on the type of injector, its nonlinearities, size,
etc. Moreover, when localization techniques are used, the cost of each task becomes
unpredictable and strongly depends on the contingency that is simulated.

Hence, while the ratio injector states
network states provides an insight to the expected performance of the

algorithm, scalability will eventually depend on the value of TP which is not known beforehand
and depends on the types of injectors, the use of localization techniques, the contingency
simulated, the load-balancing efficiency, etc.

Finally, Figs. 4.34 and 4.42 show the theoretic and the effective scalability computed with
Eqs. 2.5 and 2.1, respectively. It can be seen that the effective scalability is always smaller
than the theoretic one and the difference between them (given by Eq. 4.30) increases for
higher number of cores. This phenomenon is explained in Sections 2.5.2 and 4.8.3. Al-
though it is possible in parallel implementations to achieve higher effective scalability that the
theoretic due to differences in memory management (for example, the program has access
to bigger total cache memory when using more cores) [Gov10], this was not observed in any
of the simulations performed with RAMSES.

4.9.4.3 Real-time performance

Fast dynamic simulations of large-scale systems can be used for operator training and testing
global control schemes implemented in Supervisory Control and Data Acquisition (SCADA)
systems. In brief, measurements (such as the open/closed status from a switch, power flow,
voltage, current, etc.) are transferred from Remote Terminal Units (RTUs) to the SCADA cen-
ter through a communication system. These information are then visualized to the operators
which take decisions for corrective actions to be communicated back to the RTUs. In rare
applications, some remedial actions are computed automatically by closed-loop procedures.
In modern SCADA systems the refresh rate (TR) of these measurements is 2− 5 seconds
[GSAR09].

98 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

Table 4.9: HQ: Execution times of UMA machines

Sequential execution
time (M = 1)

(seconds/speedup)

Fastest parallel
execution time

(seconds/speedup)
Machine (see Section 2.7) 2 3 2 3

Integrated (T∗1) 244 / - 200 / - - / - - / -
Config. I 170 / 1.4 150 / 1.3 143 / 1.7 79 / 2.5
Config. II 139 / 1.8 121 / 1.7 107 / 2.3 67 / 3.0
Config. III

(εL = 0.1 MVA, TL = 10 s)
125 / 2.0 58 / 3.5 119 / 2.1 39 / 5.1

Config. III
(εL = 0.2 MVA, TL = 10 s)

108 / 2.3 44 / 4.6 94 / 2.6 31 / 6.5

Config. III
(εL = 0.5 MVA, TL = 10 s)

88 / 2.8 38 / 5.3 86 / 2.8 27 / 7.4

The simulator in these situations takes on the role of the real power system along with the
RTU measurements and the communication system. It needs to provide the simulated “mea-
surements” to the SCADA system with the same refresh rate as the real system. Thus, the
concept of “real-time” for these applications translates to time deadlines and some overruns
are acceptable.

For the Nordic test system, the execution is always faster than real-time no matter the
number of threads or the use of localization techniques. This is the case also for the HQ
system when 24 cores are used in Config. II (see Fig. 4.37). Thus, for these systems, all
possible refresh times (TR) can be met. The Pegase test system however, exhibits some
overruns. These are shown in Fig. 4.45, where the maximum overrun is 4 s with 24 cores in
Config. II. This means that the simulator can still be used for time deadlines with TR ≥ 4 s.

Overall, a model of 8000 buses and 11000 injectors (totaling 75000 DAEs) was found to
be the limit of the proposed implementation, on Machine 1, without overruns. This limit was
found automatically by taking the Nordic system and gradually replacing its distribution loads
with a series of DN systems shown Fig. B.1. Then, three different contingencies in the TN
were simulated on the modified system while checking for overruns. The procedure stopped
when overruns were detected even when using all the available cores of Machine 1.

4.9.4.4 Performance with UMA standard office laptops

For the previous simulations, Machine 1 was used to allow “scanning” through a varying num-
ber of cores and show the performance of the algorithm as a function of this. However, this
algorithm can provide significant speedup even on smaller UMA standard office machines.
Thus, the previous test cases were executed on Machines 2 and 3 to show the performance
of the algorithm. The former has a dual-core while the latter a quad-core processor. The
dynamic response and the inaccuracy introduced by latency (Config. III) are not presented
as they are identical to the ones shown previously.

4.9. EXPERIMENTAL RESULTS 99

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140 160 180 200 220 240

O
ve

rr
un

 (
s)

Simulation time (s)

Machine 2 (2 cores)
Machine 3 (4 cores)

Figure 4.46: HQ: Overrun of the algorithm on UMA machines with Config. II

Table 4.10: Pegase: Execution times of UMA machines

Sequential execution
time (M = 1)

(seconds/speedup)

Fastest parallel
execution time

(seconds/speedup)
Machine (see Section 2.7) 2 3 2 3

Integrated (T∗1) 585 / - 517 / - - / - - / -
Config. I 624 / 0.9 552 / 0.9 457 / 1.3 277 / 1.9
Config. II 435 / 1.3 383 / 1.4 340 / 1.7 212 / 2.4
Config. III

(εL = 0.1 MVA, TL = 10 s)
173 / 3.4 148 / 3.5 150 / 3.9 105 / 4.9

Config. III
(εL = 0.2 MVA, TL = 10 s)

145 / 4.0 125 / 4.1 137 / 4.3 94 / 5.5

Config. III
(εL = 0.5 MVA, TL = 10 s)

141 / 4.2 119 / 4.4 129 / 4.5 89 / 5.8

Table 4.9 shows the execution times and speedup of simulating the test-case of Sec-
tion 4.9.2, using the two laptop computers. Machine 2 (resp. 3) with Config. II, achieves a
speedup of 1.8 (resp. 1.7) in sequential and 2.3 (resp. 3) in parallel execution, with a scala-
bility of 1.3 (resp. 1.8).

Figure 4.46 shows the overrun of the simulation on both machines in parallel execution.
It can be seen that on Machine 2 there is an overrun of 3.5 s, while in 3 the overrun is
negligible, thus, real-time simulations are possible for this real 2500-bus (modeled with 35000
DAEs) system. Configuration III with εL = 0.2 MVA offers a speedup of 2.6 (resp. 6.5) and
simulates this long-term test case in 94 s (resp. 31 s).

Similarly, Table 4.10 shows the performance information of the UMA machines for the
scenario of Section 4.9.3. With the full accurate Config. II, Machine 2 (resp. 3) achieves
a speedup of 1.3 (resp. 1.4) in sequential and 1.7 (resp. 2.4) in parallel execution, with a

100 CHAPTER 4. PARALLEL SCHUR-COMPLEMENT-BASED DDM

scalability of 1.3 (resp. 1.7). When the latency technique with εL = 0.2 MVA is used, a
speedup of 4.3 (resp. 5.5) is achieved and the test case is simulated in 137 s (resp. 94 s).

Overall, in this section it can be seen that the proposed algorithm provides significant
speedup even on normal laptop computers. It allows to perform fast and accurate power
system dynamic studies without the need of expensive equipment.

4.10 Summary

In this chapter, a parallel DDM-based algorithm has been proposed for the dynamic simula-
tion of power systems. The algorithm partitions the network from the injectors attached to it,
providing a star-shaped decomposition. The sub-domains formulated are treated indepen-
dently and in parallel while their interface variables are updated using a Schur-complement
approach. Furthermore, three localization techniques were presented to accelerate the sim-
ulation both in sequential and parallel execution.

First, the mathematical formulation of the proposed algorithm and localization techniques
has been detailed. Next, a comparison of the proposed algorithm to the simultaneous ap-
proach was presented for the investigation of its convergence properties and how these are
affected by the use of localization techniques. Then, the parallelization procedure was pre-
sented using the semantics of Chapter 2 and analyzing how the localization techniques and
the OHC can affect the performance metrics. Subsequently, three test cases were presented
involving a small, a medium and a large-scale test system, respectively. The accuracy and
performance of the algorithm on all three cases was assessed compared to a simultaneous
approach, implemented in the same software. Finally, a comparative overall assessment of
the algorithms sequential, parallel, and real-time behavior was presented.

CHAPTER 5
Parallel two-level

Schur-complement-based
decomposition method

5.1 Introduction

The most noticeable developments foreseen in power systems involve Distribution Networks
(DNs). Future DNs are expected to host a big percentage of renewable energy sources. The
resulting challenge in power system dynamic simulations is to accurately model DNs and
their participation to the bulk system dynamic behavior. This becomes compulsory as DNs
are called upon to actively support the Transmission Network (TN) with an increasing number
of Distributed Generators (DGs) and flexible loads participating in ancillary services through
Smart Grid technologies.

In present-day dynamic security assessment of large-scale power systems, it is common
to represent the bulk generation and higher voltage (transmission) levels accurately, while
the lower voltage (distribution) levels are equivalenced. On the other hand, when studying
the response of DNs, the TN is often represented by a Thévenin equivalent. The prime
motivation behind this practice has been the lack of computational resources. Indeed, fully
representing the entire power system network was historically impossible given the available
computing equipment (memory capacity, processing speed, etc.) [KRF92]. Even with current
computational resources, handling the entire, detailed model with hundreds of thousands of
Differential and Algebraic Equations (DAEs) is extremely challenging [KRF92, GWA11].

As modern DNs are evolving with power electronic interfaces, DGs, active loads, and
control schemes, more detailed and complex dynamic equivalent models would be needed to
encompass the dynamics of DNs and their impact on the global system dynamics. A dynamic
equivalent of a power system is a low-order dynamic model of the system, which is usually
obtained by the reduction of a given full model [MMR10]. Some equivalencing approaches

101

102 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

reported in the literature are modal methods, synchrony (or coherency) methods [MMR10],
and measurement or simulation-based methods [ANL+12]. Nevertheless, equivalent models
inadvertently suffer from a number of drawbacks:

• The identity of the replaced system is lost. Faults that happen inside the DNs them-
selves cannot be simulated and individual voltages at internal buses, currents, con-
trollers, etc. cannot be observed anymore. This makes it difficult to simulate controls
or protections that rely on these values (e.g. fault ride through tripping of DGs).

• Most equivalent models target a specific type of dynamics (short or long-term, elec-
tromechanical oscillations, voltage recovery, etc.) and fail when used for other types.
Hence, different types of simulations require different models. This adds an additional
burden of maintaining and updating power system models when system take place.

• In most cases, the use or not of these equivalent models is decided off-line, when it is
still unknown whether and how the contingency simulated will affect the DNs.

In this chapter, a parallel two-level Schur-complement-based DDM is proposed for the dy-
namic simulation of combined Transmission and Distribution (T&D) systems. First, the algo-
rithm decomposes the combined system on the boundary between the TN and the DNs. This
leads to the creation of several sub-domains, each defined by its own network and injectors.
Then, a second decomposition scheme is applied within each sub-domain, splitting the net-
work from the injectors, in a similar way to the single-level algorithm of Chapter 4. Finally,
the solution of the sub-domain DAE systems is performed hierarchically with the interface
variables being updated using a Schur-complement approach at each decomposition level.
It will be shown that this algorithm can also be applied to sub-transmission networks, as long
as some part of them is radial.

The proposed algorithm augments the performance of the simulation in two ways. First,
the independent calculations of the sub-systems (on both decomposition levels) are par-
allelized providing computational acceleration. Second, the three localization techniques
described in Section 4.6 are employed on both decomposition levels to avoid unnecessary
computations and provide numerical acceleration.

The algorithm is first presented with a certain level of abstraction, focusing on its mathe-
matical formulation. Next, the details concerning its implementation using the shared mem-
ory parallel computing model are presented. Finally, some results are shown using the ex-
panded Nordic and Hydro-Québec systems presented in Section 1.3.

5.2. POWER SYSTEM DECOMPOSITION 103

M

M

M

M

M

Injectors

M

Central sub-domain

line

or

transformer

Figure 5.1: Two-level decomposed power system

5.2 Power system decomposition

5.2.1 First level of decomposition: Network

In the first level of decomposition, the power system is partitioned into sub-systems based
on the topological representation of the network. Some techniques that have been proposed
to partition power system networks have been summarized in Section 3.3.1. However, these
techniques have the disadvantage that they can affect the convergence of the DDM. On
the contrary, it was shown in Chapter 4 that a star-shaped non-overlapping partition scheme,
combined with a Schur-complement treatment of the interface variables, can be reformulated
as an equivalent simultaneous solution using an integrated Newton scheme. This has the
benefit of retaining the good convergence properties of Newton methods and providing the
theoretical basis to analyze the algorithm convergence.

For this reason, the network partitioning in the proposed algorithm aims for a star-shaped,
topological-based, non-overlapping decomposition. That way, the power system network is
decomposed into a Central (C) and several Satellite sub-domains (Si) each connected to the
Central at one bus as shown in Fig. 5.1.

Good candidate systems with this topology are combined transmission and distribution
systems represented in detail, as DNs are usually attached to the TN at one bus through one
or more parallel transformers. The star-shaped decomposition of these systems is trivial and
can be based on voltage levels or over the distribution transformers.

However, some transmission systems can be also decomposed in this manner as long
as some parts of the network are radial. In this case, the graph representation of the system
can be used to extract the necessary topological information. An easy way to achieve this,
is by recursively merging all buses (graph nodes) with only one network connection (graph
edge), as presented in the following algorithm:

104 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

Algorithm 5.1 Computing star-shaped partition based on the network graph

1: nodeList=List of nodes with only one edge
2: while nodeList not empty do
3: Merge all nodes in nodeList to their neighbor
4: nodeList=List of nodes with only one edge
5: end while

Although this algorithm is not computationally efficient (it has a complexity of O(R!),
where R is the number of buses), it must only be executed once for each network. There
is no need to revise the decomposition when topological changes are applied to the net-
work, unless the changes destroy the star-shaped decomposition (for example a new line or
transformer is put in service between two Satellite sub-domains).

Either from the electrical topology (voltage levels and distribution transformers) or with
the use of Algorithm 5.1, the power system sketched in Fig. 5.1 is partitioned into the Central
and L Satellite sub-domains, along with their injectors. This decomposition is reflected on
the system of DAEs (1.1) as follows.

First, the DAE system describing the Central sub-domain with its injectors becomes:

0 = gC(xC,VC, VSt1, . . . , VStL)

ΓCẋC = ΦC(xC,VC)
(5.1)

and then, for the i-th Satellite sub-domain (i = 1, . . . , L):

0 = gSi(xSi,VSi, VCti)

ΓSiẋSi = ΦSi(xSi,VSi)
(5.2)

where xC, xSi, VC, VSi, ΓC, and ΓSi are the projections of x, V and Γ, defined in (1.1), on the
Central and Satellite sub-domains respectively. VSti and VCti are the two bus voltages of the
network connection between the Central and the i-th Satellite sub-domain (see Fig. 5.1).

The DAE systems (5.1) and (5.2) are coupled through the common variables VSt =

[VSt1, . . . , VStL] and VCt = [VCt1, . . . , VCtL], involved in the equations of the network elements
(lines, transformers, etc.) connecting the sub-domains. These L + 1 systems combined are
mathematically equivalent to the original system (1.1).

5.2.2 Second level of decomposition: Injectors

Next, a second level of decomposition is applied that partitions the injectors from the sub-
domain network, similarly to Chapter 4. For example, the j-th injector connected to the
Central sub-domain (see Fig. 5.1) is described by a DAE system:

ΓCjẋCj = ΦCj(xCj,VC), j = 1, . . . , NC (5.3)

where NC is the number of injectors attached on the Central sub-domain network, xCj and
ΓCj are the projections of xC and ΓC (defined in Eq. 5.1) on the j-th injector. Thus, xC =

[xC1 . . . xCNC]
T and ΓC = diag[ΓC1, . . . , ΓCNC].

5.3. SUB-SYSTEM SOLUTION 105

Therefore, system (5.1) becomes:

0 = gC(xC,VC,VSt)

ΓCjẋCj = ΦCj(xCj,VC), j = 1, ..., NC
(5.4)

Similarly, system (5.2) becomes (i = 1, . . . , L):

0 = gSi(xSi,VSi, VCti)

ΓSijẋSij = ΦSij(xSij,VSi), j = 1, ..., NSi
(5.5)

where NSi is the number of injectors attached to the Si sub-domain network.
The rectangular components of the injector current [iy, ix] are included in the differential

algebraic state vector x and can be rewritten for the Central sub-domain as:

IC =
NC

∑
j=1
CCjxCj (5.6)

where CCj is a trivial matrix with zeros and ones whose purpose is to extract the injector
current components from xCj. Similarly, for the Si sub-domain:

ISi =
NSi

∑
j=1
CSijxSij (5.7)

As in the decomposition of Chapter 4, the network and injector systems are coupled
through the currents injected into the network and the voltages of the buses where the injec-
tors are attached to.

5.3 Sub-system solution

For the solution of each sub-system, the techniques detailed in Section 1.2 are used. First,
the injector DAE systems are algebraized using a differentiation formula (in this work the
second-order BDF), to get the corresponding nonlinear algebraized systems. For example,
(5.3) becomes:

0 = fCj(xCj,VC), j = 1, . . . , NC (5.8)

At each discrete time instant, the nonlinear, discretized injector equations are solved
simultaneously with the linear network equations using a Newton method. Thus, at the k-th
Newton iteration, the following systems are solved:

Dk
C ∆V k

C −
NC

∑
j=1
CCj ∆xk

Cj︸ ︷︷ ︸
∆Ik

C

−
L

∑
i=1
Ek

Si ∆V k
Si = − gC(x

k−1
C ,V k−1

C ,V k−1
St)︸ ︷︷ ︸

gk
C

(5.9)

Ak
Cj ∆xk

Cj +B
k
Cj ∆V k

C = − fCj(x
k−1
Cj ,V k−1

C)︸ ︷︷ ︸
f k

Cj

, j = 1, ..., NC (5.10)

106 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

Central Sub-domain

Network

Satellite

Sub-domain

Network

Sub-domain reduced systems formulation

Global reduced system formulation

substitution
substitution

Injectors

Step 1

 2

3

4

Figure 5.2: Hierarchical solution of two-level decomposed algorithm (four steps)

and (i = 1, . . . , L):

Dk
Si ∆V k

Si −
NSi

∑
j=1
CSij ∆xk

Sij︸ ︷︷ ︸
∆Ik

Si

+F k
Si ∆V k

C = − gSi(x
k−1
Si ,V k−1

Si , Vk−1
Cti)︸ ︷︷ ︸

gk
Si

(5.11)

Ak
Sij ∆xk

Sij +B
k
Sij ∆V k

Si = − fSij(x
k−1
Sij ,V k−1

Si)︸ ︷︷ ︸
f k

Sij

, j = 1, ..., NSi (5.12)

where Ak
Cj (resp. Ak

Sij) is the Jacobian matrix of the j-th injector towards its own states and
Bk

Cj (resp. Bk
Sij) towards the voltages of its sub-domain. Finally, Ek

Si is the Jacobian of the
Central sub-domain towards the voltages of the Si sub-domain and F k

Si is the Jacobian of the
Si sub-domain towards the voltage of the Central sub-domain.

The decomposed system results in L + 1 + NC + ∑L
i=1 NSi linear systems (5.9)-(5.12) to

be solved at each Newton iteration to compute the vectors x(tn) and V (tn). In the proposed
algorithm, the solution is performed in an hierarchical manner as sketched in Fig. 5.2, using
a Schur-complement approach at each iteration to treat the interface variables between sub-
domains. This procedure is summarized below.

First, the sub-domain reduced systems are formulated by eliminating the injector states
(xCj or xSij) from the sub-domain network equations. This leads to reduced systems that
involve only the sub-domain voltage states (VC and VSi). This procedure is the same as
described in Section 4.4 of the single-level algorithm. Twoports are treated as described in

5.3. SUB-SYSTEM SOLUTION 107

the previous chapter with the limitation that they cannot be connected between two different
Satellite sub-domains, as this destroys the star-shaped partition layout.

Second, the global reduced system is obtained by eliminating the Satellite sub-domain
voltage states (VSt) from the Central reduced system. This leads to a global reduced system
that involves only the voltage states of the Central sub-domain (VC).

Then, the latter is solved and the computed Central sub-domain voltages (VC) are back-
substituted into the sub-domain reduced systems. This decouples the solution of these sys-
tems which now involve only their own sub-domain voltage states (VSi). Thus, they can be
solved independently.

Similarly, the sub-domain voltage states (VC and VSi) are back-substituted into the injector
equations, thus decoupling their solution as they now involve only their local states (xCj or
xSij). Hence, their solution can be also performed independently.

These steps are detailed in the following sub-sections.

5.3.1 Sub-domain reduced systems formulation

The sub-domain reduced systems are formulated by eliminating the injector states (xCj or
xSij) from the sub-domain network equation systems (5.9) and (5.11). This leads to reduced
systems that involve only the sub-domain voltage states (VC and VSi):(

Dk
C +

NC

∑
j=1
CCj

(
Ak

Cj

)−1
Bk

Cj

)
∆V k

C −
L

∑
i=1
Ek

Si∆V
k

Si = −gk
C −

NC

∑
j=1
CCj

(
Ak

Cj

)−1
f k

Cj

⇐⇒ D̃k
C ∆V k

C −
L

∑
i=1
Ek

Si∆V
k

Si = −g̃k
C (5.13)

and (i = 1, . . . , L):(
Dk

Si +
NSi

∑
j=1
CSij

(
Ak

Sij

)−1
Bk

Sij

)
∆V k

Si +F
k
Si ∆V k

C = −gk
Si −

NSi

∑
j=1
CSij

(
Ak

Sij

)−1
f k

Sij

⇐⇒ D̃k
Si ∆V k

Si +F
k
Si ∆V k

C = −g̃k
Si (5.14)

As discussed in the previous chapter, the nonzero structures of the correction terms

CCj

(
Ak

Cj

)−1
Bk

Cj and CSij

(
Ak

Sij

)−1
Bk

Sij depends on whether the component is an injector
(attached to one bus) or a twoport (attached to two buses). Hence, the reduced system
matrices D̃k

Si (resp. D̃k
C) exhibit the sparsity pattern of Dk

Si (resp. Dk
C) with some fill-in terms

introduced by twoports.

5.3.2 Global reduced system formulation

Likewise, the global reduced system is formulated by eliminating the Satellite sub-domain
voltage states (VSi) from the Central reduced system equations (5.13). This leads to a global

108 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

reduced system that involves only the voltage states of the Central sub-domain (VC):(
D̃k

C +
L

∑
i=1
Ek

Si

(
D̃k

Si

)−1
F k

Si

)
∆V k

C = −g̃k
C −

L

∑
i=1
Ek

Si

(
D̃k

Si

)−1
g̃k

Si

⇐⇒ D̄k
C ∆V k

C = −ḡk
C (5.15)

The global reduced system matrix D̄k
C maintains the sparsity pattern of D̃k

C as the elim-
ination procedure is similar to that of an injector as described previously (attached to one

bus). Moreover, the computations of Ek
Si

(
D̃k

Si

)−1
F k

Si and Ek
Si

(
D̃k

Si

)−1
g̃k

Si are efficient as

the matrices Ek
Si and F k

Si are extremely sparse, given that each Satellite sub-domain is at-
tached only to one bus in the Central sub-domain.

5.3.3 Back-substitution and solution

In this step, the global reduced system (5.15) is solved and the computed Central sub-do-
main voltage corrections (∆V k

C) are back-substituted into the sub-domain reduced systems
(5.14). This decouples the solution of these systems which now involve only their sub-domain
voltage states. Thus, they can be solved independently to acquire ∆V k

Si.
Afterward, the computed sub-domain voltage corrections (∆V k

Si and ∆V k
C) are back-sub-

stituted in the injector equations (5.10) and (5.12), thus decoupling their solution as they now
involve only their local state corrections (∆xk

Cj or ∆xk
Sij). Finally, the injector systems are

solved independently.
After updating the state vectors, i.e. V k

C = V k−1
C + ∆V k

C , xk
C = xk−1

C + ∆xk
C, V k

Si = V k−1
Si +

∆V k
Si and xk

Sij = xk−1
Sij + ∆xk

Sij, the convergence of all sub-systems is checked independently.
If global convergence has been achieved, then the simulation proceeds to the next time
instant, otherwise a new iteration (k + 1) is performed with the updated variables.

5.3.4 Base power selection

As mentioned in Section 1.2.5.2, in power system computations it is customary to scale the
network variables and parameters by using a per -unit system [MBB08]. That is, a base
power is selected (Sbase) for the entire system and using the bus base voltage (usually set
to its nominal value), all the network parameters (used to formulate the D matrix of Eq. 1.3)
and variables (V and I of Eq. 1.3) are scaled accordingly. When simulating combined T&D
systems, some very large injectors (such as large power plants attached to the TN) are
solved together with smaller ones (such as small DGs attached to the DNs). Thus, using a
single Sbase for the entire system can lead to accuracy problems.

For example, let us assume a unique Sbase = 100 MVA for the T&D system. A TN-
connected generator producing 100 MVA at nominal voltage would have a current magnitude
of 1 pu. On the other hand, a DN-connected DG producing 1 MVA at nominal voltage would
have a current magnitude of 0.01 pu. If the convergence check of Eq. 1.16a is used with

5.4. PARALLEL ALGORITHM 109

εg = 0.001, the latter generator will be solved at a smaller relative accuracy. To deal with this
problem, a smaller εg has to be selected for all injectors to ensure the accurate solution of the
smaller ones. In this way, however, the larger generator will be solved at a higher accuracy
leading to larger computational burden due to more iterations.

Decomposing a T&D system as detailed in the previous sections of this chapter allows
to select different Sbase values in the various sub-domains. Thus, a smaller Sbase can be used
in the Satellite sub-domains (DNs) and a larger in the Central sub-domain (TN). In the same
example as above, if SbaseC = 100 MVA is used for the TN and SbaseS = 1 MVA is for the DNs,
the current output of both injectors will be at 1 pu, thus avoiding the previous problems.

5.4 Parallel algorithm

As discussed in Chapter 3, the main reason to employ a DDM is the parallelization potential of
this type of algorithms. The overall proposed algorithm is sketched in Fig. 5.3 with the parallel
segments being shaded. For each discrete time instant tn, the parallel DDM described below
is used to solve the sub-systems and obtain V (tn) and x(tn).

First, the injector and sub-network systems (5.9)-(5.12) are updated, their matrices are
factorized, and their contributions to the reduced systems (5.13)-(5.14) are computed. The
L + 1 + NC + ∑L

i=1 NSi injector and network sub-systems are processed in parallel as there
are no data dependencies between them during the update procedure. This can be seen in
BLOCK A of Fig. 5.3.

Then, the L + 1 sub-domain reduced systems are formulated in parallel, as each one
depends on its own injector models only. This is shown in BLOCK B of Fig. 5.3 where each
parallel task updates one of the systems in (5.13)-(5.14).

Next, the global reduced system (5.15), whose contributing elements were computed in
the previous BLOCK, is solved in BLOCK C to obtain the ∆VC corrections. As already noted
in Chapter 4, this algorithm suffers from the sequential bottleneck of Schur-complement-
based DDMs [Saa03]. However, due to the high sparsity of D̄k

C in the linear system (5.15) and
its infrequent Jacobian update, this computational effort is bounded to 1-2% of the overall.

Afterward, the voltage corrections are introduced into the sub-domain reduced systems
(5.14) and the data dependency between them is removed. Hence, these L sub-systems are
solved in parallel, in BLOCK D, to compute the updated ∆VSi variables.

Then, the computed corrections ∆VC and ∆VSi are back substituted in Eqs. 5.10 and
5.12, thus decoupling the NC + ∑L

i=1 NSi injector systems. The latter are solved in parallel as
shown in BLOCK E to obtain the injector state corrections (∆xCj or ∆xSij). At the end of this
block, the voltage (V) and differential-algebraic state (x) vectors are updated.

Finally, in BLOCK F, the convergence of the sub-systems is checked in parallel using the
updated states. If all sub-systems have converged, the algorithm proceeds to the next time
instant, otherwise, a new parallel solution (k + 1) is initiated.

110 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

BLOCK A

BLOCK B

BLOCK C
BLOCK D

Remaining

BLOCK E

BLOCK F

Figure 5.3: Two-level parallel solution algorithm

5.5 Localization techniques

The use of localization techniques was discussed in Section 4.6. Here, these concepts will be
revisited and applied to the proposed two-level Schur-complement DDM. Figure 5.4 shows
how the algorithm is modified with these techniques. In the following sub-sections these
changes will be detailed.

5.5.1 Skipping converged sub-systems

The idea is similar to the one presented in Section 4.6.1, but applied at both decomposition
levels. It is used within one discretized time instant solution to stop computations of injector or
sub-domain reduced systems whose DAE models have already been solved with the desired

5.5. LOCALIZATION TECHNIQUES 111

BLOCK A

BLOCK B

BLOCK C

BLOCK D

Remaining

BLOCK E

BLOCK F

Figure 5.4: Two-level parallel solution algorithm with localization techniques

tolerance. That is, after one decomposed solution, the convergence of each injector and
sub-domain reduced system is checked individually (BLOCK F). If the convergence criterion
is satisfied, then the specific sub-system is flagged as converged and for the remaining iter-
ations of the current time instant it is not solved. Nevertheless, its mismatch vector (f k

Cj, f
k
Sij,

g̃k
Si, or ḡk

C) is monitored to guarantee that it remains converged. This technique decreases
the computational effort within one discretized time instant without affecting the accuracy of
the solution.

5.5.2 Asynchronous update of injector or sub-domain reduced matrices

Next, taking advantage of the fact that each sub-domain is solved using the VDHN presented
in Section 1.2.5.2, the sub-system update criteria are decoupled and their matrices (such as

112 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

M

M

SSij

SSi

C

SCj
line

or

transformer

Figure 5.5: Latency applied at both decomposition levels (S denotes apparent power)

DC, DSi, ACj, ASij, BCj, BSij, etc.), as well as their Schur-complement contributions and
the sub-domain reduced systems, are updated asynchronously. In this way, sub-domains at
both decomposition levels, which converge fast keep the same matrices for many iterations
and even time-steps, while sub-domains which converge slower update their matrices more
frequently. Thus, BLOCKS A and B of Fig. 5.3 are replaced by those in Fig. 5.4.

The same update criteria as in Chapter 4 are used. That is, if a sub-system has not
converged after five iterations of the algorithm presented in Fig. 5.3, its matrices and Schur-
complement terms are updated. Moreover, an update of the matrices is triggered when a
change in the equations of the sub-system is detected. Of course, after a severe event in
the system (such as a short-circuit, the tripping of a branch or a generator, etc.) or when
the time step size used for the discretization is changed, an update of all the matrices, the
Schur-complement terms and the reduced systems is forced to avoid convergence problems.

5.5.3 Latency

The use of latency to decrease the computational burden has been investigated in Sec-
tion 4.6.3. This technique can be extended and applied at both levels of the hierarchical
scheme detailed in this chapter. Figure 5.5 shows the i-th Satellite sub-domain with its injec-
tors. First, as in the single-level algorithm, the standard deviation of the apparent power of
each injector (SCj or SSij) can be used to declare it latent and replace its dynamic model with
the sensitivity-based one of Eq. 4.14. Second, the standard deviation of the apparent power
SSi exchanged between the Central and the i-th Satellite sub-domain can be used to declare
the entire sub-domain (including its injectors) as latent.

The use of latency on the injectors has been thoroughly analyzed in the previous chapter.
For the Satellite sub-domains, the same metrics (4.15)-(4.19) and switching procedure of Al-
gorithm 4.1 can be used based on SSi. The sensitivity model used for equivalencing the Satel-
lite sub-domain is developed similarly to (4.14), but starting from the Satellite sub-domain re-

5.6. EFFECTS OF LOCALIZATION TECHNIQUES ON CONVERGENCE 113

duced system (5.14). Hence, ignoring the internal dynamics, that is g̃Si(x
k−1
Si ,V k−1

Si , Vk−1
Cti) '

0, and solving for the sub-domain voltage variation ∆VSi:

∆V k
Si ' −

(
D̃k

Si

)−1
F k

Si∆V
k

C (5.16)

Then, the corresponding terminal voltage variation ∆V k
Sti (see Fig. 5.5) is obtained by:

∆V k
Sti = −HSi

(
D̃k

Si

)−1
F k

Si∆V
k

C = −GSi∆V k
C (5.17)

where HSi is a trivial matrix with zeros and ones whose purpose is to extract the terminal
voltage variation from ∆V k

Si, and GSi is the sensitivity matrix relating the Satellite with the
Central sub-domain voltage variation.

Selecting an arbitrary switching instant t∗, the linear relation (4.13) can be rewritten as:

VSti(tn) = VSti(t∗)−GSi(t∗) [VC(tn)− VC(t∗)] (5.18)

for any discrete time tn ≥ t∗.
The linear equivalent model (5.18) involves only the voltage states of the Central and

Satellite sub-domains as the interface variables between them are the voltages at the con-
nection point. Moreover, it is important to note that the Schur-complement term contributed
by the linear model (5.18) to the global reduced matrix D̄C of Eq. 5.15 is the same as the
one of model (5.14). This means that switching from one model to the other doesn’t require
to recompute and factorize D̄C.

Since latency is used at both decomposition levels, there needs to be a different priority
between them. At the top level, if a Satellite sub-domain becomes latent then the injectors
connected to it are not solved anymore. Thus, this level has priority over the lower level. On
the lower level, injectors can individually become latent, as in the single-level algorithm, while
other injectors in the same sub-domain remain active.

As discussed in Section 5.3.4, if the Satellite sub-domains represent DNs, the injectors
connected to this level are usually much smaller in size than those connected to the TN.
In such cases, it is useful to use a different latency tolerance for each injector depending
on the sub-domain it is connected to. For example, a latency tolerance εL = 0.1 MVA that
was frequently used in Section 4.9 would lead most of the DN injectors to become latent
immediately and remain so, as this value is comparable to their maximum apparent power.
For this reason, a different latency tolerance is selected for each sub-domain. The selection
of this value, however, should be in coordination with the selection of different sub-domain
Sbase values.

5.6 Effects of localization techniques on convergence

Similarly to the previous algorithm, the two-level Schur-complement-based DDM can be re-
formulated for the k-th iteration to the following equivalent integrated system:

114 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

AS11 0 · · · BS11 · · · 0 0 0 0

0 AS12 · · · BS12 · · · 0 0 0 0
...

...
. . .

... · · · ...
...

...
...

−CS11 −CS12 · · · DS1 · · · 0 0 0 FS1
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · AC1 0 · · ·BC1

0 0 0 0 · · · 0 AC2 · · ·BC2
...

...
...

... · · · ...
...

. . .
...

0 0 0 −ES1 · · · −CC1 −CC2 · · · DC

k

︸ ︷︷ ︸

4xS11

4xS12
...

4VS1
...

4xC1

4xC2
...
4VC

k

︸ ︷︷ ︸

= −

fS11

fS12
...
gS1
...
fC1

fC2
...
gC

k

︸ ︷︷ ︸
J k 4yk F k

(5.19)

This system is equivalent to (1.15), presented in Section 1.2.5.2, when using the same
discretization scheme and performing some row and column permutations. That is, the DDM-
based solution presented above is mathematically equivalent to solving the set of nonlinear,
discretized equations (5.9)-(5.12) with a quasi-Newton method. Thus, the observations of
Section 4.7 about the convergence of the algorithm hold true in this case as well.

Similarly to the previous algorithm, the localization techniques modify the equivalent sys-
tem. First, the matrices of each injector and of the network are not updated synchronously
but according to the local convergence of each sub-system (see Section 5.5.2). Thus, the
system is modified into:

Aks11
S11 0 · · · Bks11

S11 · · · 0 0 0 0

0 Aks12
S12 · · · B

ks12
S12 · · · 0 0 0 0

...
...

. . .
... · · · ...

...
...

...
−Cks11

S11
−Cks12

S12 · · · D
ks1
S1 · · · 0 0 0 F ks1

S1
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · AkC1
C1 0 · · ·BkC1

C1

0 0 0 0 · · · 0 AkC2
C2 · · ·B

kC2
C2

...
...

...
... · · · ...

...
. . .

...

0 0 0 −EkC
S1 · · · −C

kC1
C1
−CkC2

C2 · · · D
kC
C

4xS11

4xS12
...

4VS1
...

4xC1

4xC2
...

4VC

k

= −

fS11

fS12
...

gS1
...

fC1

fC2
...

gC

k

(5.20)

where kSij ≤ k (i = 1, ..., L, j = 1, ..., NSi) and kCj ≤ k (j = 1, ..., NC) is the iteration at which
the j-th injector of the sub-domains was last updated. Similarly, kSi ≤ k (i = 1, ..., L) and
kC ≤ k is the iteration at which the i-th Satellite or Central sub-domain network matrices
were updated. These matrices are often kept constant over several iterations or even time
steps. Therefore, this modified system can be treated as a quasi-Newton method with a
special Jacobian update scheme. The error introduced to the Jacobian by the asynchronous

5.6. EFFECTS OF LOCALIZATION TECHNIQUES ON CONVERGENCE 115

update of the sub-domain matrices is minimal, and while it can affect the convergence rate
of the Jacobian, it does not affect the final solution.

Next, by also considering the skip-converged and latency techniques (see Sections 5.5.1
and 5.5.3) the system is modified to:

Aks11
S11 0 · · · Bks11

S11 · · · 0 0 0 0

0 Aks12
S12 · · · B

ks12
S12 · · · 0 0 0 0

...
...

. . .
... · · · ...

...
...

...
−Cks11

S11
−Cks12

S12 · · · D
ks1
S1 · · · 0 0 0 F ks1

S1
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · AkC1
C1 0 · · ·BkC1

C1

0 0 0 0 · · · 0 AkC2
C2 · · ·B

kC2
C2

...
...

...
... · · · ...

...
. . .

...

0 0 0 −EkC
S1 · · · −C

kC1
C1
−CkC2

C2 · · · D
kC
C

4xS11

4xS12
...

4VS1
...

4xC1

4xC2
...

4VC

k

= −

fS11

fS12
...

gS1
...

fC1

fC2
...

gC

k

+

rS11

rS12
...

rS1
...

rC1

rC2
...

rC

k

(5.21)
where:

rSij, rCj =

fSij, fCj if the j-th injector of a sub-domain is latent or converged

0 otherwise

BSij, BCj =

0 if the j-th injector of a sub-domain is converged

BSij, BCj otherwise

rSi =

gSi if the i-th Satellite sub-domain is latent or converged

0 otherwise

F Si =

0 if the i-th Satellite sub-domain is converged

FSi otherwise

CSij =

0 if the i-th Satellite sub-domain is converged

CSij otherwise

Hence, similar to the single-level algorithm of Chapter 4, an inexact Newton scheme is
formulated and its convergence properties and assumptions can be examined as previously.
The skip-converged technique is based on numerical criteria and uses the exact convergence
tolerance to switch the sub-systems, thus it does not affect the final solution of the algorithm.
If this technique is used on its own, the following condition:∥∥rk

∥∥
‖F (yk)‖ < η < 1 ∀k ≥ 0 (5.22)

can be easily checked to ensure the correctness of the decomposed algorithm (see Ap-
pendix A).

116 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

BLOCK A BLOCK B BLOCK C BLOCK D

Figure 5.6: Fork-join pattern of algorithm in Fig. 5.3 with localization techniques

On the contrary, latency can introduce some inaccuracies in the simulation response
which will be further analyzed from simulation results in Section 5.8.

5.7 Parallelization specifics

Figure 5.6 shows the fork-join parallel pattern of the DDM-based algorithm with the use
of localization techniques. The observations detailed in Section 4.8, concerning the effect
of localization techniques, load balancing, overhead costs, and profiling, hold true for this
algorithm as well.

In this algorithm, there are two additional parallel BLOCKS compared to the single-level
algorithm. BLOCK B takes care of the update and Satellite sub-domain reduced systems and
BLOCK D of their solution. The sequential BLOCK C is much smaller than the corresponding
system of the algorithm in Chapter 4, the reason being that the sparse linear system solved in
the previous algorithm related to the size of the entire network, while the system in BLOCK C
relates to the size of the Central sub-domain network only.

5.8 Experimental results

In this section a sample of simulation results are given, using the test systems summarized
in Section 1.3. First, the contingency considered in each test system will be described. Next,
several executions of the same simulation will be performed using a combination of simulation
parameters. These are shown in Table 5.1.

As in the previous chapter, the non-decomposed approach with integrated VDHN scheme,
described in Section 1.2.5.2, is used as a benchmark.

Both the proposed algorithm and the integrated are implemented in the academic simu-
lation software RAMSES. The same models, convergence tolerance, algebraization method

5.8. EXPERIMENTAL RESULTS 117

Table 5.1: Options considered in the simulations

Configuration
Skip converged

injectors
Update sub-domain

matrices asynchronously
Exploit latency

I 7 7 7

II 3 3 7

IIIa 3 3
εLC = 0.1 MVA,

εLS = 0.01 MVA, TL = 10 s

IIIb 3 3
εLC = 0.2 MVA,

εLS = 0.02 MVA, TL = 10 s

IIIc 3 3
εLC = 0.5 MVA,

εLS = 0.05 MVA, TL = 10 s

V
o
lt
a
g
e

 (
p
u
)

time (s)0.2 0.7

0.5

0.9

0.7

1.5

DG must not disconnect

DG might disconnect

Figure 5.7: LVFRT capability curve of DGs [Sch08]

(second-order BDF), and way of handling the discrete events are used. For the solution
of the sparse systems (the integrated Jacobian or the reduced systems of Eqs. 5.14 and
5.15), the sparse linear solver HSL MA41 [HSL14] was used. For the solution of the much
smaller, dense injector linear systems (5.10) and (5.12), Intel MKL LAPACK library was
used. The matrix update criteria are as follows: for the integrated and Config. I, all the
matrices are updated every five iterations until convergence; for Configs. II and III, the ma-
trices of each sub-domain are updated every five iterations unless convergence has already
taken place. Finally, the convergence checks defined in Eqs. 1.16a and 1.17 are used, with
εg = ε f rel = ε f abs = 10−4. Keeping the aforementioned parameters and solvers of the sim-
ulation constant for both algorithms permits a (more) rigorous evaluation of the proposed
algorithm performance.

The main investigations have been performed on Machine 1 (see Section 2.7), but a
performance comparison with Machines 2 and 3 is given in Section 5.8.4.3. To better under-
stand the behavior of the algorithm, some time profilings of the simulations are given in the
following sections, while a numerical profiling is presented in Appendix D.

5.8.1 Nordic variant 1 system

This is a combined T&D system based on the Nordic system, which is expanded with 146
DNs. In total, the system includes 14653 buses, 15994 branches, 23 large synchronous ma-

118 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 1 2 3 4 5 6 7 8 9 10

V
 (

pu
)

time (s)

Scenario 1a

Scenario 1b

Scenario1a: Integrated
Scenario1a: Config. Ι
Scenario1a: Config. ΙΙ
Scenario1b: Integrated
Scenario1b: Config. Ι
Scenario1b: Config. ΙΙ

Figure 5.8: Nordic variant 1, Scenario 1: Voltage evolution at TN bus 1041

 750

 900

 1050

 1200

 1350

 1500

 1650

 1800

 1950

 2100

 2250

 0 2 4 6 8 10

P
 (

M
W

)

time (s)

Scenario 1a (Config. ΙΙ)
Scenario 1b (Config. ΙΙ)

Figure 5.9: Nordic variant 1, Scenario 1: Total active power generated by DGs in all DNs

chines, 438 PVs, 730 WTs, and 19419 dynamically modeled loads. The resulting un-decom-
posed model has 143462 differential-algebraic states. A more detailed system description
can be found in Section 1.3 and its one-line diagram in Fig. B.3.

The first decomposition is performed on the boundary between TN and DNs, thus creating
the Central sub-domain with the TN and L = 146 Satellite sub-domains with the DNs. Next,
each sub-domain is decomposed to its network and injectors. More specifically, NS1 = NS2 =

... = 141 and NC = 24.

Two scenarios, respectively short and long-term, are considered for this system. Further-
more, each scenario is simulated twice. In the first simulation (referred to as Scenarios 1a
and 2a), the DGs comply with the Low Voltage and Fault Ride Through (LVFRT) requirements
sketched in Fig. 5.7, taken from [Sch08]. In the second simulation (referred to as Scenar-

5.8. EXPERIMENTAL RESULTS 119

 0.1

 0.3

 0.5

 0.7

 0.9

 1.1

 0 1 2 3 4 5 6 7

V
 (

pu
)

time (s)

Config. ΙΙ : DN Bus 1041a-E22
Config. ΙΙ : DN Bus 4043a-E22
Config. ΙΙ : DN Bus 1041a-R09
Config. ΙΙ : DN Bus 4043a-R09

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

LVFRT curve 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

LVFRT curve

Figure 5.10: Nordic variant 1, Scenario 1a: Voltages at DN buses

ios 1b and 2b), the DGs remain connected to the system even if their terminal voltages fall
below the limit shown in Fig. 5.7.

The nominal powers of the TN generators are hundreds of MVA while of the DN DGs are
just a few MVA. Thus, as described in Section 5.3.4, different base powers are considered
for the Central (SbaseC = 100 MVA) and Satellite (SbaseS = 2 MVA) sub-domains. For the
integrated method, the smallest one is used for the entire system to ensure the accurate
simulation of DN DGs. Moreover, different latency tolerance is used for injectors connected
to the TN (εLC) and to a DN (εLS), as listed in Table 5.1.

5.8.1.1 Scenario 1: Short-term stability study

In this scenario, a short-term stability study is considered. The disturbance considered is an
8-cycle, three-phase, solid fault near the TN bus 4044, cleared by the opening the faulted
line 4043-4044 in the CENTRAL area (see Fig. B.3). The system is simulated for 10 s with
a time-step size of half a cycle (10 ms). Only the results acquired with Configs. I and II are
shown in this scenario. The small simulation period, as well as the short-term nature of the
dynamics considered make the use of latency unnecessary. Even if latency was considered,
with TL ≥ 10 s, none of the components would become latent.

Figure 5.8 shows the voltage evolution at TN bus 1041 for Scenarios 1a and 1b. The
integrated and DDM-based algorithms give exactly the same results and the system is short-

120 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

 1

 5

 10

 15

 20

 1 2 4 6 8 10 12 16 20 24 28 32 36 40 44

of cores

Scenario1a: Scalability
Scenario1b: Scalability
Scenario1a: Speedup
Scenario1b: Speedup

Figure 5.11: Nordic variant 1, Scenario 1: Speedup and scalability computed with Config. II

term stable in both scenarios. However, the final values in Scenario 1b are higher than in 1a.
This can be explained from Fig. 5.9, which shows the total active power generated by DGs in
all DNs. The disconnection of the DGs in accordance with the LVFRT curves leads to losing
approximately 150 MW of distributed generation. This power deficit is covered by importing
more power from the TN, thus leading to depressed TN voltages.

Furthermore, Fig. 5.10 shows the voltage at buses E22 and R09 (see Fig. B.1) in two
different DNs connected to TN buses 1041 and 4043, respectively. DGs are connected to
buses E22 and R09 and the voltage evolution is compared to the LVFRT curve of Fig. 5.7 to
decide whether they will remain connected or not. It can be seen that the DGs in the DN
1041a disconnect at t ≈ 1.2 s, while those in DN 4043a remain connected. This type of
protection schemes (LVFRT) rely on the voltage evolution at DN buses, thus illustrating the
necessity for detailed combined dynamic simulations when the DG penetration level becomes
significant.

The speedup and scalability for both Scenarios 1a and 1b are shown in Fig. 5.11. Initially,
the two-level DDM-based algorithm executed on a single core (M = 1) performs similarly
to the integrated. When using more computational cores, the proposed algorithm offers a
speedup of up to 22 times and the system is simulated in approximately 16 s. The summary
of the speedups achieved is given in Tables 5.2 and 5.3.

As regards the scalability of the algorithm, Fig. 5.11 shows that the DDM-based parallel
algorithm executes up to 15 times faster in parallel compared to its own sequential execution.
Scenario 1a scales slightly better than 1b due to the higher dynamic activity caused by the
LVFRT tripping, which disturbs the system and initiates more matrix updates. From the same
figure, it can be seen that the parallel algorithm is more efficient in the range of up to 24

5.8. EXPERIMENTAL RESULTS 121

Table 5.2: Nordic variant 1, Scenario 1a: Execution times

Sequential execution time
(M = 1) (seconds/speedup)

Fastest parallel execution time
(seconds/speedup)

Integrated (T∗1) 355 / - - / -
Config. I 301 / 1.2 26 / 13.7
Config. II 247 / 1.4 16 / 22.2

Table 5.3: Nordic variant 1, Scenario 1b: Execution times

Sequential execution time
(M = 1) (seconds/speedup)

Fastest parallel execution time
(seconds/speedup)

Integrated (T∗1) 364 / - - / -
Config. I 323 / 1.1 28 / 13
Config. II 261 / 1.4 19 / 19.2

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 0 40 80 120 160

V
 (

pu
)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ a
Config. ΙΙΙ b
Config. ΙΙΙ c

 1.002

 1.004

 1.006

 1.008

 1.01

 1.012

 70 72 74 76 78 80
 1.002

 1.004

 1.006

 1.008

 1.01

 1.012

 70 72 74 76 78 80

Figure 5.12: Nordic variant 1, Scenario 2a: Voltage evolution at TN bus 4044

cores, while after that the benefit becomes marginal.

5.8.1.2 Scenario 2: Long-term stability study

In this section, a long-term stability study is reported. The disturbance considered is a 5-
cycle, three-phase, solid fault near the TN bus 4032, cleared by the opening the faulted line
4032-4042, which remains open. The system is simulated for 240 s with a time-step size of

122 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0 40 80 120 160

V
 (

pu
)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ a
Config. ΙΙΙ b
Config. ΙΙΙ c

Figure 5.13: Nordic variant 1, Scenario 2a: Voltage evolution at DN bus 1041a− E22

 1050

 1200

 1350

 1500

 1650

 1800

 1950

 0 40 80 120 160 200 240

P
 (

M
W

)

time (s)

Scenario 2a
Scenario 2b

Figure 5.14: Nordic variant 1, Scenario 2: Total active power generation by DGs (Config. II)

one cycle (20 ms).

Scenario 2a is long-term voltage unstable. After the electromechanical oscillations have
died out, the system settles at a short-term equilibrium. Then, in the long-term, the sys-
tem evolves under the effect of Load Tap Changers (LTCs) and the synchronous generator
OvereXcitation Limiters (OXLs). Figures 5.12 and 5.13 show the voltage evolution at a TN
and a DN bus, respectively.

Figure 5.14 shows the total active power generated by DGs in all the DNs. It can be seen
that the DG tripping leads to losing approximately 140 MW in a short period after the fault.
This causes the DNs to import the lost power from the TN, thus increasing the TN-DN power
transfer and depressing TN voltages. In the long-term, the LTCs act to restore distribution
voltages and, hence, the consumption of voltage sensitive loads in DNs. This leads to further

5.8. EXPERIMENTAL RESULTS 123

Table 5.4: Nordic variant 1, Scenario 2a: Execution times and inaccuracy of simulation

Sequential execution
time (M = 1)

(seconds/speedup)

Fastest parallel
execution time

(seconds/speedup)

Maximum
error on

voltage (pu)
Integrated (T∗1) 1132 / - - / - -

Config. I 1212 / 0.9 98 / 11.6 0.0
Config. II 857 / 1.3 62 / 18.3 0.0

Config. IIIa 758 / 1.5 62 / 18.3 0.004
Config. IIIb 666 / 1.7 58 / 19.5 0.010
Config. IIIc 408 / 2.8 48 / 23.6 0.015

0 40 80 120 160 200 240
time (s)

6000

8000

10000

12000

14000

16000

18000

20000

22000

A
ct

iv
e

In
je

ct
or

s

Config. IIIa

Figure 5.15: Nordic variant 1, Scenario 2a: Number of active injectors

voltage depression at the TN level until the system collapses at t ≈ 155 s.
Configurations I and II yield the same response as the integrated. Configuration IIIa

shows very little error while Configs. IIIb and IIIc cause a shift of the collapsing time by
approximately 5 and 10 s, respectively. Nevertheless, the final outcome of the simulation and
the collapse mechanisms are simulated correctly.

Table 5.4 shows the simulation time, the speedup (computed using Eq. 2.2) and the
maximum inaccuracy over all bus voltages, compared to the integrated method. For the
latter computation, only the simulation time until t ≈ 150 s was considered. In the remaining,
the error concerned refers to the delayed simulated voltage collapse.

From the sequential execution timings, it can be seen that Config. I is slower than the
integrated. This is due to the extra OHC relating to the two-level partition management,
the formulation of the reduced systems, the computing of Schur-complement terms, and the
overall higher complexity of the DDM compared to the integrated. On the contrary, Config. II
is faster than the integrated due to the localization techniques used. Last, while Config. IIIa
is faster than the integrated, it does not offer much higher performance than Config. II. As

124 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

0 40 80 120 160 200 240
time (s)

130

135

140

145

150

A
ct

iv
e

D
N

s

Config. IIIa

Figure 5.16: Nordic variant 1, Scenario 2a: Number of active DNs

 1

 5

 10

 15

 20

 1 2 4 6 8 10 12 16 20 24 28 32 36 40 44

S
pe

ed
up

of cores

Config. Ι
Config. ΙΙ
Config. ΙΙΙ a

Figure 5.17: Nordic variant 1, Scenario 2a: Speedup computed with Eq. 2.2

explained in Section 4.9.1.1, collapsing scenarios do not exhibit low enough dynamic activity
for latency to provide large acceleration.

The performance benefits obtained by latency in this scenario are due to the long-term
nature of the voltage collapse allowing the injectors and DNs to become latent between suc-
cessive LTC actions. Figures 5.15 and 5.16 show respectively the number of active injectors
and DNs throughout the simulation for Config. IIIa. It can be seen that very few DNs become
latent, and towards the end of the simulation all injectors and DNs become active.

From the parallel execution timings in Table 5.4, a speedup of 18.3 times can be obtained
while retaining full accuracy of the simulation. A more detailed view is offered in Fig. 5.17,
where the speedup is shown as a function of the number of cores used. Furthermore, it can

5.8. EXPERIMENTAL RESULTS 125

Table 5.5: Nordic variant 1, Scenario 2a: Time profiling of sequential execution (M = 1)

% of execution time
Config. I Config. II Config. IIIa

BLOCK A 20 6.49 7.38
BLOCK B 4.6 1.58 4.01
BLOCK C 0.03 0.03 0.04
BLOCK D 3.96 4.32 4.84
BLOCK E 59.73 71.61 63.87
BLOCK F 3.24 6 7.18

Remaining parallel 2.34 3.32 5.08
Remaining sequential 6.1 6.65 7.6

TP (100-TS) 93.87 93.32 92.36
TS (BLOCK C+Rem. Seq.) 6.13 6.68 7.64

 1

 5

 10

 15

 20

 25

 1 2 4 6 8 10 12 16 20 24 28 32 36 40 44

S
ca

la
bi

lit
y

of cores

Config. ΙΙ : Theoretic scalability
Config. ΙΙ : Effective scalability
Config. ΙΙΙ a: Theoretic scalability
Config. ΙΙΙ a: Effective scalability

Figure 5.18: Nordic variant 1, Scenario 2a: Effective VS Theoretic scalability

be seen that in parallel execution, Config. IIIa offers no further gain compared to Config. II.
Even more, with M ≥ 40 cores, Config. II becomes faster than IIIa.

Table 5.5 shows the time profiling of the sequential execution (M = 1), with the percent-
age of time spent in each block of the algorithm in Fig. 5.3. As expected, using Config. III
leads to lower percentage of parallel work. Using the timings of TP and TS, Fig. 5.18 shows
the effective scalability (computed with Eq. 2.1) against the theoretic scalability (computed
with Eq. 2.5). The difference between them is due to the OHC of the implementation. From
Figs. 5.17 and 5.18 it can be seen that the efficiency of the parallelization is very good until
M = 16, while for higher number of threads the incremental gain is smaller. Nevertheless,
the best results are acquired with M = 44 and are the ones shown in the parallel execution
column of Table 5.4.

Contrary to Scenario 2a, Scenario 2b is long-term stable. In this (very optimistic) sce-
nario, the DGs remain connected to the DNs throughout the simulation, thus supporting the
system and avoiding the voltage collapse. Figures 5.19 and 5.20 show the voltage evolution

126 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

at a TN and DN bus, respectively. The jumps in Fig. 5.20 correspond to LTC moves in the
DN of concern (the shown voltage is not the one controlled by the LTC though).

5.8. EXPERIMENTAL RESULTS 127

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 0 40 80 120 160 200 240

V
 (

pu
)

time (s)

Integrated
Config. Ι
Config. ΙΙ
Config. ΙΙΙ a
Config. ΙΙΙ b
Config. ΙΙΙ c

Figure 5.19: Nordic variant 1, Scenario 2b: Voltage evolution at TN bus 4044

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0 40 80 120 160 200 240

V
 (

pu
)

time (s)

 Integrated
 Config. Ι
 Config. ΙΙ
 Config. ΙΙΙ a
 Config. ΙΙΙ b
 Config. ΙΙΙ c

Figure 5.20: Nordic variant 1, Scenario 2b: Voltage evolution at DN bus 1041a− E22

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0 40 80 120 160 200 240

V
er

r (
pu

)

time (s)

Config. ΙΙΙ a
Config. ΙΙΙ b
Config. ΙΙΙ c

Figure 5.21: Nordic variant 1, Scenario 2b: Absolute voltage error on voltage at TN bus 4044

128 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 40 80 120 160 200 240

V
er

r (
pu

)

time (s)

Config. ΙΙΙ a
Config. ΙΙΙ b
Config. ΙΙΙ c

Figure 5.22: Nordic variant 1, Scenario 2b: Absolute voltage error on voltage at DN bus
1041a− E22

Table 5.6: Nordic variant 1, Scenario 2b: Execution times and inaccuracy of simulation

Sequential execution
time (M = 1)

(seconds/speedup)

Fastest parallel
execution time

(seconds/speedup)

Maximum
error on

voltage (pu)
Integrated (T∗1) 1157 / - - / - -

Config. I 1277 / 0.9 103 / 11.2 0.0
Config. II 1095 / 1.1 76 / 15.2 0.0

Config. IIIa 400 / 2.9 43 / 26.9 0.010
Config. IIIb 331 / 3.5 40 / 28.9 0.010
Config. IIIc 253 / 4.6 32 / 36.2 0.014

Their corresponding voltage errors are shown in Figs. 5.21 and 5.22. It can be seen
that the main source of inaccuracy is the shift of LTC actions in the system. However, even
more than with the ASRT events in the HQ system (see Section 4.9.2), such delays are not
considered significant as long as the final voltages are acceptable.

Table 5.6 shows the simulation time, speedup, and maximum inaccuracy over all the bus
voltages compared to the integrated method. From the sequential execution timings, it can
be seen that Config. I is slower than the integrated as in Scenario 2a. Configuration II offers
some small speedup, while Config. III provides a higher speedup in sequential execution
while also introducing some error.

Figure 5.23 shows the number of active injectors and DNs throughout the simulation for
Config. IIIa. It can be seen that in the short-term, until the post-fault electromechanical
oscillations die out, the injectors and DNs remain active. On the other hand, in the long-term
many injectors and DNs exhibit low dynamic activity, and towards the end of the simulation
almost all of them become latent. This verifies the observation that in the short-term, when

5.8. EXPERIMENTAL RESULTS 129

0 40 80 120 160 200 240
time (s)

0

5000

10000

15000

20000

A
ct

iv
e

In
je

ct
or

s

Config. IIIa

0 40 80 120 160 200 240
time (s)

0

20

40

60

80

100

120

140

A
ct

iv
e

D
N

s

Config. IIIa

Figure 5.23: Nordic variant 1, Scenario 2b: Number of active injectors and DNs

there is high dynamic activity in the system with frequent matrix updates, parallelization is
the main source of speedup. In the long-term, when dynamics with larger time constants
dominant, latency is the main source of speedup.

From the parallel execution timings of Table 5.6, it can be seen that all configurations offer
significant speedup when parallelized: up to 15.2 times without any inaccuracy and up to 28.9
times when latency is used and εL ≤ 0.2 MVA.

Table 5.7 shows the time profiling of the sequential execution (M = 1), with the percent-
age of time spent in each block of the algorithm in Fig. 5.3. As expected, using Config. III
leads to an overall lower percentage of parallel work. Figure 5.24 shows the speedup as a
function of the number of cores used; while, Fig. 5.25 shows the theoretic (using the timings
of TP and TS) and the effective scalability. From these figures, it can be seen that the effi-
ciency of the parallelization is very good until M = 24, while for a higher number of threads
the incremental gain is small.

130 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

Table 5.7: Nordic variant 1, Scenario 2b: Time profiling of sequential execution (M = 1)

% of execution time
Config. I Config. II Config. IIIa

BLOCK A 12.35 5.38 8.39
BLOCK B 2.28 3.41 3.18
BLOCK C 0.03 0.02 0.05
BLOCK D 6.2 4.96 4.59
BLOCK E 69.21 72.7 62.78
BLOCK F 3.63 4.75 6.98

Remaining parallel 3.52 7.78 8
Remaining sequential 2.78 3 6.03

TP (100-TS) 97.19 96.98 93.92
TS (BLOCK C+Rem. Seq.) 2.81 3.02 6.08

 1

 5

 10

 15

 20

 25

 30

 1 2 4 6 8 10 12 16 20 24 28 32 36 40 44

S
pe

ed
up

of cores

Config. Ι
Config. ΙΙ
Config. ΙΙΙ a
Config. ΙΙΙ b

Figure 5.24: Nordic variant 1, Scenario 2b: Speedup computed with Eq. 2.2

 1

 5

 10

 15

 20

 1 2 4 6 8 10 12 16 20 24 28 32 36 40 44

S
ca

la
bi

lit
y

of cores

Config. ΙΙ : Theoretic scalability
Config. ΙΙ : Effective scalability
Config. ΙΙΙ a: Theoretic scalability
Config. ΙΙΙ a: Effective scalability

Figure 5.25: Nordic variant 1, Scenario 2b: Effective VS Theoretic scalability

5.8. EXPERIMENTAL RESULTS 131

 0

 100

 200

 300

 400

 500

 600

 700

 0 40 80 120 160 200 240

W
al

l t
im

e
(s

)

Simulation time (s)

Real-time
Integrated (1-core)
Config. ΙΙ (6-core)
Config. ΙΙ (12-cores)
Config. ΙΙ (24-cores)
Config. ΙΙ (36-cores)
Config. ΙΙ (44-cores)

 1

 2

 3

 4

 5

 1 2 3 4 5

 1

 2

 3

 4

 5

 1 2 3 4 5

Figure 5.26: Nordic variant 1, Scenario 2b: Real-time performance of algorithm

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80

O
ve

rr
un

 (
s)

Simulation time (s)

Config. ΙΙ (6-core)
Config. ΙΙ (12-cores)
Config. ΙΙ (24-cores)
Config. ΙΙ (36-cores)

Figure 5.27: Nordic variant 1, Scenario 2b: Overrun of simulations

Finally, Fig. 5.26 shows the real-time performance of the algorithm with Config. II. On
this 15000-bus T&D power system, the two-level DDM-based algorithm performs faster than
real-time when executed on 44 cores. With fewer cores, some overrun is observed as shown
in Fig. 5.27.

5.8.2 Nordic variant 2 system

This is the second combined T&D system, also based on the Nordic system, this time ex-
panded with 40 DNs in the Central area. In total, the system includes 3108 buses, 20 large

132 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 0 50 100 150 200 250 300

V
 (

pu
)

time (s)

Scenario A: TN bus 1041

Scenario B: TN bus 1041

Scenario A: TN bus 4043

Scenario B: TN bus 4043

Scenario A: TN bus 1043

Scenario B: TN bus 1043

Figure 5.28: Nordic variant 2 (Config. II): Voltage evolution at three TN buses

and 520 small synchronous generators, 600 induction motors, 360 type-3 WTs, 2136 voltage-
dependent loads, and 56 LTC-equipped transformers. The resulting DAE model has 36504
differential-algebraic states. A more detailed system description can be found in Section 1.3
and its one-line diagram in Fig. B.5.

First the system is decomposed on the boundary between TN and DNs, thus creating the
Central sub-domain with the TN and L = 40 Satellite sub-domains with the DNs. Next, each
sub-domain is decomposed into its network and injectors. More specifically, NS1 = NS2 =

... = 90 and NC = 36.

A long-term scenario is considered for this system involving the outage of transmission
line 4061− 4062 in the South area (see Fig. B.5). The system is simulated for 300 s with
a time-step size of one cycle (20 ms). Although large, this disturbance leads to a stable
response. Furthermore, this contingency is simulated twice. In Scenario A, the DNs are pas-
sive and the reactive power set-points of the DGs remain constant throughout the simulation.
On the contrary, in Scenario B, each DN is equipped with a Distribution Network Voltage
(DNV) controller as detailed in [VV13]. The latter is centralized at the DN level. It is based
on Model Predictive Control (MPC) to keep the voltages of some DN buses within desired
limit, by changing the DG reactive powers. Each DN is equipped with such a controller, but
the various controller instances do not exchange any information. The main purpose of this
study was to investigate the contribution of DNV controllers to the bulk transmission system

5.8. EXPERIMENTAL RESULTS 133

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 0 50 100 150 200 250 300

V
 (

pu
)

time (s)

Vmax of DNV controller

Vmin of DNV controller

Scenario A: DN bus 01a
Scenario B: DN bus 01a
Scenario A: DN bus 01a-1171
Scenario B: DN bus 01a-1171

Figure 5.29: Nordic variant 2 (Config. II): Voltage evolution at two DN buses

dynamic behavior.

As with the previous system, different base powers are considered for the Central (SbaseC =

100 MVA) and Satellite (SbaseS = 2 MVA) sub-domains. For the integrated method, the small-
est one is used for the entire system to ensure the accurate solution of the DN DGs. More-
over, only the fully accurate Configs. I and II have been considered in this study.

In Scenario A (DNV controllers not in service), DG units operate with constant reactive
power set-points and do not take part in voltage control. This leaves only the traditional
voltage control by LTCs. The long-term evolution of the system, until it returns to steady
state, is shown in Figs. 5.28 and 5.29. It is driven by the LTCs, essentially, in response to
the voltage drops initiated by the line tripping. Overall, 112 tap take place until a steady-state
equilibrium is reached.

Figure 5.28 shows the TN voltage evolution at three representative buses of the Central
area. The voltage at bus 1041 is the most impacted but remains above 0.985 pu. All DN
voltages are successfully restored in their dead-bands by the LTCs, which corresponds to a
stable evolution. For instance, Fig. 5.29 shows the voltage evolution at two DN buses: 01a,
controlled by an LTC with a [1.02 1.03] pu dead-band, and 01a− 1171, located further away
in the same DN.

In Scenario B, the same disturbance is considered but the DNs equipped with the DNV
controllers aimed at keeping the DN voltages between Vmin = 0.98 pu and Vmax = 1.03 pu.
This interval encompasses all LTC deadbands, so that there is no conflict between LTC and
DNV controllers. Each DNV controller gathers measurements from its DN, solves an MPC
problem, and every 8− 12 s (randomly selected action interval) adjusts the reactive power

134 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

 660

 680

 700

 720

 740

 760

 780

 0 50 100 150 200 250 300

Q
T

N
-D

N
s

(M
V

A
r)

time (s)

Scenario A
Scenario B

Figure 5.30: Nordic variant 2 (Config. II): Total reactive power transfer from TN to DNs

Table 5.8: Nordic variant 2: Execution times

Sequential execution time Fastest parallel execution time
(M = 1) (seconds/speedup) (seconds/speedup)

Scenario A B A B
Integrated (T∗1) 448 / - 475 / - - / - - / -

Config. I 479 / 0.9 475 / 1.0 45 / 10.0 54 / 8.8
Config. II 392 / 1.1 392 / 1.2 40 / 11.2 48 / 9.9

set-points of the DGs.

The resulting voltage evolutions for the same TN and DN buses can be found in Figs. 5.28
and 5.29 for easier comparison. With respect to Scenario A, a steady state is reached at
almost the same time, while the TN voltages are slightly higher. The voltages at DN buses
are restored above Vmin by the DNV controller. It is worth mentioning that the number of
tap changes has decreased from 112 to 35, showing that the sharing of the control effort by
active DNs reduces the wear of LTCs. The DN buses such as 01a− 1171 in Fig. 5.29 have
their voltages increased by the additional reactive power produced by the coordinated DG
units. For instance, in Scenario B, the DG participation decreases by almost 90 MVAr the
net reactive power load seen by the TN (see Fig. 5.30), which contributes to increasing TN
voltages.

Table 5.8 shows the execution times and speedup for both scenarios. In sequential execu-
tion, Config. I has similar performance as the integrated and Config. II offers some speedup.
In parallel execution, Scenarios A and B exhibit 11.2 and 9.9 times faster execution, respec-
tively. Next, Figs. 5.31 and 5.32 show the speedup and scalability of the two scenarios.
Scenario A exhibits slightly better scalability due to its higher dynamic activity; in Scenario B,
as DGs support the DN voltages, there are less LTC actions, the voltages reach faster their
deadbands and less contribution is provided by the large TN-connected generators.

5.8. EXPERIMENTAL RESULTS 135

 1
 2

 4

 6

 8

 10

 12

 1 2 4 6 8 10 12 16 20 24 28 32 36 40 44

S
pe

ed
up

of cores

Scenario A: Config. Ι
Scenario A: Config. ΙΙ
Scenario B: Config. Ι
Scenario B: Config. ΙΙ

Figure 5.31: Nordic variant 2: Speedup computed with Eq. 2.2

 1
 2

 4

 6

 8

 10

 12

 1 2 4 6 8 10 12 16 20 24 28 32 36 40 44

S
ca

la
bi

lit
y

of cores

Scenario A: Config. Ι
Scenario A: Config. ΙΙ
Scenario B: Config. Ι
Scenario B: Config. ΙΙ

Figure 5.32: Nordic variant 2: Effective scalability with Eq. 2.1

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0 50 100 150 200 250 300 350 400 450 500

W
al

l t
im

e
(s

)

Simulation time (s)

Real-time
Integrated (1-core)
Config. ΙΙ (1-core)
Config. ΙΙ (6-cores)
Config. ΙΙ (12-cores)

 1

 2

 3

 4

 5

 1 2 3 4 5

 1

 2

 3

 4

 5

 1 2 3 4 5

Figure 5.33: Nordic variant 2, Scenario B: Real-time performance of algorithm

136 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

< = 16 KV

< = 26.4 KV

< = 69 KV

< = 170 KV

< = 270 KV

< = 370 KV

> 370 KV

Figure 5.34: HQ: Graph of the entire network (2565 buses)

Finally, Fig. 5.33 shows the real time performance of the algorithm for Scenario B. In
this test-case, the faster than real-time performance would allow implementing a controller-
in-the-loop structure. That is, the simulator can assume the role of the real system and
communicate the DN measurements (with some simulated measurement noise) to the DNV
controller implementations. Then, the DG set-points are calculated and communicated back
to the simulator. The simulation should be slowed down to match real time in order to test
the performance of these controllers.

5.8.3 Hydro-Québec system

In this section, the test-case studied in Section 4.9.2 is revisited with the use of the two-
level DDM. Even though this is a TN, its particular structure with radially connected sub-
transmission systems1 allows to exploit the two-level decomposition. An example is shown
in Fig. B.7. Algorithm 5.1 can be used to identify a star-shaped decomposition of the system
network. Figure 5.34 shows the full network graph; while, Fig. 5.35 shows the graph of the
Central sub-domain obtained with Algorithm 5.1. The graph analysis and the partition was
performed using NetworkX, a Python software package for the creation, manipulation, and
study of the structure, dynamics, and functions of complex networks [HSS08].

1sometimes referred to as distribution in Canada

5.8. EXPERIMENTAL RESULTS 137

< = 16 KV

< = 26.4 KV

< = 69 KV

< = 170 KV

< = 270 KV

< = 370 KV

> 370 KV

Figure 5.35: HQ: Graph of the Central sub-domain (387 buses) with Satellite sub-domains
including more than one bus

< = 16 KV

< = 26.4 KV

< = 69 KV

< = 170 KV

< = 270 KV

< = 370 KV

> 370 KV

Figure 5.36: HQ: Graph of the Central sub-domain (963 buses) with Satellite sub-domains
including more than five buses

138 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

 0.97

 0.975

 0.98

 0.985

 0.99

 0 40 80 120 160 200 240

V
 (

pu
)

time (s)

Single-level (Chapter 4)
Two-level (Chapter 5)

 0.974

 0.976

 0.978

 0.98

 0.982

 95 100 105 110 115
 0.974

 0.976

 0.978

 0.98

 0.982

 95 100 105 110 115

Figure 5.37: HQ: Voltage evolution at bus 702 with the two DDMs (Config. II)

The graph nodes represent the network buses, and their nominal voltages are distin-
guished by different colors. The graph edges represent network lines (colored black) and
transformers (colored red). Thus, the network is split into the Central sub-domain and 450
Satellite sub-domains. With this splitting, the Central sub-domain consists of 387 buses while
the remaining 2178 buses are located in the Satellite sub-domains. However, this decomposi-
tion leads to many Satellite sub-domains consisting of one or two buses. Such small Satellite
sub-domains do not offer sufficient workload and lead to increased imbalance (especially
when the option of OpenMP for static scheduling is used) and OHC. Hence, a decomposition
with larger Satellite sub-domains has been preferred. Figure 5.36 shows the Central sub-
domain if Satellite sub-domains with at least five buses are used. This choice leads to 80
Satellite sub-domains with a total of 1602 buses; each with a substantial workload.

Since in this system the Satellite sub-domains are not DNs but part of the decomposed
TN, the same base power and latency tolerance is used for all sub-domains. That is SbaseC =

SbaseS = 100 MVA and εLS = εLC in Config. III. Furthermore, the same contingency consid-
ered in Section 4.9.2 is used for comparison reasons.

Figure 5.37 shows the voltage evolution at TN bus 702 with the two algorithms (of Chap-
ters 4 and 5) using Config. II. The dynamic response of the system is exactly the same
in both algorithms as they solve the same DAE system without any approximations. Next,
Fig. 5.38 shows the voltage evolution at the same bus with the two-level DDM with different
configurations. Concerning the dynamic response of the system, the observations made in

5.8. EXPERIMENTAL RESULTS 139

 0.97

 0.975

 0.98

 0.985

 0.99

 0 40 80 120 160 200 240

V
 (

pu
)

time (s)

Config. ΙΙ
Config. ΙΙΙ a
Config. ΙΙΙ b
Config. ΙΙΙ c

 0.974

 0.976

 0.978

 0.98

 0.982

 95 100 105 110 115
 0.974

 0.976

 0.978

 0.98

 0.982

 95 100 105 110 115

Figure 5.38: HQ: Voltage evolution at bus 702 with the two-level DDM

Table 5.9: HQ: Execution times and inaccuracy of simulation

Sequential execution
time (M = 1)

(seconds/speedup)

Fastest parallel
execution time

(seconds/speedup)

Maximum
error on

voltage (pu)
Integrated (T∗1) 413.8 / - - / - -

Config. I 443.6 / 0.9 53.7 / 7.7 0.0
Config. II 273.2 / 1.5 42.8 / 9.7 0.0

Config. IIIa 134.6 / 3.1 40.8 / 10.1 0.010
Config. IIIb 105.1 / 3.9 35.3 / 11.7 0.012
Config. IIIc 85.6 / 4.8 31.8 / 13.0 0.018

Section 4.9.2 hold true for this algorithm as well.

Table 5.9 shows the simulation time, speedup and maximum inaccuracy over all the bus
voltages compared to the integrated method. From the sequential execution timings, it can
be seen that Config. I shows some slow-down while the remaining offer various speedups.
The highest performance is offered by Config. IIIc while also introducing the largest error.
Figure 5.39 shows the absolute voltage error of transmission bus 702. As with the algorithm
of Chapter 4, the error peaks at t = 94 s due to the shifted ASRT event, whose importance
was commented in the previous chapter. A value of εL ≤ 0.2 MVA achieves a good balance
between speedup and inaccuracy.

140 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 40 80 120 160 200 240

V
er

r (
pu

)

time (s)

Config. ΙΙΙ a
Config. ΙΙΙ b
Config. ΙΙΙ c

Figure 5.39: HQ: Absolute voltage error on bus 702

0 40 80 120 160 200 240
time (s)

0

1000

2000

3000

4000

5000

A
ct

iv
e

In
je

ct
or

s

Config. IIIa

Figure 5.40: HQ: Number of active injectors

Figures 5.40 and 5.41 show respectively the number of active injectors and Satellite sub-
domains during the simulation. In the short-term, all components remain active, thus the
main speedup in this period comes from the parallelization of the DDM-based algorithm. In
the long-term, the injectors start switching to latent followed by the Satellite sub-domains.
However, it can be seen that even towards the end of the simulation, many Satellite sub-
domains remain active. This is expected as the latter are part of the TN with large power
exchanges with the Central sub-domain. These power flows, as well as response of a rela-
tively large number of medium-size hydro generation plants connected to the Satellite sub-
domains, cause the latter to frequently exceed εL = 0.1 MVA and become or remain active.
In Config. IIIc, many more Satellite sub-domains become latent thus achieving a speedup of

5.8. EXPERIMENTAL RESULTS 141

0 40 80 120 160 200 240
time (s)

0

10

20

30

40

50

60

70

80

90
A

ct
iv

e
S

at
el

lit
e

su
b-

do
m

ai
ns

Config. IIIa

Figure 5.41: HQ: Number of active Satellite sub-domains

 1

 2

 4

 6

 8

 10

 12

 1 2 4 6 8 10 12 16 20 24 28 32 36 40 44

S
pe

ed
up

of cores

Config. Ι
Config. ΙΙ
Config. ΙΙΙ a
Config. ΙΙΙ b

Figure 5.42: HQ: Speedup computed with Eq. 2.2

13 times; but, at the cost of higher inaccuracy.

From the parallel execution timings in Table 5.9, it can be seen that all configurations offer
significant speedup when parallelized: up to 9.7 times without any inaccuracy and up to 11.7
times when latency is used and εL ≤ 0.2 MVA. A more detailed view is offered in Fig. 5.42,
where the speedup is shown as a function of the number of cores used.

Figure 5.43 shows the scalability of both algorithms used for this test case. For Con-
fig. II, an extra scalability of 5-10% is observed in the two-level algorithm compared to the

142 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

 1

 2

 3

 4

 5

 6

 7

 1 2 4 6 8 10 12 16 20 24 28 32

S
ca

la
bi

lit
y

of cores

Chapter 4: Config. ΙΙ
Chapter 5: Config. ΙΙ
Chapter 4: Config. ΙΙΙ (εL=0.1 MVA, TL=10 s)
Chapter 5: Config. ΙΙΙ a

Figure 5.43: HQ: Effective scalability with the two decomposition algorithms

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 40 80 120 160 200 240

W
al

l t
im

e
(s

)

Simulation time (s)

Real-time
Integrated (1-core)
Config. ΙΙ (1-core)
Config. ΙΙ (6-cores)
Config. ΙΙ (12-cores)
Config. ΙΙ (24-cores)

 1

 2

 3

 4

 5

 1 2 3 4 5

 1

 2

 3

 4

 5

 1 2 3 4 5

Figure 5.44: HQ: Real-time performance of algorithm

single-level DDM of Chapter 4. This gain comes from the higher parallelization percentages
achieved by the two-level DDM minus the extra OHC associated with the two-level decom-
position.

Finally, Fig. 5.44 shows the real-time performance of the algorithm with Config. II. Faster
than real-time performance is achieved when executed on 24 or more cores, similarly to the
algorithm of Chapter 4.

5.8. EXPERIMENTAL RESULTS 143

5.8.4 Discussion

The capabilities of the proposed two-level algorithm are discussed in this subsection. Its
sequential and parallel performances are outlined, as well as some more results on the UMA
Machines 2 and 3 of Section 2.7.

5.8.4.1 Sequential performance

Similarly to the algorithm of Chapter 4, the main sources of acceleration in sequential exe-
cution (M = 1) are the localization techniques. However, the proposed two-level DDM has
some significant extra OHC compared to the integrated, as well as the single-level DDM.

Configuration I does not use any localization techniques and follows the same Jacobian
matrix updates as the integrated. Except for the short-term test case of the first T&D sys-
tem, the sequential execution of Config. I is slower than the integrated. As discussed in
Section 4.9.4.1, this slowdown can be attributed to the extra OHC of the proposed DDM.

On the contrary, Configs. II and III take advantage of the localization techniques de-
scribed in Section 5.5 and outperform the integrated, leading to fast sequential simulations.

5.8.4.2 Parallel performance

The proposed two-level algorithm offers significant speedup in parallel execution. Figures 5.17,
5.24, 5.31, and 5.42 show this speedup as a function of the number of cores used, reaching
22.2 times for full accurate simulations and much higher when latency technique is employed.

Even though the two-level algorithm has higher OHC than the previous algorithm (due
to the more complex decomposition scheme), it has a larger percentage of work done in
parallel (TP). In addition to the treatment of injectors that was performed in parallel as in
the single-level DDM, this algorithm also treats in parallel the Satellite sub-domain networks.
Thus, the sequential bottleneck coming from of the Schur-complement approach of treating
the interface variables is limited to solving the global reduced system (5.15). The size of the
latter sparse linear system is double the number of buses of the Central sub-domain network.

This large percentage of parallel work leads to increased parallelization efficiency. That is,
the proposed algorithm scales over a larger number of computational cores than the previous
one and allows to better exploit the available computational resources.

5.8.4.3 Performance with UMA standard office laptops

For the previous simulations, Machine 1 was used to “scan” a varying number of cores and
show the performance and scalability of the algorithm. However, the proposed two-level
DDM can provide significant speedup even on smaller UMA machines. For this reason, the
scenario of Section 5.8.1 was executed on Machines 2 and 3 to show the performance of
the algorithm. The dynamic response is not presented as it is identical to the one shown
previously.

144 CHAPTER 5. PARALLEL TWO-LEVEL SCHUR-COMPLEMENT-BASED DDM

Table 5.10: Nordic variant 1, Scenario 2a: Execution times of UMA machines

Sequential execution
time (M = 1)

(seconds/speedup)

Fastest parallel
execution time

(seconds/speedup)
Machine (see Section 2.7) 2 3 2 3

Integrated (T∗1) 532 / - 464 / - - / - - / -
Config. I 677 / 0.8 580 / 0.8 423 / 1.3 185 / 2.5
Config. II 449 / 1.2 371 / 1.3 264 / 2.0 128 / 3.6

Config. IIIa 384 / 1.4 299 / 1.6 269 / 2.0 104 / 4.5
Config. IIIb 326 / 1.6 243 / 1.9 209 / 2.6 88 / 5.3
Config. IIIc 192 / 2.8 149 / 3.1 129 / 4.1 59 / 7.9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140 160 180 200 220 240

O
ve

rr
un

 (
s)

Simulation time (s)

Machine 3 (4 cores)

Figure 5.45: Nordic variant 1, Scenario 2a: Overrun of the algorithm on Machine 3 with
Config. II

Table 5.10 shows the execution times and speedup of the simulation on the aforemen-
tioned laptops. As with the results of Section 5.8.1, in the sequential execution with Config. I,
the proposed two-level DDM shows some slow-down due to its OHC. However, on Machine 2
(resp. 3) the sequential execution offers a speedup of 1.2 (resp. 1.3) for Config. II and 1.6
(resp. 1.9) for Config. IIIb.

In parallel execution, a speedup of 2.0 (resp. 3.6) is achieved with Config. II using the two
(resp. four) cores of the laptop. Configuration IIIb shows a speedup of 2.6 (resp. 5.3), simu-
lating this 14500-bus (modeled with 143000 DAEs) system in 209 s (resp. 88 s). Figure 5.45
shows the overrun of the simulation on Machine 3 in parallel execution. It can be seen that
there is an overrun of 3.5 s, thus, real-time simulations are possible for this system.

Overall, the proposed two-level DDM can provide significant speedup on normal laptop
computers, thus allowing to perform fast and accurate power system dynamic studies without
the need of expensive equipment.

5.9. SUMMARY 145

5.9 Summary

The DDM-based algorithm presented in this chapter relies on a two-level decomposition. The
first decomposition partitions the network to reveal a star-shaped layout. Then, the injectors
are isolated from each sub-network, similarly to the single-level algorithm of Chapter 4. The
sub-domains formulated on both levels are treated independently and in parallel while their
interface variables are updated hierarchically using a Schur-complement approach. Fur-
thermore, three localization techniques were presented to accelerate the simulation both in
sequential and parallel execution.

This algorithm allows to accelerate the simulation of T&D systems, by exploiting their
particular structure and employing an hierarchical, two-level, parallel DDM. Moreover, the use
of Schur-complement approach to treat the interface variables at each decomposition level,
allows to retain high convergence rate of the algorithm. Finally, the sequential bottleneck
of the Schur-complement-based approach can be significantly decreased with the proper
selection of the Central sub-domain, allowing to achieve high scalability.

CHAPTER 6
General conclusion

6.1 Summary of work and main contributions

Power system dynamic simulations have many applications, such as dynamic security as-
sessment, simulation-driven design, planning, operation, etc. Such simulations involve the
solution of an initial value problem, described by a system of hybrid, nonlinear, stiff Differential-
Algebraic Equations (DAEs), over a specific time window. The large size and the hybrid na-
ture of the system (including continuous and discrete states), as well as the stiffness of the
equations, make the problem challenging to tackle and time consuming.

This work brings together elements from numerical analysis, Domain Decomposition
Methods (DDMs), and parallel computing, to accelerate the dynamic simulation of power
systems. Two algorithms have been proposed belonging to the family of DDMs.

The first algorithm targets large interconnected transmission systems, without consider-
ing any particular network topology. The decomposition applied, partitions the system into
the network and the injectors connected to it. This decomposition reveals a star-shaped
sub-domain layout and leads to the separation of the DAEs describing the system. Then,
the nonlinear DAE sub-systems are solved independently by algebraizing and using a New-
ton method with infrequent matrix update and factorization. The interface variables shared
between sub-domains are updated using a Schur-complement approach at each iteration.

The second algorithm targets systems with a particular radial network topology. Mainly,
it was designed to accelerate the simulation of detailed combined Transmission and Distri-
bution (T&D) systems, where each of the latter is connected to the transmission network at
one bus. However, it was shown that some sub-transmission systems with partially radial
structure can also benefit from this algorithm. This DDM applies a two-level system decom-
position. First, the system is decomposed on the boundary between the transmission and
distribution networks. This leads to the creation of several sub-domains, each defined by its
own network and injectors. Then, a second decomposition is applied within each sub-do-
main, splitting the network from the injectors, in a similar way to the single-level algorithm.
Finally, the sub-domain DAE systems are solved hierarchically using a Newton method with

147

148 CHAPTER 6. GENERAL CONCLUSION

infrequent matrix update and factorization for each sub-system. The interface variables are
updated using a Schur-complement approach, at each decomposition level, at each iteration.

In Sections 4.7 and 5.6, it was shown that the proposed DDMs are mathematically equiv-
alent to solving the nonlinear DAEs with a unique (integrated) quasi-Newton method. This
feature is due to the Schur-complement approach used to update the interface variables
at each sub-system iteration. This observation allows to use the extensive theory behind
quasi-Newton schemes to assess the proposed DDMs convergence.

Both proposed DDMs have been accelerated computationally and numerically.
First, the independent calculations of the sub-systems have been parallelized providing

computational acceleration. This parallelization potential is inherent to DDMs and the main
reason for using such methods. DDMs using a Schur-complement approach to update the
interface variables, such as the ones proposed in this work, suffer from an unavoidable se-
quentiality that can hinder their parallel performance. However, it was shown that selecting a
star-shaped decomposition, exploiting the sparsity of the central sub-domain, and using an
infrequent update of the reduced matrix, minimizes the computational cost of this sequen-
tial task and allows for higher scalability. In this work, the OpenMP shared-memory parallel
computing API has been used to implement both algorithms, thus allowing to exploit modern
multi-core computers. A large multi-core computer, setup and maintained for the purpose of
this work, was used to asses the performance of the algorithms.

Second, three numerical acceleration techniques have been used to exploit the locality
of the decomposed sub-systems and avoid unnecessary computations. The first technique,
considers skipping the solution of sub-systems that have already converged to the required
accuracy within one time-step solution. The second technique, suggests the asynchronous
update of sub-system matrices and of the reduced systems. The last technique, replaces
the dynamic models of sub-systems with low dynamic activity, with linear, sensitivity-based,
equivalent ones computed at the moment of switching. On the contrary, when high dynamic
activity is detected, the original dynamic models are reinstated. In this work, these three
techniques have been extended and enhanced to consider the two-level decomposition al-
gorithm. Moreover, a new metric, stemming from real-time digital signal processing, has
been proposed to quantify the level of sub-system dynamic activity.

Furthermore, it was shown that the proposed DDMs using these acceleration techniques,
are mathematically equivalent to solving the nonlinear DAEs with a unique (integrated) Inex-
act Newton method. The first two acceleration techniques do not disturb the accuracy of the
simulation response. However, the third technique, latency, allows to achieve high simulation
performance while sacrificing some accuracy. In this case, the compromise between speed
and accuracy can be easily tuned using only a couple of parameters (latency tolerance and
time window observation).

The performance and accuracy of the proposed DDMs have been tested on the power
system models presented in Section 1.3. It was shown that the proposed algorithms can
achieve high speedup and scalability, both on scientific computing machines, as well as on

6.1. SUMMARY OF WORK AND MAIN CONTRIBUTIONS 149

normal laptop computers. Next, the real-time capabilities of the DDMs were examined, and it
was shown that in all systems, applications with “soft” real-time requirements (allowing some
limited overrun) can be envisioned. In addition, for some of the systems studied (Nordic and
HQ), applications demanding “hard” real-time (no overrun) are also possible.

Finally, it was shown that in long-term scenarios, combining the localization and parallel
computing techniques, provides the best simulation performance. On the one hand, when the
system exhibits high dynamic activity (usually during the short-term dynamics), the parallel
computing techniques offer higher speedup as more frequent matrix updates and system
solutions are necessary, which are performed in the parallel sections of the algorithms. On
the other hand, the localization techniques perform better when the system evolves smoothly,
without much dynamic activity (usually during the long-term dynamics).

The algorithms proposed in this work have been implemented in the dynamic simulation
software RAMSES. The latter is currently used by researchers at various universities and
research institutes as their main dynamic simulation and development platform, e.g.:

• Design and validation of Active Distribution Network (ADN) control schemes (University
of Liège – Belgium, École Centrale de Lille – France, University of Costa Rica);

• Robustness and defense plans in mixed AC-DC systems (University of Liège – Belgium,
a research supported by the R&D department of RTE1);

• Performing power hardware-in-the-loop experiments to study the integration of electric
vehicles to ADNs (ENSAM2 – France);

• Development of mixed-signal computer for power system applications (EPFL3 - Switzer-
land);

• Development of a high-performance dynamic security assessment platform with the
target of 100,000 dynamic simulations per day in operational planning by 2016 (Hydro-
Québec, TransÉnergie division and IREQ4 – Canada); and,

• Voltage stability analysis and preliminary reactive power reserve planning of the future
German grid (just launched collaboration with Amprion5).

To conclude, the current trend for power system dynamic simulations is to demand more
detailed, and thus bigger and more complex, injector models. In addition, the most noticeable
developments foreseen in power systems involve Distribution Networks (DNs), which are
expected to host a big percentage of the renewable energy sources. Thus, DN equivalencing
will become more and more difficult, and the need for detailed representation more acute.

1The French TSO
2École Nationale Supérieure d’Arts et Métiers
3École Polytechnique Fédérale de Lausanne
4Institut de recherche en électricité du Québec
5The largest TSO in Germany

150 CHAPTER 6. GENERAL CONCLUSION

The proposed DDMs decompose power system models in such way that the future increase
in computational demand, due to the previous observations, will increase the percentage
of work in the parallel sections of the algorithms. In that way, Gustafson’s law is validated.
That is, using the same algorithms and computational equipment, it is expected that with
future demands in power system modeling, the DDMs will provide even higher scalability
and speedup.

6.2 Directions for future work

The presented algorithms may be further improved or find new application along the following
directions:

• One of the main requirements of the proposed two-level DDM is that there is only
one point of connection between the Central and Satellite sub-domains. The benefit
of having Satellite sub-domains with only one point of connection is that during the
elimination procedure for the formulation of the global reduced system, the original
sparsity pattern of the Central sub-domain network is preserved. However, in some
power systems, there exist sub-transmission networks that are connected to the bulk
transmission system at several buses. A modified two-level algorithm can be designed
to exploit these sub-transmission networks as Satellite sub-domains to accelerate the
simulation procedure. In this case, their Schur-complement terms will introduce some
fill-ins to the sparsity of the global reduced system, similarly to the twoports in the
reduced system of the single-level algorithm.

• The latency-localization technique used by both the proposed algorithms, provides sig-
nificant acceleration at the cost of introducing some inaccuracy to the simulated re-
sponse. One of the sources of inaccuracy is the linear sensitivity-based model used
when latent. The latter represents only the interface of the injector or the Satellite sub-
domain to the transmission network. That is, the linear model involves and updates only
the two interface states, while all the other states of the model are frozen at the mo-
ment of becoming latent. Consequently, when the model switches from latent to active
again, there is an inconsistency between the interface and the remaining states, which
creates a discrete jump in the equations and can disturb the quasi-Newton method.

To avoid the latter problem, a new linear sensitivity-based model can be used that
updates all the states of the latent component. This way, when switching from latent
to active, the states of the model will be all updated and the equations consistent.
Nevertheless, this entails the extra cost of updating larger linear models.

• The proposed DDMs can be also used in other power system applications involving
linear systems derived from the same power system models. One such computationally
demanding task, is the eigenvalue analysis of large-scale power systems. In [RM09], it

6.2. DIRECTIONS FOR FUTURE WORK 151

was proposed to exploit the sparsity of the power system Jacobian matrix used for the
calculation of the eigenvalues, in order to accelerate the calculation of the rightmost
eigenvalues. The main computational effort of methods like the Implicitly Restarted
Arnoldi with Shift-and-Invert [RM09], is the (repetitive) solution of linear systems of the
form:

(JS−σI)x = b (6.1)

where JS is the Jacobian state-space matrix derived after the elimination of the alge-
braic states, I is the unit matrix, and σ ε C is the shift. It was shown [RM09] that for
better performance, the latter equation can be rewritten as:

(J−σΓI)x̃ = b̃ (6.2)

where J is the Jacobian descriptor matrix, Γ is a diagonal matrix as defined in (1.2),
and:

x̃i =

xi if i is differential

ignored if i is algebraic
b̃i =

bi if i is differential

0 if i is algebraic
(6.3)

The benefit is that J (contrary to JS) is a sparse matrix with a structure similar to that
of J in Eqs. 4.20 or 5.19, thus fast sparse solvers can be used. However, based on
the observations made in Sections 4.7 and 5.6, an equivalent solution of a system with
the form (6.2) can be performed by the single-level or two-level algorithms and thus the
use of parallel computing techniques could be envisaged to accelerate its solution.

Appendices

153

APPENDIX A
Analysis of Newton-type schemes

A.1 Review

In numerical analysis, Newton’s method (also known as the Newton–Raphson method),
named after Isaac Newton and Joseph Raphson, is a root-finding algorithm that uses the
first few terms of the Taylor series of a function f (y) in the vicinity of a suspected root (y0).

The Taylor series of f (y) about the point y1 = y0 + ε is given by:

f (y1) = f (y0) + ḟ (y0)(y1 − y0) +
1
2

f̈ (y0)(y1 − y0)
2 + ... (A.1)

Ignoring the higher-order terms, we obtain:

f (y1) ≈ f (y0) + ḟ (y0)(y1 − y0) (A.2)

This expression above can be used to estimate the correction needed to land closer to the
root starting from an initial guess y0. Setting f (y1) = 0 and solving for y1 − y0 gives:

y1 = y0 −
f (y0)

ḟ (y0)
(A.3)

which is the first-order adjustment to the root’s position. The process can be repeated until it
converges to a fixed point (which is precisely a root) using:

yn+1 = yn −
f (yn)

ḟ (yn)
(A.4)

for n = 0, 1, 2,
This method can be generalized to a system of m algebraic equations with m unknowns

F (y) = 0. Everything remains the same, except that the first derivative of F is replaced by
the m×m Jacobian matrix J = ∂F

∂y . Thus, the iterations are:

yn+1 = yn −
(

∂F

∂y
(yn)

)−1

F (yn) (A.5)

155

156 APPENDIX A. ANALYSIS OF NEWTON-TYPE SCHEMES

for n = 0, 1, 2,
In real applications, the inverse Jacobian matrix is never computed. Rather than comput-

ing directly yn+1, the correction ∆yn = yn+1 − yn is calculated by solving the linear system:(
∂F

∂y
(yn)

)
︸ ︷︷ ︸

Jn

∆yn = −F (yn) (A.6)

and then updating the variables:
yn+1 = yn + ∆yn (A.7)

When the Jacobian matrix is sparse [TW67], such in the case of power system problems, the
use of sparse linear solvers makes the solution of (A.6) very efficient.

The most computationally expensive part of the solution of (A.6) is the calculation of
the Jacobian matrix and its factorization. Thus, to increase the method’s performance, an
infrequent update and factorization can be employed. That is, the Jacobian matrix is kept
the same for several consecutive solutions and it is only updated after a predefined number
of iterations or when the method fails to converge. These methods are called quasi-Newton
or perturbed Newton in mathematics [Kel95] and are referred to as Very DisHonest Newton
(VDHN) in power systems [Mil10].

Both the exact and the quasi-Newton methods have been extensively studied and their
convergence criteria and capabilities have been presented in several publications [Bro70,
BDM73, DM74, GT82, DW84, Kel95].

A.2 Inexact Newton schemes

In some cases, there is inaccuracy in the system formulated in (A.6), leading to an inexact
solution. This inaccuracy can be unintentional, for example due to the linear solver or ma-
chine precision, or intentional with the aim of improving the efficiency of the overall, combined
process [DES82]. To depict this, Eqs. A.6 and A.7 can be rewritten as:

Jnδyn = −F (yn)− rn (A.8)

yn+1 = yn + δyn

where rn is the inaccuracy. These schemes are referred to as Inexact Newton (IN) [Cat04].
Combining (A.6) and (A.8) leads to:

Jn (δyn − ∆yn) = −rn (A.9)

Thus the difference between the IN scheme and the exact Newton method can be measured
by either one of the following relative errors [DES82]:

‖δyn − ∆yn‖
‖δyn‖

or
‖rn‖
‖F (yn)‖

(A.10)

A.2. INEXACT NEWTON SCHEMES 157

Of course, it depends on which one of these error measures is available or can be estimated
during the course of the process.

The required criteria for the IN scheme to converge to the same value as the exact Newton
have been shown in [DES82]. Briefly, if the normal convergence requirements for Newton
methods [DES82] are satisfied and in addition:

‖rn‖
‖F (yn)‖

< η < 1 ∀n ≥ 0 (A.11)

then, the IN scheme converges to the same value as the exact Newton.
It is noteworthy that the quasi-Newton methods described in the previous section can be

also analyzed as IN methods. Let us consider the following quasi-Newton (or VDHN) method:

J̃nδyn = −F (yn) (A.12)

yn+1 = yn + δyn

where J̃n = Jn + ∆Jn is the outdated Jacobian and ∆Jn is the error from the correct (up-
dated) Jacobian. Equation A.12 can then be rewritten as:

(Jn + ∆Jn) δyn = −F (yn)

=⇒ Jnδyn = −F (yn)− ∆Jnδyn︸ ︷︷ ︸
rn

(A.13)

which can then be treated and analyzed as an IN scheme.

APPENDIX B
Test-System diagrams

= M+

TN Bus

Reactor Reactor Reactor Reactor

Substation

Tr1

Tr2

Tr3

Reactor

Figure B.1: Lelystad distribution system

159

160 APPENDIX B. TEST-SYSTEM DIAGRAMS

g11

g20

g19

g16

g17

g18

g2g9

g1 g3g10

g5

g4

g12

g8

g13

g14

g7

g6

g15

4011

4012

1011

1012 1014

1013

10221021

2031

cs

404640434044

40324031

4022 4021

4071

4072

4041

1042

10451041

4063

4061

1043 1044

4047

4051

40454062

TN

DN

NORTH

CENTRAL

EQUIV.

SOUTH

4042

2032

Figure B.2: Nordic32 system

161

g11

g20

g19

g16

g17

g18

g2g9

g1 g3g10

g5

g4

g12

g8

g13

g14

g7

g6

g15

4011

4012

1011

1012 1014

1013

10221021

2031

cs

404640434044

40324031

4022 4021

4071

4072

4041

1042

10451041

4063

4061

1043 1044

4047

4051

40454062

TN

DN

NORTH

CENTRAL

EQUIV.

SOUTH

4042

2032

Figure B.3: Nordic variant 1: Nordic32 system expanded with 146 Lelystad distribution sys-
tems

162 APPENDIX B. TEST-SYSTEM DIAGRAMS

Transmission Grid

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161
1162

1163
1164

1165
1166

1137

1138

1139

1140

1141

1142

1143

1144

1145

1126

1127

1128
1129

1130

1131

1132

1115

1116

1117

1118

1119

1120

1121

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1114

1167

1168

1169

1170

1171

1172

117311741175

1133

11341135

1136

1122

1123

1124

1125

1146

1147

1148

1149

1150

1113

DG unit

Voltage measurement

Load bus

Figure B.4: 75-bus distribution system

163

g11

g20

g19

g16

g17

g18

g2g9

g1 g3g10

g5

g4

g12

g8

g13
g14

g7

g6

g15

4011

4012

1011

1012 1014

1013

10221021

2031

cs

404640434044

40324031

4022 4021

4071

4072

4041

1042

10451041

4063

4061

1043 1044

4047

4051

40454062

TN

DN

NORTH

CENTRAL

EQUIV.

SOUTH

4042

2032

Figure B.5: Nordic variant 2: Nordic32 system expanded with 40 75-bus distribution systems

164 APPENDIX B. TEST-SYSTEM DIAGRAMS

La Citière

4
0

°

Romaine-2

Tracé de 1927 du Conseil privé

(non définitif)

Îles de la
Madeleine

Île d’Anticosti

Centrales
de 300 MW
et plus

Centrale hydroélectrique

Centrale nucléaire

Centrale thermique

Autres
installations

Centrale en construction

Centrale projetée

Poste à 735 kV

Ligne à 735 kV

Ligne à 450 kV à courant continu

Interconnexion

Réseaux voisins schématisés

Figure B.6: Map of the Hydro-Québec system (as of 2010)

165

L625

L624

L1415

L1414

L1137

L1156

L1136

L1157

L1139

L1179

L
1
1
7
9

L
1
1
7
9

L1178 L1178

L
1
1
7
8

L1136

L1413

L
1
1
3
6

L1135

L1138

1
/1

(�

2
8
1
)

1
3
8
7

A
D

U
V

(1
4
)

9
0

(1
4
)

9
0

(2
5
)

X
C

5

�

6

(2
5
)

X
C

3

�

4

6
/1

7

(3
)

4
6

T
7

6
/1

7

(3
)

4
5

T
6 6

/1
7

(4
)

4
5

T
5

6
/1

7

(3
)

4
6

T
4

(1
1
)

7
2

(2
7
) X
C

3
5

�

3
6

(6
)

3
6

(5
) X

C
3
4

(1
1
)

7
2

(1
4
)

X
C

3
1

�

3
2

5
/1

7

(�

2
)

3
6

T
6

5
/1

7

(�

2
)

3
6

T
5

8
/1

7

(7
)

3
7

T
4

7
/1

7

(4
)

3
6

T
2

7
/1

7

(4
)

3
7 T
1

(4
)

2
5

(8
)

4
9

(1
1
)

X
C

6
3

�

7
3

(1
1
)

X
C

6
2

�

7
2

5
/1

7

(�

4
)

2
5

T
3

7
/1

7

(1
)

2
5

T
2

7
/1

7

(1
)

2
4

T
1

(2
0
)

7
9

(1
0
)

4
0

(1
0
)

4
0

(1
0
)

4
0

(2
3
)

X
C

3
5

�

3
6

(1
1
)

X
C

3
4

(1
1
)

X
C

3
2

(1
1
)

X
C

3
1

8
/1

7

(5
)

4
0

T
6

8
/1

7

(5
)

3
9

T
5

8
/1

7

(5
)

4
0

T
4

8
/1

7

(5
)

4
0

T
2

8
/1

7

(5
)

4
0

T
1

(9
)

5
9

(5
)

3
0

9
/1

7
(8

)

3
0

T
3

9
/1

7
(8

)

3
0

T
2

9
/1

7
(8

)

3
0

T
1

(7
)

3
3

(6
)X
C

3 8
/1

7

(6
)

3
3

T
3

7
/1

7

(0
)

3
3

T
2

(1
4
)

6
6

(2
3
)

X
C

1
@

2

7
/1

7

(0
)

3
3

T
1

(1
7
)

7
7

(2
3
)

X
C

3
@

4

9
/1

7
(3

)

3
9

T
4

9
/1

7
(3

)

3
9

T
3

9
/1

7
(3

)

3
9

T
2

(1
7
)

7
7

(2
3
)

X
C

1
@

2
9
/1

7
(3

)

3
8

T
1

(1
2
)

7
4

(1
2
)

7
4

(1
7
)

X
C

3
@

4

(1
7
)

X
C

1
@

2

8
/1

7

(2
)

3
6

T
4

8
/1

7

(5
)

3
9

T
3

8
/1

7

(3
)

3
7

T
2

8
/1

7

(3
)

3
8

T
1

(6
)

X
C

8
1

(5
)

3
8

7
/1

7
(5

)3
8

T
3

7
/1

7
(2

)3
9

T
2

(9
)

7
7(1

9
)

X
C

6
0
@

7
1

7
/1

7
(2

)3
8

T
1

(1
1
)

8
2

(1
7
)

X
C

7
0
@

7
1

8
/1

7

(3
)

4
1

T
3

8
/1

7

(4
)

4
1

T
4

(1
1
)

8
2

(1
2
)

X
C

6
0
@

6
1

9
/1

7

(6
)

4
1

T
2

9
/1

7

(6
)

4
1

T
1

(3
)

2
6

T
3

7
/1

7

(2
6
)

3
1
9

T
1
1

7
/1

7

(5
8
)

3
6
4

T
1
0

(0
)

X
C

7

(1
0
2
) X

C
8

(1
0
0
)

X
C

6

9
/1

7

(6
4
)

3
5
6

T
9

(0
)

X
C

5

(2
)

1
3

T
2

(�

6
)

�

3
9

T
2

(8
)

3
9

A
3
@

8

8
/1

7

(5
9
)

3
4
7

T
8

(5
0
)C

S
3

(5
0
)C
S

2

(5
0
)C

S
1

T
2
3

T
2
2

T
2
1

(3
4
4
)

X
C

4
9

3
1
4
 k

V
B

3
0
2

1
2
3
 k

V
B

1
1
0
2

1
2
,0

 k
V

B
1
3
0

B
2
4
3
0

6
4
,2

 k
V

B
7
6
0
0

1
2
2
 k

V

B
7
6
0
5

T
A

P

�

B
8
0
2
3

T
A

P

�

B
8
0
2
4

T
A

P

�

B
7
6
2
8

T
A

P

�

B
7
6
2
9

(2
0
)

1
2
8

(2
0
)

1
2
8

B
8
0
2
5

1
2
0
 k

V

B
8
0
2
6

(2
0
)

1
2
7

(2
0
)

1
2
8

1
2
1
 k

V
B

7
6
3
0

T
A

P

�

B
8
0
4
8

T
A

P

�

B
8
0
4
9

1
2
1
 k

V
B

8
0
3
5

1
2
1
 k

V
B

8
0
5
0

1
2
1
 k

V
B

8
0
5
1

(7
)

9
1

(7
)

9
1

1
2
1
 k

V
B

7
6
2
0

(3
0
)

2
3
2

(1
5
)

1
3
6

(�

1
2
)

(1
7
)

�

1
3
0

1
3
1

1
2
1
 k

V

B
8
0
4
0

1
2
1
 k

V
B

7
6
3
5

1
2
0
 k

V
B

8
0
3
0

T
A

P

�

B
8
8
5
4

(4
)

1
5

1
1
8
 k

V

B
8
8
5
5

1
2
2
 k

V

B
1
1
0
3

B
8
0
2
7

B
8
0
2
8

2
5
,7

 k
V

B
8
0
4
1

2
5
,3

 k
V

B
8
0
4
2

B
8
0
3
2

B
8
0
3
9

B
8
8
5
8

B
8
8
5
9

B
8
0
3
6

B
8
0
3
7

B
8
0
5
3

B
8
0
5
2

B
7
6
3
1

B
7
6
3
2

B
7
6
3
3

B
7
6
3
4

B
7
6
4
0

B
7
6
4
1

B
7
6
1
9

B
7
6
2
1

B
7
6
2
2

2
5
,4

 k
V

B
7
6
0
1

2
5
,3

 k
V

B
7
6
0
2

S
a

te
lli

te
 s

u
b

-d
o

m
a

in
s

Fi
gu

re
B

.7
:

E
xa

m
pl

e
of

H
yd

ro
-Q

ué
be

c
ra

di
al

su
b-

sy
st

em
s

us
ed

as
S

at
el

lit
e

su
b-

do
m

ai
ns

166 APPENDIX B. TEST-SYSTEM DIAGRAMS

IS

FISENO

DK

DE
LU

BE

NL
BY²

UA²

TR³

TN¹DZ¹MA¹

AL¹

CY

UA-W¹

MD²

RU²

RU²

IE

GB

PT ES

CH

IT

SI

GR

MK

RS

ME

BA

BG

RO

FR AT

CZ
SK

HU

HR

LV

LT

EE

PL

 ENTSO-E Factsheet 2011 | 11 10 | ENTSO-E Factsheet 2011

Synchronously
Interconnected Systems
Within the ENTSO-E Area

¹ synchronous with the continental European system

² synchronous with the Baltic system

³ from September 2010 in trial synchronous operation with the continental European system

Continental European synchronous area

Baltic synchronous area

Nordic synchronous area

British synchronous area

Irish synchronous area

Isolated systems of Cyprus and Iceland

Figure B.8: European map with indication of the interconnected ENTSO-E system members
(2011); continental European synchronous area is represented in the PEGASE system

APPENDIX C
RAMSES

C.1 Introduction

Power systems are equipped with more and more controls reacting to disturbances, with ei-
ther beneficial or detrimental effects. Thus, static security analysis is no longer sufficient and
dynamic responses need to be simulated. Moreover, larger and larger models are considered
deriving form the simulation of large interconnections or the incorporation of sub-transmission
and distribution levels. In addition, longer simulation times need to be considered in order to
check the response of system up to its return to steady state (long-term dynamics can take
up to several minutes after initiating event). Finally, there is a demand for faster than real-time
simulators with look-ahead capabilities (hardware or controller-in-the-loop tests, closed-loop
remedial actions in control centers, etc.).

To cover this need for faster power system dynamic simulations, a simulator called RAM-
SES (stands for “RApid Multithreaded Simulator of Electric power Systems”) is developed
at the University of Liège since 2010. The main developers are Petros Aristidou, Davide
Fabozzi, and Thierry Van Cutsem. There are three contributing components to the develop-
ment of this software (see Fig. C.1), all of which are tightly coupled to the DDM-based sim-
ulation algorithms used. The first, is how the power system is modeled. The second relates
to the acceleration techniques used to provide fast and accurate simulation responses. The
final component is the software implementation, that is, how the simulator is implemented
and how the user interfaces with it.

In the remaining of this appendix, some of these aspects will be summarized.

C.2 Power system modeling

Based on the power system decomposition presented in Chapter 4, a power system model
in RAMSES consists of the injectors, twoports, AC and DC networks, as seen in Fig. C.2.
Each injector (or twoport) is interfaced to the network through the (rectangular components
of) bus voltage and injected current, and is modeled with its own hybrid Differential-Algebraic

167

168 APPENDIX C. RAMSES

Figure C.1: Consisting elements of RAMSES

Equations (DAEs). Allowing for algebraic equations in the models yields higher flexibility. Fur-
thermore, the equations can change between differential and algebraic during the simulation,
due to discrete changes in the model. For an injector, the interfacing is shown in Fig. C.3.

When the decomposition presented in Chapter 5 is used, the AC network is also split into
the Central and the Satellite sub-domains.

Both decomposition schemes promote modular modeling. Some well-defined rules have
been set for the interfacing of injectors (or two-ports) with the network and Satellite to the
Central sub-domain. Thus, as long as these rules are followed, the power system mod-
els used in RAMSES are modular. That is, components can be easily added, removed, or
combined to form complex models without sacrificing the simulation performance.

A tool is provided for the user to program new models that can be included in RAMSES.
Figure C.4 shows the procedure for introducing user-defined models to the simulator. At the
moment of writing this thesis, the following four types of models are supported: torque control
of synchronous machine, excitation control of synchronous machine, injector, and twoports.

Apart from the components described above, there is a separate class of components
called Discrete-time ConTroLlers (DCTLs). These controllers act at discrete times, when a
condition is fulfilled, or at multiple of their internal activation period. Their actions are applied
after the simulation time step is completed. Examples of such DCTLs are the LTCs, ASRTs,
and MPC-based DNV controllers, seen in Chapters 4 and 5.

C.2. POWER SYSTEM MODELING 169

AC network

Msynchronous
machine

voltage and
frequency
dependent

load

induction
motor

static var
compensator

injectors (connected to one AC bus)

HVDC link

(future)
multi-terminal DC grid

voltage-
source

converters

two-ports

(connected to

two buses)

Figure C.2: Overview of power system components in RAMSES

j-th injector
Γjẋj = Φ(vxi, vyi,xj)vxi, vyi

with (Γj)`` = 0 if the `-th equation is algebraic
= 1 if the `-th equation is differentiali-th bus

ixj, iyj

components of injected current
included in the injector state vector

Figure C.3: Injector interface with network in RAMSES

description
of new model
in text format

happy
RAMSES

user

CODEGEN

code
generation
utility

fortran 2003
code

remaining of
RAMSES
in a library

.dll or .so

COMPILER

INTEL or GNU

RAMSES
executable

with new model

Figure C.4: Procedure for introducing new model in RAMSES

170 APPENDIX C. RAMSES

Exploit
Parallel

Processing

Exploit
Time-scale

Decomposition
of Dynamic
Phenomena

Exploit
Localized

Response to
Disturbances

Fast
Dynamic

Simulations

UseCtime-averagingCtoCDfilterD
outCfastCdynamicsCandCconcen-
trateConCaverageCevolution

UseCforClong‐termCdynamics

UseCDstiff‐decayDCkL-stable)C
integrationCscheme

UseCDlargeDCtime-steps

UseCproper,Cex-post,Ctreatment
ofCdiscreteCevents

SomeCdisturbancesCaffectConly
aCsubsetCofCcomponentsCwhile
theCremainingCareConlyCslightly
influenced

ConvergedCsub-systemsCstopC
beingCsolved

Sub-systemCmqtricesCareCupda-
tedCasynchronously

DuringCtheCsimulation,Csub-
systemsCshowingChighCdynamicC
activityCareCclassifiedCasCactive

andCtheirCdynamicCmodelsCare
used.CSub-systemsCshowingClowC
dynamicCactivityCareCclassified
asClatent andCareCreplacedCby
simple,Clinear,Cautomatically
calculatedCmodels.

EmployCaCDDM-basedCalgorithm

UseCshared-memoryCparallelCprocessingCtechniques
toCaccelerateCtheCsolutionCofCtheCdecomposedCDAEC
system

PossibilityCforClook-ahead,CfasterCthanCreal-timeC
powerCsystemCdynamicCsimulations

Figure C.5: Acceleration techniques used in RAMSES

C.3 Acceleration techniques

Three groups of acceleration techniques, sketched in Fig. C.5, are used to speedup the
simulation procedure. The first one is the parallelization of the DDM-based algorithm to
exploit multi-core computers and provide computational speedup. The second acceleration
technique exploits localization. The last acceleration technique exploits the possibility of time-
scale decomposition of dynamic phenomena. The first two techniques have been presented
and discussed in Chapters 4 and 5. The third acceleration technique is summarized below.

C.3.1 Time-scale decomposition

When considering long-term dynamic simulations (i.e. for long-term voltage stability), some
fast components of the response may not be of interest and could be partially or totally omit-
ted to provide faster simulations. This can be achieved either through the use of simplified
models [VGL06] or with a dedicated solver applying time-averaging [FCPV11].

While model simplification offers a big acceleration with respect to detailed simulation,
some drawbacks exist. First, the separation of slow and fast components might not be possi-
ble for complex or black-box models. Furthermore, there is a need to maintain both detailed
and simplified models. Finally, if both short and long-term evolutions are of interest, simplified
and detailed simulations must be properly coupled [VGL06].

At the same time, solvers using “stiff-decay” (L-stable) integration methods, such as BDF,
with large enough time-steps can discard some fast dynamics. Such a solver, applied on a
detailed model, can “filter” out the fast dynamics and concentrate on the average evolution

C.4. SOFTWARE IMPLEMENTATION 171

of the system. The most significant advantage of this approach is that it processes the de-
tailed, referenced model. Furthermore, this technique allows combining detailed simulation
for short-term by limiting the time-step size, and time-averaged long-term by increasing it.
This time-averaging technique, proposed in [FCPV11], is available to be used in RAMSES
for the discretization of the DAEs. However, in the results shown in this thesis, this tech-
nique was not used. That is, a small and constant time-step size was used to allow for the
assessment of the acceleration provided by the other two techniques only.

C.4 Software implementation

RAMSES implements the algorithms detailed in Chapters 4 and 5, as well as the integrated
VDHN scheme described in Section 1.2.5.2. The programming language is Fortran 2003 and
the OpenMP API has been used for the parallelization of the algorithms. The sparse linear
solver HSL MA41 is used for the solution of the sparse matrices and the Intel MKL Lapack
libraries for the solution of the dense matrices with the DGETRF and DGETRS subroutines.
The sequential versions of the aforementioned libraries are used, as their parallelized coun-
terparts introduced increased OHC and led to slow-downs of the simulation.

The code has been compiled and successfully tested on several operating systems (Win-
dows 7, 8, 8.1, Linux Debian 6, Linux Ubuntu 14.10, etc.). Moreover, the code is compatible
with GNU and Intel Fortran compilers. Although, Intel Fortran compiler has shown higher
performance than GNU, especially when executing in parallel.

C.4.1 Why Fortran?

“I don’t know what the language of the year 2000 will look like,
but I know it will be called Fortran.”

—Tony Hoare, winner of the 1980 Turing Award.

Fortran is, for better or worse, one of the main programming languages specifically de-
signed for scientific numerical computing. It has advanced array handling functions, with suc-
cinct array operations on both whole arrays and slices, comparable with MATLAB or Python
Numpy, but much faster. The language is carefully maintained with speed of execution in
mind. For example, pointers are restricted in such a way that it is immediately obvious if
there might be aliasing. It has advanced support for shared-memory parallel computing
(through OpenMP), distributed-memory parallel computing (through co-arrays and MPI), and
vectorization.

Fortran has a huge long tradition, and this can be considered as an advantage and dis-
advantage together. On the one hand, there is a plethora of great libraries written in Fortran
(with BLAS and LAPACK as examples). On the other hand, it comes with much historical
baggage targeting to keep backward compatibility. Nevertheless, modern Fortran implemen-
tations have little to envy from other languages.

172 APPENDIX C. RAMSES

When the implementation performs a lot of number crunching, Fortran remains one of
the top choices. That is the reason why many of the most sophisticated simulation codes
running at supercomputing centers around the world are still written in it. On the contrary,
Fortran would be a terrible language to write a web browser, perform communication tasks,
manipulate databases, etc. To each task its tool.

The core of RAMSES, which performs the numerical simulation, is written in Fortran for
increased performance. However, using the C-interoperability functions of Fortran, several
interfaces have been developed to facilitate its use.

C.4.2 Command line

The most basic interface provided by RAMSES is the command line mode. The user exe-
cutes the program and can provide the necessary files needed for the simulation (test-system
description, contingency description, etc.) in an interactive way or in batch execution. This
interface is useful for remote execution on systems without graphic interfaces and to be em-
bedded in scripts as part of more complex procedures.

C.4.3 Dynamic library

RAMSES is also provided as a dynamic library (.dll in Windows or .so in Linux). This option
allows the user to include the simulator in his own software or load it in a script (e.g. Python,
Perl, etc.). The connection to the library is performed through C-type calls and the user can
start, stop, pause, or modify the simulation. Moreover, the calling software has access to all
the outputs of the simulator (through “get” subroutines) and can take decisions based on the
dynamic response of the simulation.

C.4.4 Graphic user interface

A Java-based Graphic User Interface was developed that allows for an easy-to-use and stan-
dalone execution of the simulator. Moreover, the JAVA language provides compatibility with
multiple platforms (Linux and Windows). The software is provided in a single JAVA archive
(.jar file), including all necessary executables and libraries to perform simulations and visual-
ize results. Thus, the software is ready to be used with no installation.

C.4.5 MATLAB

RAMSES can interface with MATLAB in two ways. First, the RAMSES dynamic library can
be embedded in MATLAB scripts as part of more complex processes. These processes
can include the preparation of the dynamic data to be used for the simulations as well as
post processing and control action to be taken based on the simulation output. In this case,
MATLAB is the simulation driver and RAMSES is used a fast dynamic simulation library.

C.5. VALIDATION 173

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

V
ol

ta
ge

 m
ag

ni
tu

de
 (

pu
)

time (s)

EMTP-RV
RAMSES

 0.4

 0.6

 0.8

 1

 1 1.05 1.1 1.15

Figure C.6: Scenario 1: Voltage evolution at bus 4043

In addition, RAMSES can interface with MATLAB using the MATLAB Engine mechanisms,
for rapid prototyping of power system components and discrete controllers (DCTLs). In this
case, RAMSES acts as the simulation driver and MATLAB is called to compute the response
of the components being developed or tested.

C.5 Validation

The dynamic response of RAMSES was validated against the well-known power system dy-
namic simulation software EMTP-RV. The latter is a EMT type software while RAMSES uses
the phasor approximation (see Section 1.2). In general, EMT software are more accurate
than phasor mode ones as more detailed models are used and the full wave is simulated,
rather than phasors rotating at the nominal frequency [Yan14]. However, EMT simulations
are more time consuming and the power systems being studied are usually limited in size.

Two scenarios, based on the Nordic system presented in Section 1.3, were used to com-
pare the response of the two software. For the comparison of the bus voltage evolution, the
fundamental frequency (50 Hz) wave was extracted from EMTP-RV. The simulations were
performed on a multi-core laptop computer (Machine 3) and the single-level, parallel algo-
rithm of Chapter 4 was used for RAMSES. The results shown in this appendix were part of the
development of a co-simulation algorithm [PAGV14]. A journal paper has been submitted1.

1F. Plumier, P. Aristidou, C. Geuzaine, T. Van Cutsem, "Co-simulation of Electromagnetic Transients and
Phasor Models: a Relaxation Approach", Submitted to IEEE Transactions on Power Delivery, 2015.

174 APPENDIX C. RAMSES

 0.996

 0.998

 1

 1.002

 1.004

 1.006

 1.008

 0 1 2 3 4 5 6 7 8 9 10

m
ac

hi
ne

 s
pe

ed
 (

pu
)

time (s)

EMTP-RV
RAMSES

 1

 1.004

 1.008

 1 1.05 1.1 1.15

Figure C.7: Scenario 1: Machine speed evolution at generator g15b

C.5.1 Scenario 1

The disturbance of concern is a three-phase solid fault at t = 1 s on line 4046− 4047, near bus
4047, lasting five cycles (at 50 Hz) and cleared by opening the line, which remains opened.
Following, the system is simulated over an interval of 10 s. In RAMSES, a time-step size of
one cycle is used, while in EMTP-RV of 100 µs.

Figure C.6 shows the voltage evolution on transmission bus 4043 computed from both
software. In the zoom of the same figure, it can be seen that the bus voltage in RAMSES
drops directly after the fault, while in EMTP-RV there is a time constant. This is because
RAMSES, as a phasor mode simulator, uses only algebraic equations to model the network,
while EMTP-RV a more accurate, differential model. Nevertheless, the dynamic response of
RAMSES matches EMTP-RV.

Figure C.7 shows the machine speed of generator g15b. Disregarding some higher fre-
quency components in EMTP-RV (which are not captured by phasor mode simulations), the
two curves match.

C.5.2 Scenario 2

The disturbance of concern is a three-phase solid fault at t = 1 s on line 1042− 1044, near bus
1042, lasting 10.5 cycles (at 50 Hz) and cleared by opening the line, which remains opened.
Following, the system is simulated over an interval of 10 s. In RAMSES, a time-step size of
one cycle is used, while in EMTP-RV of 100 µs.

C.5. VALIDATION 175

 1.06

 1.08

 1.1

 1.12

 1.14

 0 1 2 3 4 5 6 7 8 9 10

V
40

41
 (

pu
)

time (s)

EMTP-RV
RAMSES

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0 1 2 3 4 5 6 7 8 9 10

V
40

44
 (

pu
)

time (s)

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0 1 2 3 4 5 6 7 8 9 10

V
40

42
 (

pu
)

time (s)

Figure C.8: Scenario 2: Voltage evolution at three buses

176 APPENDIX C. RAMSES

 0.99

 1

 1.01

 1.02

 0 1 2 3 4 5 6 7 8 9 10

m
ac

hi
ne

 s
pe

ed
 (

pu
)

time (s)

EMTP-RV
RAMSES

 1

 1.004

 1.008

 1.012

 1.016

 1 1.1 1.2

 0.9996

 1

 1.0004

 1.0008

 1.0012

 1.0016

 1.002

 0 1 2 3 4 5 6 7 8 9 10

m
ac

hi
ne

 s
pe

ed
 (

pu
)

time (s)

EMTP-RV
RAMSES

Figure C.9: Scenario 2: Machine speed evolution at generators g6 and g18

Figure C.8 shows the voltage evolution on three transmission buses computed from both
software. It can be seen that the dynamic response of RAMSES matches EMTP-RV.

Figure C.9 shows the machine speed of generators g6 and g18. Disregarding some higher
frequency components in EMTP-RV (which are not captured by phasor mode simulations),
the two curves match.

APPENDIX D
Numerical profiling

In this appendix, two example numerical profilings of the results presented in Sections 4.9
and 5.8 are shown. These profilings are representative of how the localization techniques
modify the number of operations in the DDM algorithms and are important to understand
their performance.

Table D.1 shows the number of operations performed, over all time steps and iterations for
the test-case of Section 4.9.2. Since the DDM used is not a relaxation technique but a direct
method, the number of operations remain the same either in parallel or sequential execution.
As shown in Section 4.7, Config. I is equivalent to the integrated and, since the same matrix
update and solution criteria are used for both algorithms, the number of matrix updates and
solutions are the same. Thus, the integrated method performs approximately 1054 integrated
Jacobian updates and factorizations and 23886 system solutions. Some deviations might
exist due to numerical differences of the solvers used. That is, in the integrated method, the
entire system is solved with the sparse solver HSL MA41, while in the DDM the injectors are
solved using the Intel MKL Lapack routines.

Comparing Config. I with Config. II and III, it can be seen that in the latter two, the number
of reduced matrix updates and solutions significantly decreases due to the asynchronous
update (Section 4.6.2) and the skipping of converged sub-systems (Section 4.6.1). The same
observation is true for the injector system updates, factorizations and Schur-complement
term computation as well as for the injector system solutions.

On the other hand, the number of reduced system Right-Hand Side (RHS) evaluations in-
creases in Config. II and III. The reason for this is that the localization techniques disturb the
convergence rate of the algorithm as described in Section 4.7. Thus, when the localization
techniques are used, the algorithm requires on average more iterations per time instant to
converge; although, each iteration is computationally much cheaper than without the local-
ization techniques. Nevertheless, the number of reduced system RHS evaluations increases
proportionally to the total number of iterations as this is needed to ensure and check the
convergence of the algorithm.

177

178 APPENDIX D. NUMERICAL PROFILING

Table D.1: Chapter 4, HQ: Numerical profiling of Algorithm 4.3 in test-case of Section 4.9.2

Configuration I II III (εL = 0.1 MVA)
Speedup (M = 1) 1.3 1.6 3.3

Reduced system (4.11)
updates and
factorizations

1054 30 30

Reduced system (4.11)
solutions

23886 12568 10731

Reduced system (4.11)
RHS evaluations

38591 47530 44828

Injector system (4.8)
updates, factorizations,

and Schur-comple-
ment computations

4849454 (1054)1 591688 (129) 607109 (131)

Injector system (4.8)
solutions

109899486 (23886) 72373575 (15730) 21417786 (4654)2

Injector system (4.8)
RHS evaluations

287148410 (62410) 290750838 (63193) 83679539 (18183)

Finally, the number of injector system RHS evaluations increases in Config. II and de-
creases in III. For the first increase, the reason is the same as above; the higher number
of iterations leads to proportionally more RHS evaluations to guarantee the algorithm’s con-
vergence. However, in Config. III, several of the injector models are replaced by the linear
equivalents as described in Section 4.6.3. Since these models are linear, their RHS after
each iteration solution is zero, thus there is no need to be computed.

Table D.2 provides the same information over all time steps and iterations for the test-case
of Section 5.8.1.2, using the two-level DDM. The integrated method performs approximately
the same integrated Jacobian updates and system solutions as the global reduced system
of Config. I. In reality, the integrated scheme needs more iterations per time instant to reach
the desired convergence accuracy. The reason relates to the selection of the base power
as explained in Section 5.3.4. That is, the integrated scheme scheme uses the smaller
base power Sbase = 2 MVA for the entire system to ensure the accuracy of the Satellite
sub-systems, while the two-level DDM uses SbaseC = 100 MVA and SbaseS = 2 MVA.

Comparing Config. I with Config. II and IIIa, it can be seen that in the latter two, the
number of global and satellite reduced matrix updates and solutions are fewer due to the
asynchronous update and the skipping of converged sub-systems. Similarly for the injector
system updates, factorizations and Schur-complement term computation as well as for the
injector system solutions.

However, the reduced and injector system updates are more in Config. IIIa than II. When-
ever a Satellite sub-domain or injector is switched from active to latent, an update of its

1 In parenthesis is the average value per injector (N=4601).
2 Solutions of the linear equivalent systems not counted.

179

Table D.2: Chapter 5, Nordic variant 1, Scenario 2b: Numerical profiling of Algorithm 5.4 in
test-case of Section 5.8.1.2

Configuration I II IIIa
Speedup (M = 1) 0.9 1.1 2.9

Global reduced system
(5.15) updates and

factorizations
715 54 58

Global reduced system
(5.15) solutions

24945 11869 10068

Global reduced system
(5.15) RHS evaluations

37276 38724 34553

Satellite reduced system
(5.14) updates and

factorizations
104390 (715)3 7225 (50) 10492 (72)

Satellite reduced system
(5.14) solutions

3641970 (24945) 1764638 (12087) 863299 (5913)4

Satellite reduced system
(5.14) RHS evaluations

5442296 (37276) 5653704 (38724) 5044738 (34553)

Injector system
updates, factorizations,

and Schur-comple-
ment computations

14734005 (714) 1340581 (65) 1877431 (91)

Injector system solutions 514041615
(24943)

271106152
(13155)

69548423 (3374)

Injector system
RHS evaluations

1279715307
(62097)

1066247854
(51739)

259914368
(12612)

matrices is forced to ensure the use of the most accurate linear equivalent model possible.
Thus, in cases with increased number of switches (many marginally latent components), the
number of matrix updates and factorizations might increase compared to Config. II. Nev-
ertheless, the significantly fewer number of Satellite reduced system and injector solutions,
compensates for this increase and provides speedup.

Finally, the number of Global and Satellite reduced system RHS evaluations increases in
Config. II and decreases in IIIa. For the first increase, when the localization techniques are
used, the algorithm requires on average more iterations per time instant to converge, thus
more RHS evaluations to guarantee the algorithm’s convergence. However, in Config. IIIa,
several of the Satellite sub-domain models are replaced by the linear equivalents and their
RHS after each iteration solution is zero.

3 In parenthesis is the average value per DN (L=146).
4 Solutions of the linear equivalent systems not counted.

Bibliography

[ABLS97] G. Aloisio, M. Bochicchio, M. La Scala, and R. Sbrizzai, “A distributed computing
approach for real-time transient stability analysis,” IEEE Transactions on Power
Systems, vol. 12, no. 2, pp. 981–987, May 1997. 2.4.2

[ADK12] D. Ablakovic, I. Dzafic, and S. Kecici, “Parallelization of radial three-phase dis-
tribution power flow using GPU,” in 2012 3rd IEEE PES Innovative Smart Grid
Technologies Europe (ISGT Europe), Berlin, Oct. 2012. 2.4.1

[AF12] S. Abhyankar and A. J. Flueck, “Real-time power system dynamics simulation
using a parallel Block-Jacobi preconditioned Newton-GMRES scheme,” in Pro-
ceedings - 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, SCC 2012, Salt Lake City, Nov. 2012, pp. 299–305. 2.4.3,
3.3.1

[AFV13a] P. Aristidou, D. Fabozzi, and T. Van Cutsem, “Exploiting Localization for Faster
Power System Dynamic Simulations,” in Proc. of 2013 IEEE PES PowerTech
conference, Grenoble, Jun. 2013. 1.5, 4.4

[AFV13b] ——, “Dynamic Simulation of Large-Scale Power Systems Using a Parallel
Schur-Complement-Based Decomposition Method,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 25, no. 10, pp. 2561–2570, Oct. 2013. 1.5

[AFV14] ——, “A Schur Complement Method for DAE Systems in Power System Dy-
namic Simulations,” in Domain Decomposition Methods in Science and Engi-
neering XXI, ser. Lecture Notes in Computational Science and Engineering,
J. Erhel, M. J. Gander, L. Halpern, G. Pichot, T. Sassi, and O. Widlund, Eds.
Springer International Publishing, 2014, vol. 98, pp. 719–727. 1.5

[Ait87] P. W. Aitchison, “Diakoptics as a general approach in engineering,” Journal of
Engineering Mathematics, vol. 21, no. 1, pp. 47–58, 1987. 3.3.3

181

182 BIBLIOGRAPHY

[Alv79] F. Alvarado, “Parallel Solution of Transient Problems by Trapezoidal Integration,”
IEEE Transactions on Power Apparatus and Systems, vol. PAS-98, no. 3, pp.
1080–1090, May 1979. 3.3.3

[ANL+12] U. D. Annakkage, N. K. C. Nair, Y. Liang, A. M. Gole, V. Dinavahi, B. Gustavsen,
T. Noda, H. Ghasemi, A. Monti, M. Matar, R. Iravani, and J. A. Martinez, “Dy-
namic system equivalents: A survey of available techniques,” IEEE Transactions
on Power Delivery, vol. 27, no. 1, pp. 411–420, 2012. 5.1

[ASC13] S. Abhyankar, B. Smith, and E. Constantinescu, “Evaluation of overlapping re-
stricted additive schwarz preconditioning for parallel solution of very large power
flow problems,” in Proceedings of the 3rd International Workshop on High Per-
formance Computing, Networking and Analytics for the Power Grid - HiPCNA-
PG ’13, New York, 2013. 2.4.3, 3.3.1

[AT90] A. Abur and P. Tapadiya, “Parallel state estimation using multiprocessors,” Elec-
tric Power Systems Research, vol. 18, no. 1, pp. 67–73, Jan. 1990. 2.4.2

[AV13] P. Aristidou and T. Van Cutsem, “Dynamic simulations of combined transmission
and distribution systems using decomposition and localization,” in Proceedings
of IEEE PES 2013 PowerTech conference, Grenoble, 2013. 1.5, 4.4

[AV14a] ——, “Dynamic Simulations of Combined Transmission and Distribution Sys-
tems using Parallel Processing Techniques,” in Proceedings of 18th Power Sys-
tem Computational Conference (PSCC), Warsaw, 2014. 1.5

[AV14b] ——, “Algorithmic and computational advances for fast power system dynamic
simulations,” in Proc. of 2014 IEEE PES General Meeting, Washington DC, Jul.
2014. 1.5, 4.4

[AV14c] ——, “Parallel Computing and Localization Techniques for Faster Power Sys-
tem Dynamic Simulations,” in Proceedings of 2014 CIGRE Belgium conference,
Brussels, 2014. 1.5

[AV15] ——, “A parallel processing approach to dynamic simulations of combined
transmission and distribution systems,” International Journal of Electrical Power
& Energy Systems, vol. 72, pp. 58–65, 2015. 1.5

[AZS96] M. Amano, A. Zecevic, and D. Siljak, “An improved block-parallel Newton
method via epsilon decompositions for load-flow calculations,” IEEE Transac-
tions on Power Systems, vol. 11, no. 3, pp. 1519–1527, 1996. 2.4.2

[BBMP05] P. Biskas, A. Bakirtzis, N. Macheras, and N. Pasialis, “A Decentralized Imple-
mentation of DC Optimal Power Flow on a Network of Computers,” IEEE Trans-
actions on Power Systems, vol. 20, no. 1, pp. 25–33, Feb. 2005. 2.4.2

BIBLIOGRAPHY 183

[BCP95] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations. Society for Industrial
and Applied Mathematics, Jan. 1995. 1.2.2, 1.2.2.1, 1.2.2.1, 1.2.2.1, 1.2.2.1,
1.2.2.1, 1.2.2.1, 1.2.3, 1.2.5.1

[BDM73] C. G. Broyden, J. E. Dennis, and J. J. Moré, “On the Local and Superlinear
Convergence of Quasi-Newton Methods,” IMA Journal of Applied Mathematics,
vol. 12, no. 3, pp. 223–245, 1973. 4.7, A.1

[BDP96] K. Burrage, C. Dyke, and B. Pohl, “On the performance of parallel waveform
relaxations for differential systems,” Applied Numerical Mathematics, vol. 20,
no. 1-2, pp. 39–55, Feb. 1996. 3.3.3

[BHSt13] A. R. Brodtkorb, T. R. Hagen, and M. L. Sæ tra, “Graphics processing unit (GPU)
programming strategies and trends in GPU computing,” Journal of Parallel and
Distributed Computing, vol. 73, no. 1, pp. 4–13, Jan. 2013. 2.4.1

[BIG76] A. Ben-Israel and T. N. E. Greville, Generalized Inverses (Theory And Applica-
tions). Krieger, 1976. 4.4

[BK99] Z. Bartoszewski and M. Kwapisz, “On the Convergence of Waveform Relaxation
Methods for Differential-Functional Systems of Equations,” Journal of Mathe-
matical Analysis and Applications, vol. 235, no. 2, pp. 478–496, Jul. 1999. 4,
3.3.3

[Bos95] A. Bose, “Parallel solution of large sparse matrix equations and parallel power
flow,” IEEE Transactions on Power Systems, vol. 10, no. 3, pp. 1343–1349,
1995. 2.4.3

[Bra93] V. Brandwajn, “Localization Concepts in (In)-Security Analysis,” in Proceedings
of 1993 Joint International Power conference PowerTech, Athens, 1993. 4.6

[Bre74] R. P. Brent, “The Parallel Evaluation of General Arithmetic Expressions,” Journal
of the ACM, vol. 21, no. 2, pp. 201–206, Apr. 1974. 2.5.4

[Bro70] C. G. Broyden, “The Convergence of Single-Rank Quasi-Newton Methods,”
Mathematics of Computation, vol. 24, no. 110, p. 365, Apr. 1970. 4.7, A.1

[BTS96] S. Bernard, G. Trudel, and G. Scott, “A 735 kV shunt reactors automatic switch-
ing system for Hydro-Quebec network,” IEEE Transactions on Power Systems,
vol. 11, no. 4, pp. 2024–2030, 1996. 1.3.2

[BVL95] A. Bose, A. Valette, and F. Lafrance, “Parallel implementation of power system
transient stability analysis,” IEEE Transactions on Power Systems, vol. 10, no. 3,
pp. 1226–1233, 1995. 2.4.3

184 BIBLIOGRAPHY

[BWJ+12] W. Baijian, G. Wenxin, H. Jiayi, W. Fangzong, and Y. Jing, “GPU based paral-
lel simulation of transient stability using symplectic Gauss algorithm and pre-
conditioned GMRES method,” in Proceedings of 2012 Power Engineering and
Automation (PEAM) conference, Wuhan, Sep. 2012. 2.4.1

[Cat04] E. Catinas, “The inexact, inexact perturbed, and quasi-Newton methods are
equivalent models,” Mathematics of Computation, vol. 74, no. 249, pp. 291–302,
Mar. 2004. A.2

[CB93] J. Chai and A. Bose, “Bottlenecks in parallel algorithms for power system stabil-
ity analysis,” IEEE Transactions on Power Systems, vol. 8, no. 1, pp. 9–15, Feb.
1993. 2.4.2, 2.5.1, 3.3.2

[CDC02] K. Chan, R. Dai, and C. Cheung, “A coarse grain parallel solution method for
solving large set of power systems network equations,” in Proceedings of 2002
International Conference on Power System Technology (PowerCon), vol. 4,
no. 1, Kunming, 2002, pp. 2640–2644. 2.4.2, 3.3.2

[Cel06] F. Cellier, Continuous System Simulation. Boston: Kluwer Academic Publish-
ers, 2006. 1.2.4

[Cha95] K. Chan, “Efficient heuristic partitioning algorithm for parallel processing of large
power systems network equations,” IEE Proceedings - Generation, Transmis-
sion and Distribution, vol. 142, no. 6, p. 625, 1995. 3.3.1

[Cha01a] ——, “Parallel algorithms for direct solution of large sparse power system matrix
equations,” IEE Proceedings - Generation, Transmission and Distribution, vol.
148, no. 6, p. 615, 2001. 2.4.2, 3.3.2

[Cha01b] R. Chandra, Parallel programming in OpenMP. Morgan Kaufmann, 2001. 2.6.3

[CI90] M. Crow and M. Ilic, “The parallel implementation of the waveform relaxation
method for transient stability simulations,” IEEE Transactions on Power Sys-
tems, vol. 5, no. 3, pp. 922–932, Aug. 1990. 2.4.2, 3.3.3, 3.3.3

[Cie13] S. Cieslik, “GPU Implementation of the Electric Power System Model for Real-
Time Simulation of Electromagnetic Transients,” in Proceedings of the 2nd Inter-
national Conference on Computer Science and Electronics Engineering (ICC-
SEE 2013), Paris, 2013. 2.4.1

[CIW89] M. Crow, M. Ilic, and J. White, “Convergence properties of the waveform re-
laxation method as applied to electric power systems,” in Proceedings of 1989
IEEE International Symposium on Circuits and Systems, no. 4, 1989, pp. 1863–
1866. 3.3.3, 3.3.3

BIBLIOGRAPHY 185

[CJV07] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: Portable Shared
Memory Parallel Programming. MIT Press, 2007. 2.6.2, 2.6.2, 2.6.3

[CM11] T. Cadeau and F. Magoules, “Coupling Parareal and Waveform Relaxation
methods for power systems,” in Proceedings of 2011 International Conference
on Electrical and Control Engineering (ICECE), no. 4, Yichang, Sep. 2011, pp.
2947–2950. 3.3.3

[CRTT11] CRSA, RTE, TE, and TU/e, “D4.1: Algorithmic requirements for simulation
of large network extreme scenarios,” Tech. Rep., 2011. [Online]. Available:
http://www.fp7-pegase.eu/ 4, 3.3.1, 3.3.3

[CZBT91] J. Chai, N. Zhu, A. Bose, and D. Tylavsky, “Parallel Newton type methods for
power system stability analysis using local and shared memory multiproces-
sors,” IEEE Transactions on Power Systems, vol. 6, no. 4, pp. 1539–1545, 1991.
2.4.3, 3.3.2

[DES82] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact newton methods,” SIAM
Journal on Numerical Analysis, vol. 19, no. 2, pp. 400–408, 1982. A.2, A.2, A.2

[DFK92] I. Decker, D. Falcao, and E. Kaszkurewicz, “Parallel implementation of a power
system dynamic simulation methodology using the conjugate gradient method,”
IEEE Transactions on Power Systems, vol. 7, no. 1, pp. 458–465, 1992. 2.4.2

[DFK96] ——, “Conjugate gradient methods for power system dynamic simulation on
parallel computers,” IEEE Transactions on Power Systems, vol. 11, no. 3, pp.
1218–1227, 1996. 2.4.2

[DGF12] J. K. Debnath, A. M. Gole, and S. Filizadeh, “Electromagnetic transient simula-
tion of large-scale electrical power networks using graphics processing units,”
in Proceedings of 25th IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), Montreal, Apr. 2012. 2.4.1

[DM74] J. E. Dennis and J. J. Moré, “A characterization of superlinear convergence and
its application to quasi-Newton methods,” Mathematics of Computation, vol. 28,
no. 126, pp. 549–549, May 1974. 4.7, A.1

[DN12] I. Dzafic and H. T. Neisius, “Quasi-parallel network applications in real-time dis-
tribution management system,” International Journal of Innovative Computing
and Applications, vol. 4, no. 1, p. 3, 2012. 2.4.3

[DS72] H. Dommel and N. Sato, “Fast Transient Stability Soultions,” IEEE Transactions
on Power Apparatus and Systems, vol. PAS-91, no. 4, pp. 1643–1650, Jul. 1972.
1.2.5

http://www.fp7-pegase.eu/

186 BIBLIOGRAPHY

[DS11] H. Dag and G. Soykan, “Power flow using thread programming,” in Proceedings
of 2011 IEEE PES PowerTech conference, Trondheim, Jun. 2011. 2.4.3

[DW84] J. Dennis and H. Walker, “Inaccuracy in quasi-Newton methods: Local improve-
ment theorems,” in Mathematical Programming at Oberwolfach II, B. Korte and
K. Ritter, Eds. Springer Berlin Heidelberg, 1984, vol. 22, pp. 70–85. A.1

[Eck13] A. Eckner, “Algorithms for Unevenly-Spaced Time Series: Moving Averages
and Other Rolling Operators,” Tech. Rep., 2013. [Online]. Available:
www.eckner.com/papers/ts_alg.pdf 4.6.3.2

[EKM08] M. El-Kyal and A. Machmoum, “Superlinear convergence of asynchronous
multi-splitting waveform relaxation methods applied to a system of nonlinear
ordinary differential equations,” Mathematics and Computers in Simulation,
vol. 77, no. 2-3, pp. 179–188, Mar. 2008. 3.3.3

[EKM+11] A. Ellis, Y. Kazachkov, E. Muljadi, P. Pourbeik, and J. J. Sanchez-Gasca, “De-
scription and technical specifications for generic WTG models - A status report,”
in Proceedings of 2011 IEEE PES Power Systems Conference and Exposition
(PSCE 2011), Phoenix, Mar. 2011. 1.3.1

[ES13] M. Eremia and M. Shahidehpour, Handbook of Electrical Power System Dynam-
ics: Modeling, Stability, and Control. John Wiley & Sons, 2013. 1.2.2.1

[Fab12] D. Fabozzi, “Decomposition, Localization and Time-Averaging Approaches in
Large-Scale Power System Dynamic Simulation,” Ph.D. dissertation, Univeristy
of Liege, 2012. 1.2.1, 1.2.2.1, 1.2.3, 1.2.4, 1.2.5.2

[FCHV13] D. Fabozzi, A. S. Chieh, B. Haut, and T. Van Cutsem, “Accelerated and Local-
ized Newton Schemes for Faster Dynamic Simulation of Large Power Systems,”
IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4936–4947, Nov. 2013.
1.2.5.2, 4.1

[FCPV11] D. Fabozzi, A. S. Chieh, P. Panciatici, and T. Van Cutsem, “On simplified han-
dling of state events in time-domain simulation,” in Proc. of 17th Power System
Computational Conference (PSCC), Stockholm, 2011. 1.2.4, C.3.1

[FKA93] D. Falcao, E. Kaszkurewicz, and H. Almeida, “Application of parallel processing
techniques to the simulation of power system electromagnetic transients,” IEEE
Transactions on Power Systems, vol. 8, no. 1, pp. 90–96, 1993. 2.4.2

[Flu02a] A. Flueck, “A message-passing distributed-memory Newton-GMRES parallel
power flow algorithm,” in Proceedings of 2002 IEEE PES Summer Meeting,
Chicago, 2002, pp. 1477–1482. 2.4.2

www.eckner.com/papers/ts_alg.pdf

BIBLIOGRAPHY 187

[Flu02b] ——, “A message-passing distributed-memory parallel power flow algorithm,” in
Proceedings of 2002 IEEE PES Winter Meeting, vol. 1, New York, 2002, pp.
211–216. 2.4.2

[Fly72] M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE
Transactions on Computers, vol. C-21, no. 9, pp. 948–960, Sep. 1972. 2.3.1

[FM04] J. Fung and S. Mann, “Using multiple graphics cards as a general purpose par-
allel computer: applications to computer vision,” in Proceedings of the 17th In-
ternational Conference on Pattern Recognition (ICPR 2004), Cambridge, 2004,
pp. 805–808. 2.4.1

[FMT13] C. Fu, J. D. McCalley, and J. Tong, “A Numerical Solver Design for Extended-
Term Time-Domain Simulation,” IEEE Transactions on Power Systems, vol. 28,
no. 4, pp. 4926–4935, Nov. 2013. 1.2.5

[FP78] J. Fong and C. Pottle, “Parallel Processing of Power System Analysis Problems
Via Simple Parallel Microcomputer Structures,” IEEE Transactions on Power Ap-
paratus and Systems, vol. PAS-97, no. 5, pp. 1834–1841, Sep. 1978. 2.4.2

[Fra12] F. Franchetti, “A multi-core high performance computing framework for prob-
abilistic solutions of distribution systems,” in Proceedings of 2012 IEEE PES
General Meeting, San Diego, Jul. 2012. 2.4.3

[FV09] D. Fabozzi and T. Van Cutsem, “Simplified time-domain simulation of detailed
long-term dynamic models,” in Proceedings of 2009 IEEE PES General Meet-
ing, Calgary, Jul. 2009. 1.2.3, 1.2.6

[FX06] D. Fang and Y. Xiaodong, “A New Method for Fast Dynamic Simulation of Power
Systems,” IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 619–628,
May 2006. 3.3.2

[Gar10] N. Garcia, “Parallel power flow solutions using a biconjugate gradient algorithm
and a Newton method: A GPU-based approach,” in Proceedings of 2010 IEEE
PES General Meeting, Minneapolis, Jul. 2010. 2.4.1

[Gea71] C. W. Gear, Numerical initial value problems in ordinary differential equations,
prentice-h ed. Prentice-Hall, 1971. 1.2.2.1, 1.2.3

[GHN99] M. Gander, L. Halpern, and F. Nataf, “Optimal convergence for overlapping and
non-overlapping Schwarz waveform relaxation,” in Proceedings of 11th Interna-
tional Conference on Domain Decomposition Methods, Greenwich, 1999, pp.
27–36. 3.3.3

188 BIBLIOGRAPHY

[GJY+12] C. Guo, B. Jiang, H. Yuan, Z. Yang, L. Wang, and S. Ren, “Performance Com-
parisons of Parallel Power Flow Solvers on GPU System,” in Proceedings of
2012 IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), Seoul, Aug. 2012, pp. 232–239. 2.4.1

[GMLT94] G. Granelli, M. Montagna, M. La Scala, and F. Torelli, “Relaxation-Newton meth-
ods for transient stability analysis on a vector/parallel computer,” IEEE Transac-
tions on Power Systems, vol. 9, no. 2, pp. 637–643, May 1994. 2.4.2

[GNV07] A. Gopal, D. Niebur, and S. Venkatasubramanian, “DC Power Flow Based Con-
tingency Analysis Using Graphics Processing Units,” in Proceedings of 2007
IEEE PowerTech conference, Lausanne, Jul. 2007, pp. 731–736. 2.4.1

[GO13] N. Garcia and R. C. Olmos, “GPU-accelerated Poincaré map method for
harmonic-oriented analyses of power systems,” in Proceedings of 2013 IEEE
PES General Meeting, Vancouver, 2013. 2.4.1

[Gov10] D. Gove, Multicore Application Programming: For Windows, Linux, and Oracle
Solaris. Addison-Wesley Professional, 2010. 2.1, 2.5.2, 3, 4.9.4.2

[GSAR09] J. Giri, D. Sun, and R. Avila-Rosales, “Wanted: A more intelligent grid,” IEEE
Power and Energy Magazine, vol. 7, pp. 34–40, 2009. 4.9.4.3

[GSD+03] W. Gao, E. Solodovnik, R. Dougal, G. Cokkinides, and A. Meliopoulos, “Elimina-
tion of numerical oscillations in power system dynamic simulation,” in Proceed-
ings of 18th Annual IEEE Applied Power Electronics Conference and Exposition
(APEC), vol. 2, no. 1, Miami, 2003, pp. 790–794. 1.2.2.1

[GT82] A. Griewank and P. L. Toint, “Local convergence analysis for partitioned quasi-
Newton updates,” Numerische Mathematik, vol. 39, no. 3, pp. 429–448, Oct.
1982. 4.7, A.1

[GTD08] D. Guibert and D. Tromeur-Dervout, “A Schur Complement Method for
DAE/ODE Systems in Multi-Domain Mechanical Design,” in Domain Decompo-
sition Methods in Science and Engineering XVII. Springer, 2008, pp. 535–541.
3.2.1, 3.2.3.1

[Gur88] J. Gurd, “A taxonomy of parallel computer architectures,” in Proceedings of 1988
International Specialist Seminar on the Design and Application of Parallel Digital
Processors, Lisbon, 1988, pp. 57–61. 2.3.2

[GWA11] R. C. Green, L. Wang, and M. Alam, “High performance computing for electric
power systems: Applications and trends,” in Proceedings of 2011 IEEE PES
General Meeting, Geneva, 2011. 5.1

BIBLIOGRAPHY 189

[HA11] T. D. Han and T. S. Abdelrahman, “hiCUDA: High-Level GPGPU Programming,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1, pp. 78–
90, Jan. 2011. 2.4.1

[Hap74] H. Happ, “Diakoptics- The solution of system problems by tearing,” Proceedings
of the IEEE, vol. 62, no. 7, 1974. 3.3.3

[HB97] L. Hou and A. Bose, “Implementation of the waveform relaxation algorithm on a
shared memory computer for the transient stability problem,” IEEE Transactions
on Power Systems, vol. 12, no. 3, pp. 1053–1060, 1997. 2.4.3

[Hed14] W. F. Hederman, “IEEE Joint Task Force on Quadrennial Energy Review,” IEEE,
Tech. Rep., 2014. 2.5.3

[HKB12] A. Heinecke, M. Klemm, and H.-J. Bungartz, “From GPGPU to Many-Core:
Nvidia Fermi and Intel Many Integrated Core Architecture,” Computing in Sci-
ence & Engineering, vol. 14, no. 2, pp. 78–83, Mar. 2012. 2.4.1

[HP00] I. Hiskens and M. Pai, “Trajectory sensitivity analysis of hybrid systems,” IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications,
vol. 47, no. 2, pp. 204–220, 2000. 1.2.4

[HP02] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach, 3rd Edition. Morgan Kaufmann, 2002. 2.1

[HR88] M. Haque and A. Rahim, “An efficient method of identifying coherent generators
using Taylor series expansion,” IEEE Transactions on Power Systems, vol. 3, pp.
1112–1118, 1988. 3.3.1

[HSL14] HSL, “A collection of Fortran codes for large scale scientific computation.”
2014. [Online]. Available: http://www.hsl.rl.ac.uk/ 4.9, 5.8

[HSS08] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dy-
namics, and function using NetworkX,” in Proceedings of 7th Python in Science
Conference (SciPy2008), vol. 836, Pasadena, 2008, pp. 11–15. 6

[HSV81] G. Hachtel and A. Sangiovanni-Vincentelli, “A survey of third-generation sim-
ulation techniques,” Proceedings of the IEEE, vol. 69, pp. 1264–1280, 1981.
4.6

[HW96] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, 2nd ed., ser.
Springer Series in Computational Mathematics. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996. 1.2.2.1

http://www.hsl.rl.ac.uk/

190 BIBLIOGRAPHY

[HWYC09] L. Huwang, Y. H. T. Wang, A. B. Yeh, and Z. S. J. Chen, “On the exponentially
weighted moving variance,” Naval Research Logistics, vol. 56, pp. 659–668,
2009. 4.6.3.2

[ILM98] F. Iavernaro, M. La Scala, and F. Mazzia, “Boundary values methods for time-
domain simulation of power system dynamic behavior,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 45, no. 1,
pp. 50–63, 1998. 3.3.3

[IS90] M. Irving and M. Sterling, “Optimal network tearing using simulated annealing,”
IEE Proceedings C (Generation, Transmission and Distribution), vol. 137, no. 1,
pp. 69–72, 1990. 3.3.1

[ISCP87] M. Ilic’-Spong, M. L. Crow, and M. A. Pai, “Transient Stability Simulation by
Waveform Relaxation Methods,” IEEE Transactions on Power Systems, vol. 2,
no. 4, pp. 943–949, 1987. 3.3.3

[Ish08] A. Ishchenko, “Dynamics and stability of distribution networks with dispersed
generation,” Ph.D. dissertation, Eindhoven University of Technology, 2008. 1.3.1

[JMD09] V. Jalili-Marandi and V. Dinavahi, “Instantaneous Relaxation-Based Real-Time
Transient Stability Simulation,” IEEE Transactions on Power Systems, vol. 24,
no. 3, pp. 1327–1336, Aug. 2009. 2.4.2, 3.3.1, 3.3.3

[JMD10] ——, “SIMD-Based Large-Scale Transient Stability Simulation on the Graph-
ics Processing Unit,” IEEE Transactions on Power Systems, vol. 25, no. 3, pp.
1589–1599, Aug. 2010. 2.4.1, 3.3.2

[JMZD12] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi, “Large-Scale Transient Stability Sim-
ulation of Electrical Power Systems on Parallel GPUs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 7, pp. 1255–1266, Jul. 2012. 2.4.1,
3.3.3

[JW01] Y.-L. Jiang and O. Wing, “A note on convergence conditions of waveform relax-
ation algorithms for nonlinear differential-algebraic equations,” Applied Numeri-
cal Mathematics, vol. 36, no. 2-3, pp. 281–297, Feb. 2001. 3.3.3

[KB00] B. Kim and R. Baldick, “A comparison of distributed optimal power flow algo-
rithms,” IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 599–604, May
2000. 2.4.2

[KD13] H. Karimipour and V. Dinavahi, “Accelerated parallel WLS state estimation for
large-scale power systems on GPU,” in Proceedings of 2013 North American
Power Symposium (NAPS), Manhatan, Sep. 2013. 2.4.1

BIBLIOGRAPHY 191

[Kel95] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations. SIAM, 1995.
A.1

[KM09] S. K. Khaitan and J. McCalley, “Fast parallelized algorithms for on-line extended-
term dynamic cascading analysis,” in Proceedings of 2009 IEEE PES Power
Systems Conference and Exposition (PSCE), Seattle, Mar. 2009. 2.4.2

[KPG92] A. Kulkarni, M. Pai, and S. Ghoshal, “Parallel computation of power system
dynamics using multistep methods,” International Journal of Electrical Power &
Energy Systems, vol. 14, no. 1, pp. 33–38, Feb. 1992. 2.4.2

[KRF92] D. P. Koester, S. Ranka, and G. C. Fox, “Power Systems Transient Stability-A
Grand Computing Challenge,” NPAC, Tech. Rep. August, 1992. 3.3.1, 5.1

[KRF94] ——, “A parallel Gauss-Seidel algorithm for sparse power system matrices,” in
Proceedings of the 1994 ACM/IEEE conference on Supercomputing, New York,
1994. 2.4.2

[Kro63] G. Kron, Diakoptics: the piecewise solution of large-scale systems. London:
MacDonald, 1963. 3.3.3

[KSY+91] J. Kubokawa, H. Sasaki, N. Yorino, N. Okubo, J. Takehara, and M. Kitagawa, “A
parallel computation of state estimation by transputer,” in Proceedings of 1991
International Conference on Advances in Power System Control, Operation and
Management, Hong Kong, 1991. 2.4.2

[Kun94] P. Kundur, Power system stability and control. McGraw-hill New York, 1994.
1.2

[LB93] M. La Scala and A. Bose, “Relaxation/Newton methods for concurrent time step
solution of differential-algebraic equations in power system dynamic simula-
tions,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 40, no. 5, pp. 317–330, May 1993. 1.2.2, 2.4.2

[LBTC90] M. La Scala, A. Bose, D. Tylavsky, and J. Chai, “A highly parallel method for
transient stability analysis,” IEEE Transactions on Power Systems, vol. 5, no. 4,
pp. 1439–1446, Nov. 1990. 3.3.3

[LBTT90] M. La Scala, M. Brucoli, F. Torelli, and M. Trovato, “A Gauss-Jacobi-Block-
Newton method for parallel transient stability analysis (of power systems),” IEEE
Transactions on Power Systems, vol. 5, no. 4, pp. 1168–1177, 1990. 2.4.2, 3.3.3

[LDG+12] P. Li, C. Ding, F. Gao, H. Yu, X. Guo, Y. Zhou, and C. Wang, “The parallel
algorithm of transient simulation for distributed generation powered micro-grid,”
in Proceedings of 2012 IEEE PES Innovative Smart Grid Technologies (ISGT),
Tianjin, May 2012. 2.4.3

192 BIBLIOGRAPHY

[LDTY11] Z. Li, V. D. Donde, J.-C. Tournier, and F. Yang, “On limitations of traditional
multi-core and potential of many-core processing architectures for sparse linear
solvers used in large-scale power system applications,” in Proceedings of 2011
IEEE PES General Meeting, Detroit, Jul. 2011. 2.4.1, 2.4.3

[LJ15] Y. Liu and Q. Jiang, “Two-Stage Parallel Waveform Relaxation Method for
Large-Scale Power System Transient Stability Simulation,” IEEE Transactions
on Power Systems, pp. 1–10, 2015. 3.3.3

[LL14] X. Li and F. Li, “GPU-based power flow analysis with Chebyshev preconditioner
and conjugate gradient method,” Electric Power Systems Research, vol. 116,
pp. 87–93, Nov. 2014. 2.4.1

[LSS94] M. La Scala, G. Sblendorio, and R. Sbrizzai, “Parallel-in-time implementation
of transient stability simulations on a transputer network,” IEEE Transactions on
Power Systems, vol. 9, no. 2, pp. 1117–1125, May 1994. 2.4.2, 3.3.3

[LST91] M. La Scala, R. Sbrizzai, and F. Torelli, “A pipelined-in-time parallel algorithm
for transient stability analysis (power systems),” IEEE Transactions on Power
Systems, vol. 6, no. 2, pp. 715–722, May 1991. 2.4.2, 3.3.3

[LT95] C. Lemaitre and B. Thomas, “Two applications of parallel processing in power
system computation,” in Proceedings of 1995 Power Industry Computer Appli-
cations Conference, Salt Lake City, 1995, pp. 62–69. 2.4.2

[MBB08] J. Machowski, J. Bialek, and J. Bumby, Power system dynamics: stability and
control. JohnWiley & Sons, 2008. 1.2, 1.2.2, 1.2.2.1, 1.2.2.1, 1.2.5, 1.2.5.1,
1.2.5.2, 1.2.5.2, 4.4, 5.3.4

[McK04] S. A. McKee, “Reflections on the memory wall,” in Proceedings of the 1st con-
ference on computing frontiers on Computing frontiers, New York, 2004, p. 162.
2.1

[Mil10] F. Milano, Power System Modelling and Scripting, ser. Power Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010. 1.2.2.1, 1.2.5.1, 1.2.5.2, 1.2.5.2,
A.1

[MMR10] B. Marinescu, B. Mallem, and L. Rouco, “Large-scale power system dynamic
equivalents based on standard and border synchrony,” IEEE Transactions on
Power Systems, vol. 25, no. 4, pp. 1873–1882, 2010. 5.1

[Mor99] B. Morini, “Convergence behaviour of inexact Newton methods,” Mathematics
of Computation, vol. 68, no. 228, pp. 1605–1614, Mar. 1999. 4.7

BIBLIOGRAPHY 193

[MQ92] N. Muller and V. H. Quintana, “A sparse eigenvalue-based approach for parti-
tioning power networks,” IEEE Transactions on Power Systems, vol. 7, pp. 520–
527, 1992. 3.3.1

[MRR12] M. McCool, J. Reinders, and A. Robison, Structured parallel programming: pat-
terns for efficient computation. Elsevier/Morgan Kaufmann, 2012. 2.1, 2.4.3,
2.5, 2.5.1, 2.5.3, 2.5.4, 2.6.1, 2.6.2, 2.6.2, 2.6.3, 2.8

[MSM04] T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for Parallel Pro-
gramming. Addison Wesley Software Patterns Series, 2004. 2.1, 2.3.1, 2.3.2

[Mul01] U. A. Muller, “Specially weighted moving averages with repeated application
of the ema operator,” Olsen and Associates, Zurich, Switzerland, Tech. Rep.,
2001. 4.6.3.2, 4.6.3.2, 4.6.3.2

[NAA11] K. M. Nor and M. Abdel-Akher, “Parallel three-phase load flow analysis for large
scale unbalanced distribution networks,” in Proceedings of 2011 International
Conference on Power Engineering, Energy and Electrical Drives, Malaga, May
2011. 2.4.3

[Nie64] J. Nievergelt, “Parallel methods for integrating ordinary differential equations,”
Communications of the ACM, vol. 7, pp. 731–733, 1964. 3.3.3

[NMT+06] J. Nieplocha, A. Marquez, V. Tipparaju, D. Chavarria-Miranda, R. Guttromson,
and H. Huang, “Towards efficient power system state estimators on shared
memory computers,” in Proceedings of 2006 IEEE PES General Meeting, Mon-
treal, 2006. 2.4.3

[OKS90] T. Oyama, T. Kitahara, and Y. Serizawa, “Parallel processing for power system
analysis using band matrix,” IEEE Transactions on Power Systems, vol. 5, no. 3,
pp. 1010–1016, 1990. 2.4.2

[OO96] Y. Oda and T. Oyama, “Fast calculation using parallel processing and pipeline
processing in power system analysis,” Electrical Engineering in Japan, vol. 116,
no. 5, pp. 85–96, 1996. 2.4.2

[PAGV14] F. Plumier, P. Aristidou, C. Geuzaine, and T. Van Cutsem, “A relaxation scheme
to combine Phasor-Mode and Electromagnetic Transients Simulations,” in Pro-
ceedings of 18th Power System Computational Conference (PSCC), Warsaw,
2014. C.5

[PLGMH11] F. Pruvost, P. Laurent-Gengoux, F. Magoules, and B. Haut, “Accelerated Wave-
form Relaxation methods for power systems,” in Proceedings of 2011 Inter-
national Conference on Electrical and Control Engineering, Wuhan, 2011, pp.
2877–2880. 4, 3.3.3

194 BIBLIOGRAPHY

[Pod78] R. Podmore, “Identification of Coherent Generators for Dynamic Equivalents,”
IEEE Transactions on Power Apparatus and Systems, vol. PAS-97, 1978. 3.3.1

[Prz63] J. S. Przemieniecki, “Matrix Structural Analysis of Substructures,” AIAA Journal,
vol. 1, pp. 138–147, 1963. 3.1

[QH13] Z. Qin and Y. Hou, “A GPU-Based Transient Stability Simulation Using Runge-
Kutta Integration Algorithm,” International Journal of Smart Grid and Clean En-
ergy, vol. 2, no. 1, pp. 32–39, 2013. 2.4.1

[RM09] J. Rommes and N. Martins, “Exploiting structure in large-scale electrical circuit
and power system problems,” Linear Algebra and its Applications, vol. 431, no.
3-4, pp. 318–333, Jul. 2009. 6.2, 6.2

[RR13] T. Rauber and G. Rünger, Parallel programming: For multicore and cluster sys-
tems. Springer-Verlag Berlin Heidelberg, 2013. 2.2.3

[RR14] L. Rakai and W. Rosehart, “GPU-Accelerated Solutions to Optimal Power Flow
Problems,” in Proceedings of 47th Hawaii International Conference on System
Sciences, Hawaii, Jan. 2014, pp. 2511–2516. 2.4.1

[RSI85] M. Rafian, M. Sterling, and M. Irving, “Decomposed load-flow algorithm suitable
for parallel processor implementation,” IEE Proceedings C Generation, Trans-
mission and Distribution, vol. 132, no. 6, p. 281, 1985. 2.4.2

[SA10] J. Singh and I. Aruni, “Accelerating Power Flow studies on Graphics Process-
ing Unit,” in Proceedings of 2010 Annual IEEE India Conference (INDICON),
Kolkata, Dec. 2010. 2.4.1

[Saa03] Y. Saad, Iterative methods for sparse linear systems, 2nd ed. Society for In-
dustrial and Applied Mathematics, 2003. 3.1, 3.2.1, 3.2.3.1, 3.2.3.1, 3.2.3.2,
5.4

[Sch08] J. Schlabbach, “Low voltage fault ride through criteria for grid connection of
wind turbine generators,” in Proceedings of 5th International Conference on the
European Electricity Market, Lisboa, May 2008. 5.7, 5.8.1

[SCM98] E. Solodovnik, G. Cokkinides, and A. S. Meliopoulos, “On stability of implicit
numerical methods in nonlinear dynamical systems simulation,” in Proceedings
of 13th Southeastern Symposium on System Theory, 1998, pp. 27–31. 1.2.2.1

[SCM08] G. Stefopoulos, G. Cokkinides, and A. Meliopoulos, “Quadratic integration
method for transient simulation and harmonic analysis,” in Proceedings of 13th
International Conference on Harmonics and Quality of Power, Wollongong,
2008. 1.2.2.1

BIBLIOGRAPHY 195

[SL85] A. Saleh and M. Laughton, “Cluster analysis of power-system networks for array
processing solutions,” IEE Proceedings C Generation, Transmission and Distri-
bution, vol. 132, no. 4, p. 172, 1985. 2.4.2

[SS99] Y. Saad and M. Sosonkina, “Distributed Schur complement techniques for
general sparse linear systems,” SIAM Journal on Scientific Computing, 1999.
3.2.3.1

[Sto79] B. Stott, “Power system dynamic response calculations,” Proceedings of the
IEEE, vol. 67, no. 2, pp. 219–241, 1979. 1.2.3, 1.2.5

[SVCC77] A. Sangiovanni-Vincentelli, L.-K. Chen, and L. Chua, “An efficient heuristic clus-
ter algorithm for tearing large-scale networks,” IEEE Transactions on Circuits
and Systems, vol. 24, 1977. 3.3.1

[SW03] M. Shahidehpour and Y. Wang, Communication and Control in Electric Power
Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc., Jun. 2003. 2.4.2

[SXZ05] J. Shu, W. Xue, and W. Zheng, “A Parallel Transient Stability Simulation for
Power Systems,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 1709–
1717, Nov. 2005. 2.4.2, 3.3.2

[TAT81] H. Taoka, S. Abe, and S. Takeda, “Multiprocessor system for power system
analysis,” Annual Review in Automatic Programming, vol. 11, pp. 101–106, Jan.
1981. 2.4.2

[TC95] M. Ten Bruggencate and S. Chalasani, “Parallel implementations of the power
system transient stability problem on clusters of workstations,” in Proceedings
of the 1995 ACM/IEEE conference on Supercomputing, San Diego, 1995, p. 34.
2.4.2, 3.3.2

[TDL11] J.-C. Tournier, V. Donde, and Z. Li, “Potential of General Purpose Graphic Pro-
cessing Unit for Energy Management System,” in Proceedings of 6th Interna-
tional Symposium on Parallel Computing in Electrical Engineering, Luton, Apr.
2011, pp. 50–55. 2.4.1

[TM72] C. Tavora and O. M. Smith, “Characterization of Equilibrium and Stability in
Power Systems,” IEEE Transactions on Power Apparatus and Systems, vol.
PAS-91, no. 3, pp. 1127–1130, May 1972. 1.2.6

[TOG14] S. Tabik, G. Ortega, and E. M. Garzón, “Performance evaluation of kernel fusion
BLAS routines on the GPU: iterative solvers as case study,” The Journal of
Supercomputing, vol. 70, no. 2, pp. 577–587, Jan. 2014. 2.4.1

196 BIBLIOGRAPHY

[TW67] W. Tinney and J. Walker, “Direct solutions of sparse network equations by opti-
mally ordered triangular factorization,” Proceedings of the IEEE, vol. 55, no. 11,
pp. 1801–1809, 1967. A.1

[TW05] A. Toselli and O. Widlund, Domain Decomposition Methods - Algorithms and
Theory, ser. Springer Series in Computational Mathematics. Berlin-Heidelberg:
Springer-Verlag, 2005, vol. 34. 3.1, 3.2.1, 4

[UBP10] F. M. Uriarte and K. L. Butler-Purry, “Multicore simulation of an AC-radial Ship-
board Power System,” in Proceedings of 2010 IEEE PES General Meeting, Min-
neapolis, Jul. 2010. 2.4.3

[UD13] F. M. Uriarte and C. Dufour, “Multicore methods to accelerate ship power system
simulations,” in Proceedings of 2013 IEEE Electric Ship Technologies Sympo-
sium (ESTS), Arlington, Apr. 2013, pp. 139–146. 2.4.3

[UH11] F. M. Uriarte and R. Hebner, “Development of a multicore power system simu-
lator for ship systems,” in Proceedings of 2011 IEEE Electric Ship Technologies
Symposium, Alexandria, Apr. 2011, pp. 106–110. 2.4.3

[VCB92] G. Vuong, R. Chahine, and S. Behling, “Supercomputing for power system anal-
ysis,” IEEE Computer Applications in Power, vol. 5, no. 3, pp. 45–49, Jul. 1992.
2.4.2

[VFK92] M. Vale, D. Falcao, and E. Kaszkurewicz, “Electrical power network decom-
position for parallel computations,” in Proceedings of 1992 IEEE International
Symposium on Circuits and Systems, vol. 6, San Diego, 1992. 3.3.1

[VGL06] T. Van Cutsem, M. E. Grenier, and D. Lefebvre, “Combined detailed and quasi
steady-state time simulations for large-disturbance analysis,” International Jour-
nal of Electrical Power and Energy Systems, vol. 28, pp. 634–642, 2006. C.3.1

[VLER12] F. Villella, S. Leclerc, I. Erlich, and S. Rapoport, “PEGASE pan-European test-
beds for testing of algorithms on very large scale power systems,” in Proceed-
ings of 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Eu-
rope), Berlin, Oct. 2012. 1.3.3

[VMMO11] C. Vilacha, J. C. Moreira, E. Miguez, and A. F. Otero, “Massive Jacobi power flow
based on SIMD-processor,” in Proceedings of 10th International Conference on
Environment and Electrical Engineering, Rome, May 2011. 2.4.1

[VP13] T. Van Cutsem and L. Papangelis, “Description, Modeling and Simulation
Results of a Test System for Voltage Stability Analysis,” University of Liege,
Tech. Rep. November, 2013. [Online]. Available: http://hdl.handle.net/2268/
141234 1.3.1, 4.9.1, 4.9.1.1

http://hdl.handle.net/2268/141234
http://hdl.handle.net/2268/141234

BIBLIOGRAPHY 197

[VV13] G. Valverde and T. Van Cutsem, “Control of dispersed generation to regulate
distribution and support transmission voltages,” in Proceedings of IEEE PES
2013 PowerTech conference, Grenoble, Jun. 2013. 1.3.1, 5.8.2

[WC76] Y. Wallach and V. Conrad, “Parallel solutions of load flow problems,” Archiv für
Elektrotechnik, vol. 57, no. 6, pp. 345–354, Nov. 1976. 2.4.2

[WEC14] “Wind Power Plant Dynamic Modeling Guide,” Western Electricity Coordinating
Council (WECC), Tech. Rep., 2014. 1.3.1

[WHS99] F. Wang, N. Hadjsaid, and J. Sabonnadière, “Power system parallel computation
by a transputer network,” Electric Power Systems Research, vol. 52, no. 1, pp.
1–7, Oct. 1999. 2.4.2

[Woh01] B. I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain
Decomposition, ser. Lecture Notes in Computational Science and Engineering.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, vol. 17. 3.1, 4

[XCCG10] Y. Xu, Y. Chen, L. Chen, and Y. Gong, “Parallel real-time simulation of Integrated
Power System with multi-phase machines based on component partitioning,” in
Proceedings of 2010 International Conference on Power System Technology,
Zhejiang, Oct. 2010. 2.4.3

[Yan14] R. R. O. Yang, “A Comparison of EMT, Dynamic Phasor, and Traditional Tran-
sient Stability Models,” M.Sc. Thesis, University of Manitoba, 2014. C.5

[YRA93] S. B. Yusof, G. J. Rogers, and R. T. H. Alden, “Slow coherency based network
partitioning including load buses,” IEEE Transactions on Power Systems, vol. 8,
pp. 1375–1381, 1993. 3.3.1

[YXZJ02] L. Yalou, Z. Xiaoxin, W. Zhongxi, and G. Jian, “Parallel algorithms for transient
stability simulation on PC cluster,” in Proceedings of 2002 International Confer-
ence on Power System Technology, vol. 3, no. 1, Kunming, 2002, pp. 1592–
1596. 2.4.2, 3.3.2

[ZCC96] X.-P. Zhang, W.-J. Chu, and H. Chen, “Decoupled asymmetrical three-phase
load flow study by parallel processing,” IEE Proceedings - Generation, Trans-
mission and Distribution, vol. 143, no. 1, p. 61, 1996. 2.4.2

[ZD14] Z. Zhou and V. Dinavahi, “Parallel Massive-Thread Electromagnetic Transient
Simulation on GPU,” IEEE Transactions on Power Delivery, vol. 29, no. 3, pp.
1045–1053, Jun. 2014. 2.4.1

	Contents
	Acknowledgments
	Abstract
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Power system modeling
	1.2.1 Model overview
	1.2.2 Numerical integration methods
	1.2.3 Time-step selection
	1.2.4 Treatment of discrete events
	1.2.5 Dealing with algebraic and differential equations
	1.2.6 System reference frame

	1.3 Description of power system models used in this work
	1.3.1 Nordic system
	1.3.2 Hydro-Québec system
	1.3.3 PEGASE system

	1.4 Thesis objective
	1.5 Thesis outline

	2 Think parallel
	2.1 The motivation for multi-core processors
	2.2 Types of parallelism
	2.2.1 Algorithm-level parallelism
	2.2.2 Data-level and task-level parallelism
	2.2.3 Instructional parallelism
	2.2.4 Bit-level parallelism
	2.2.5 Types of parallelism used in this thesis

	2.3 Parallel computer hardware
	2.3.1 Flynn’s taxonomy
	2.3.2 Further characterization according to memory organization

	2.4 Selecting a parallel programming model
	2.4.1 General purpose computing on graphics processing units
	2.4.2 Message passing interface
	2.4.3 Shared-memory models

	2.5 Performance theory
	2.5.1 Scalability, speedup and efficiency
	2.5.2 Amdahl's law
	2.5.3 Gustafson-Barsis' law
	2.5.4 Work-span model

	2.6 Shared-memory computers performance considerations
	2.6.1 Synchronization
	2.6.2 Lack of locality
	2.6.3 Load imbalance

	2.7 Description of computers used in this work
	2.8 Summary

	3 DDMs and their Application to Power Systems
	3.1 Introduction
	3.2 DDM characteristics
	3.2.1 Sub-domain partitioning
	3.2.2 Problem solution over sub-domains
	3.2.3 Sub-domain interface variables processing

	3.3 Existing approaches in power system dynamic simulations
	3.3.1 Partitioning
	3.3.2 Fine-grained methods
	3.3.3 Coarse-grained methods

	3.4 Summary

	4 Parallel Schur-complement-based DDM
	4.1 Introduction
	4.2 Power system decomposition
	4.3 Sub-system solution
	4.4 Schur-complement treatment of interface variables
	4.5 Parallel algorithm
	4.6 Localization techniques
	4.6.1 Skipping converged sub-systems
	4.6.2 Asynchronous update of sub-domain matrices
	4.6.3 Latency

	4.7 Effects of localization techniques on convergence
	4.8 Parallelization specifics
	4.8.1 Localization techniques
	4.8.2 Load balancing
	4.8.3 Overhead cost
	4.8.4 Profiling

	4.9 Experimental results
	4.9.1 Nordic system
	4.9.2 Hydro-Québec system
	4.9.3 Pegase system
	4.9.4 Discussion

	4.10 Summary

	5 Parallel two-level Schur-complement-based DDM
	5.1 Introduction
	5.2 Power system decomposition
	5.2.1 First level of decomposition: Network
	5.2.2 Second level of decomposition: Injectors

	5.3 Sub-system solution
	5.3.1 Sub-domain reduced systems formulation
	5.3.2 Global reduced system formulation
	5.3.3 Back-substitution and solution
	5.3.4 Base power selection

	5.4 Parallel algorithm
	5.5 Localization techniques
	5.5.1 Skipping converged sub-systems
	5.5.2 Asynchronous update of injector or sub-domain reduced matrices
	5.5.3 Latency

	5.6 Effects of localization techniques on convergence
	5.7 Parallelization specifics
	5.8 Experimental results
	5.8.1 Nordic variant 1 system
	5.8.2 Nordic variant 2 system
	5.8.3 Hydro-Québec system
	5.8.4 Discussion

	5.9 Summary

	6 General conclusion
	6.1 Summary of work and main contributions
	6.2 Directions for future work

	Appendices
	A Analysis of Newton-type schemes
	A.1 Review
	A.2 Inexact Newton schemes

	B Test-System diagrams
	C RAMSES
	C.1 Introduction
	C.2 Power system modeling
	C.3 Acceleration techniques
	C.3.1 Time-scale decomposition

	C.4 Software implementation
	C.4.1 Why Fortran?
	C.4.2 Command line
	C.4.3 Dynamic library
	C.4.4 Graphic user interface
	C.4.5 MATLAB

	C.5 Validation
	C.5.1 Scenario 1
	C.5.2 Scenario 2

	D Numerical profiling

	Bibliography

