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Abstract—Eigenanalysis of power systems is frequently used
to study the effect and tune the response of existing controllers,
or to guide the design of new controllers. However, recent
developments in the area lead to the necessity of studying larger
power system models, resulting from the interconnection of
transmission networks or the joint consideration of transmission
and distribution networks. Moreover, these models include new
types of controls, mainly based on power electronic interfaces,
which are expected to provide significant support in the future.
The consequence is that the size and complexity of these models
challenge the computational efficiency of existing eigenanalysis
methods. In this paper, a procedure is proposed that uses domain
decomposition and parallel computing methods, to accelerate
the computation of eigenvalues in a selected region of the
complex plane with iterative eigenanalysis methods. The proposed
algorithm is validated on a small transmission system and its
performance is assessed on a large-scale, combined transmission
and distribution system.

Index Terms—eigenanalysis, domain decomposition, parallel
computing, OpenMP, implicitly restarted Arnoldi

I. INTRODUCTION

Small-signal analysis allows extracting information on the
stability and dynamic characteristics of power systems, and
is essential for the design, coordination, and integration of
controllers [1]. Classical problems tackled by eigenanalysis
are the configuration of Power System Stabilizers (PSSs),
Automatic Voltage Regulators (AVRs), and speed governors
[2]. Other applications involve the analysis of controls and sta-
bilizers for FACTS-based devices, and studying the dynamic
performance of Wind-Turbine (WT) generators, PhotoVoltaic
(PV) generators, HVDC converters, etc. [1]. The latter are
expected to play a significant role in the desired transition to
a sustainable electric power system.

The eigenanalysis can be performed with full space methods
such as QR and QZ [3], which can compute all the eigenvalues.
These methods are computationally and memory intensive
and can be efficiently used for systems up to few thousand
variables. For larger systems, iterative methods such as the
Implicitly Restarted Arnoldi Method (IRAM) [4], the Jacobi-
Davidson QZ (JDQZ) [4], or the inverse power iteration [5],
are frequently used. These methods compute eigenvalues only
in a selected region of the complex plane and can handle
systems with several thousand variables.

Recent developments in power systems require the analysis
of increasingly larger models. These can involve large-scale

interconnected systems, such as the European Interconnected
system, or combined transmission and distribution systems, in
order to study the contribution of active distribution network
controls and Distributed Generators (DGs) to the system dy-
namics. The size and complexity of these models challenge the
computational efficiency even of iterative eigenanalysis meth-
ods and can decrease the productivity of engineers (increased
time spent on waiting for the calculations and getting results).
Various techniques have been proposed to exploit the structure
and sparsity of the matrices to accelerate the computations [5],
[6], [7]. While other techniques employ parallelization for the
computation of eigenvalues in different areas of the complex
plane [8], [9] or parallelize the computation of each pair of
eigenvalues [10], [11], [12].

In this paper, a new parallel procedure is proposed to
accelerate the solution of linear systems required by iterative
eigenanalysis methods. First, a topological-based decompo-
sition of the power system is performed, revealing a non-
overlapping, star-shaped partitioning, similar to [13]. Next,
the Differential-Algebraic Equations (DAEs) describing the
power system are projected onto the sub-domains, formulating
the corresponding sub-problems. The latter are linearized,
providing an equivalent, decomposed description of the system
which is needed for eigenanalysis. Thus, the requested solution
of the linear system is computed implicitly, using parallel
computing techniques, and without the need to eliminate the
algebraic states. Finally, a Schur-complement approach is used
to treat the interface variables between the sub-domains, thus
ensuring the accuracy of the decomposed solution.

The proposed procedure exploits the sparsity of the power
system matrices and accelerates the solution by parallelizing
the factorization and solution of the sub-systems. In addition,
the decomposition of the system allows to skip some unnec-
essary computations, without affecting the solution accuracy.
The proposed Decomposed Parallel Solver (DPS) is imple-
mented with the use of shared-memory parallel computing
techniques through the OpenMP Application Programming
Interface (API), targeting common, inexpensive multi-core
machines.

In this work, the IRAM (provided by ARPACK [14]) was
used with the proposed DPS performing the requested linear
system solutions through the reverse communication interface
[14]. A small-scale power system model (656 DAEs) was



used to validate its accuracy, and also a large-scale, combined
transmission and distribution system model (137186 DAEs) to
assess its performance on a multi-core desktop computer.

The paper is organized as follows. In Section II, the power
system dynamic model and the eigenvalue problem are re-
viewed. In Section III, the proposed domain decomposition-
based solution is presented. In Section IV, the implementation
specifics are detailed. Simulation results are reported in Sec-
tion V and followed by closing remarks in Section VI.

II. POWER SYSTEM MODEL AND EIGENVALUE PROBLEM

A complex power system is usually modeled with a set of
DAEs [2], as follows:

0 = Ψ(x,V ) (1a)
Γẋ = Φ(x,V ) (1b)

where V is the vector of voltages at the buses of the network
and x is the state vector containing the remaining (except
voltages) differential and algebraic variables of the system.
Furthermore, Γ is a diagonal matrix with:

(Γ)`` =

{
0 if `-th equation is algebraic
1 if `-th equation is differential

(2)

The algebraic Eqs. (1a) describe the network and can be
rewritten as:

0 = DV − I = Ψ(x,V ) (3)

where D includes the real and imaginary parts of the bus
admittance matrix and I is a sub-vector of x containing the
bus currents.

Equation (1b) describes the remaining DAEs of the system
including the dynamics of generating units, their controls,
dynamic loads, and other devices. Together these equations
form a complete mathematical model of the system.

For the purpose of small-signal stability analysis, the DAE
model (1) is linearized around a given system operating point
[1]. This yields the following linearized system:[

0 0
0 Γ

]
︸ ︷︷ ︸

E

[
0

∆ẋ

]
=

[
ΨV Ψx

ΦV Φx

]
︸ ︷︷ ︸

J

[
∆V
∆x

]
(4)

where J is the Jacobian matrix of (1) in descriptor form [7].
The small-signal stability of (1) can be analyzed by inspect-

ing the eigenvalues of its linearized system in the state-space
form [1]:

∆ẋs = Js∆xs (5)

where the algebraic variables have been eliminated and only
the differential (xs) remain. The power system is labeled
small-signal stable if and only if the eigenvalues of Js are
on the negative (left) half-plane [1], [2].

Full space methods require the explicit formulation of Js,
while several iterative methods (e.g. IRAM or JDQZ) require
the repetitive solution of linear systems (Js − σI)y = b, to
compute a few eigenvalues close to the shift σ εC (where I
is the unit matrix and b is a vector given by the eigenanalysis
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Figure 1. Sparsity of J (left) compared to Js (right) in Nordic test system

method) [7]. The shift σ is selected by the user to define
the area of the complex plane around which the eigenvalues
are sought. In some methods, this shift remains the same
throughout the calculations, while in other methods σ is
updated to increase accuracy [7].

Computing the state-space matrix Js explicitly requires
eliminating the algebraic states from (4). By doing so, the
number of variables is significantly decreased while, at the
same time, the sparsity of the system is destroyed. Figure 1
compares the sparsity of J to Js for the Nordic test-system
(Section V-A). It can be seen that while the number of
variables is decreased by more than 50%, the resulting matrix
is almost dense.

While for full space methods the explicit formulation of Js
is necessary, in iterative methods applying shift-and-inverse,
the sparsity of the original matrices can be exploited. It can
be shown that [7]:

(Js − σI)y = b⇔ (J − σE)

[
∆V
∆x

]
=

[
0
b̄

]
(6)

where the elements of b are mapped to b̄ using Γ and the
elements of y are extracted from ∆x in the same manner and
correspond to the differential equations of the system. Matrices
J and E are defined in Eq. 4.

Using the right hand formulation of (6) allows to exploit the
sparsity of matrices J and E, employ a sparse linear solver,
and decrease the computation time of iterative eigenanalysis
methods [7].

III. DOMAIN DECOMPOSITION-BASED ALGORITHM

In this section, a procedure to accelerate the solution of the
sparse formulation of (6), using domain decomposition and
parallel computing methods, is presented.

A. Power system partitioning

For the proposed algorithm, the electric network, i.e. trans-
mission lines and buses, is first separated from any other
components to create one sub-domain by itself. Then, each
component connected to the network is separated and each of
these components forms one of the remaining sub-domains.
The components considered in this study refer to devices that
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Figure 2. Decomposed power system model

either produce or consume power in normal operating condi-
tions and can be attached to a single bus (e.g. synchronous
machines, motors, wind-turbines, etc.) or on two buses (e.g.
HVDC lines, AC/DC converters, etc.). Hereon, these will be
referred to as injectors.

The proposed decomposition can be visualized in Fig. 2.
The scheme chosen reveals a star-shaped, non-overlapping,
partition layout. At the center of the star lays the network sub-
domain that has interfaces with many smaller sub-domains;
the other sub-domains on the other hand only interface with
the network sub-domain. This type of partitioning facilitates
and simplifies the use of the Schur-complement approach to
treat the interface variables [13]. Based on this partitioning,
the problem described by Eqs. (1) is decomposed as follows.

The network is described by the algebraic equations:

0 = Ψ(x,V ) (7)

while the sub-problem of each injector can be described by a
DAE problem:

Γiẋi = Φi(xi,V ), i = 1, . . . , N. (8)

where xi and Γi are the projections of x and Γ, defined in
(1), on the i-th sub-domain. N is the number of injectors.
Due to the star-shaped partition scheme applied, the injectors
don’t have dependencies between them but only with the TN
through the voltage variables V .

Thus, the linearized system for the network is formulated:

0 = D∆V −
N∑
i=1

∆Ii = D∆V −
N∑
i=1

Ci∆xi (9)

where the interface variables are the rectangular components of
the injector currents (∆Ii) and Ci is a trivial matrix with zeros
and ones whose purpose is to extract the interface variables
from ∆xi. It can be seen that D = ΨV and Ci = Ψxi .

Similarly, the injector linearized systems are formulated:

Γi∆ẋi = Ai∆xi + Bi∆V , i = 1, . . . , N. (10)

where Ai = Φixi
is the Jacobian of (8) towards its own states

(xi) and Bi = ΦiV towards the voltages (V ).

B. Decomposed solution

The decomposed linearized systems can be used to perform
an equivalent solution of (6). This requires solving together:

D∆V −
N∑
i=1

Ci∆xi = 0 (11a)

(Ai − σΓi)︸ ︷︷ ︸
Āi

∆xi + Bi∆V ,= b̄i, i = 1, . . . , N. (11b)

where b̄i is the projection of b̄ on the i-th sub-domain. It can
be seen that the equations are coupled through their interface
variables (∆Ii = Ci∆xi and ∆V ).

For the solution of the decomposed system, Eqs. (11b) are
solved for their states (∆xi) and replaced in (11a) formulating
a Schur-complement system:(

D −
N∑
i=1

CiĀ
−1
i Bi

)
︸ ︷︷ ︸

D̄

∆V = −
N∑
i=1

CiĀ
−1
i b̄i︸ ︷︷ ︸

b̄V

(12)

Then, (12) is solved to get ∆V , which is inserted in (11b),
thus decoupling the injectors. The resulting equations can be
solved independently for ∆xi, and finally the requested vector
y can be extracted.

It should be noted, that the Schur-complement matrix D̄
retains the sparsity of D (contrary to Js with J ), since the
terms CiĀ

−1
i Bi add only to the already non-zero elements of

the matrix [13]. Thus, a fast sparse linear solver can be used
for the solution of (12). In addition, the Schur-complement
terms are independent of each other and can be computed in
parallel (see Section III-D).

C. Numerical acceleration

Due to the decomposition of the power system model,
the solution and update of injectors that do not include any
differential equations can be skipped without any effect on the
accuracy of the solution. For example, loads are frequently
modeled with exponential equations of the type [2]:

P = P0

(
V

V0

)α
, Q = Q0

(
V

V0

)β
(13)

For these injectors, Γi = 0 (where 0 denotes a matrix with
all zero elements) holds and their state vector xi does not
include any of the solution elements of y. Thus, if a new shift
σ is given, there is no need to recompute and factorize their
matrices. Furthermore, the solution of their states from (11b)
can be skipped without sacrificing accuracy.

D. Parallel acceleration

The DPS is sketched in Fig. 3. It receives from the iterative
eigenanalysis method vector b and the shift σ, and returns
the solution y. This procedure is called several times by the
iterative eigenanalysis method.

BLOCK A is only executed the first time or when the shift
σ is changed. The shift is applied to all injector matrices



b, σ

First time or
new σ?

yes

no
parallel for (N injector sub-domains)

if (Γi 6= 0) (injector)
Āi = Ai − σΓi

else if (first time)
Āi = Ai

end if
if (Γi 6= 0 or first time)

Factorize Āi

Compute CiĀ
−1
i ,CiĀ

−1
i Bi

end if
end parallel for

Build and factorize D̄

parallel for (N injector sub-domains)
if (Γi 6= 0) Compute CiĀ

−1
i b̄i

end parallel for

Solve D̄∆V = b̄V

parallel for (N injector sub-domains)
if (Γi 6= 0) Solve Āi∆xi = b̄i −Bi∆V

end parallel for

y

BLOCK A

BLOCK B

BLOCK C

BLOCK D

Figure 3. Schematic of proposed DPS

with differential equations and the Schur-complement terms
are computed. In this block, there are N independent tasks
that can be computed in parallel.

The result of C̄i = CiĀ
−1
i is computed and saved in mem-

ory to be used for the calculation of CiĀ
−1
i b̄i in BLOCK B.

The Ci of an injector connected to a single bus is a 2 × ni
matrix (ni the size of xi). Thus, the explicit inversion of Āi

is not necessary and C̄i is calculated by solving the system:

C̄T
i =

(
CiĀ

−1
i

)T
=
(
Ā−1
i

)T
CT
i ⇔ ĀT

i C̄
T
i = CT

i (14)

where T is the conjugate transpose of the complex matrices.
In BLOCK B, the contributions to b̄V of Eq. (12) are

computed in parallel, with N independent tasks. Then, in
BLOCK C, the Schur-complement system is solved for ∆V .

Finally, in BLOCK D, the linear systems of injectors with
differential equations are solved in parallel to obtain ∆xi, and
the elements of y are extracted from them.

IV. IMPLEMENTATION SPECIFICS

For the validation of the results obtained using the pro-
posed parallel solver on a small test-system, the eigenanalysis
method QZ was used through the MATLAB wrapper eig.

For the assessment of the proposed parallel solution pro-
cedure, the shift-and-invert IRAM was used, provided by the
library ARPACK [14] through the MATLAB wrapper eigs.
Through the reverse communication interface of ARPACK,
the user can provide a subroutine that performs the solution
of the sparse system described by (6). Three solvers have been
considered: the sparse linear solver SuiteSparse KLU [15], the
parallel sparse linear solver PARDISO 5.0.0 [16], and the DPS
of Fig. 3. All three solvers are called through MEX interface
subroutines.

The parallel solution procedure presented in Section III does
not make any assumption on the type of parallel computer.
However, for the implementation of the parallel loops in
BLOCKS A, B, and D, the shared-memory parallel computing
model has been used to allow the execution on cheap, multi-
core, parallel machines (e.g. desktop computers). The OpenMP
API was selected as it is supported by most hardware and
software vendors and it allows for portable, user-friendly
programming [17].

One of the most important tasks is to make sure that
parallel threads receive equal amounts of work. Imbalanced
load sharing leads to delays, as some threads are still working
while others have finished and remain idle. OpenMP includes
three predefined mechanisms (namely static, dynamic and
guided) for balancing the work among threads [17].

When the work within each parallel task is the same, the
static strategy is preferred. That is, the parallel tasks are
assigned to the threads evenly prior to the execution. This
strategy has the smallest scheduling overhead cost but can
introduce load imbalance if the work inside each task is not
equal. When the work within each parallel task is highly
imbalanced, the dynamic strategy is preferred. That is, the
scheduling is updated during the execution. This strategy
has the highest overhead cost for managing the threads but
provides the best possible load balancing. Finally, the guided
strategy is a compromise between the other two. The schedul-
ing in this strategy is dynamic but the number of tasks assigned
to each thread is progressively reduced in size [17].

In the proposed solver, there is inherently high imbalance
between parallel tasks due to the different sizes of the various
injectors. Thus, the dynamic strategy has been chosen for
better load balancing. Furthermore, by defining a minimum
number of successive tasks to be assigned to each thread
(chunks) and positioning the task data consecutively in mem-
ory, spatial locality can be exploited. That is, the likelihood of
accessing consecutive blocks of memory is increased and the
amount of cache misses decreased [17].

Finally, the factorization and solution of injector linear sys-
tems is performed by Intel MKL LAPACK routines ZGETRF
and ZGETRS, while the solution of the Schur-complement
system in BLOCK C by the sparse linear solver KLU.
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Figure 4. Expanded Nordic model

V. NUMERICAL RESULTS

In this section some numerical results are presented. First,
the stability and local modes of a Transmission Network
(TN) are studied, where the Distribution Networks (DNs)
are equivalenced (Section V-A). Then, the same TN is ex-
panded with detailed DNs and the effect on its stability and
local modes is assessed (Section V-B). The calculations are
performed on a 48-core AMD Opteron Interlagos1 desktop
computer running Debian Linux 6. The environment variable
OMP_NUM_THREADS is used to vary the number of com-
putational threads. For the IRAM, ten eigenvalues closest to
σ are requested with a tolerance τ = 10−6.

A. Nordic system

This is a variant of the so-called Nordic test system, detailed
in [18]. Its one-line diagram is presented in Fig. 4. It is
a fictitious system inspired by the Swedish TN in a past
configuration. The system model includes a total of 77 buses
and 105 branches. Furthermore, 20 synchronous machines are
represented along with generic excitation systems, voltage
regulators, power system stabilizers, speed governors, and
turbine models. Finally, 23 dynamically modeled loads are
included, attached to the distribution buses. The model sums to

1CPU 6238 @ 2.60GHz, 16KB private L1, 2048KB shared per two cores
L2 and 6144KB shared per six cores L3 cache, 128GB RAM
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656 differential-algebraic states, of which 312 are differential.
When decomposing the system, there are N = 43 injectors.

Due to the small size of the system, the full spectrum of
eigenvalues can be easily computed with the use of QZ method
and Js (312 × 312 matrix). The sparsity of the full (J ) and
state-space (Js) Jacobians for this system are shown in Fig. 1.
The eigenvalues of the systems are shown in Fig. 5 with
the star markers. The system is small-signal stable, with all
eigenvalues in the negative real axis. Moreover, all the local
and interarea modes have a dumping ratio2 less than 5%.

Using the IRAM with a shift σ = 0.0, it successfully
finds the ten eigenvalues closest to zero. Which include a
zero eigenvalue and a cluster of real eigenvalues situated
around −0.0155 + 0i. In theory, iterative methods can be
used to compute the full eigenvalue spectrum, but the memory
and CPU costs would be of the same order as those of
the full space methods [19]. Furthermore, several refinement
techniques have been proposed to allow the calculation of the
rightmost eigenvalues, avoiding stagnation and eigenvalues at
infinity. Such techniques have been thoroughly analyzed in
other papers, such as [4], [7], and are not considered in this
work.

2The dumping ratio of an eigenvalue λ = α + βi is defined as
ζ = − α√

α
2
+β

2
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Finally, using the IRAM with a shift σ = 6.28i, it is able
to find the local modes in the area of 0.5− 2Hz (shown with
square markers in Fig. 5). The right and left eigenvectors of
these modes were also computed, to allow for the calculation
of the Participation Factors (PFs). The latter are used to deter-
mine the degree to which certain states of generators or other
devices participate in a selected mode [1]. For this, the IRAM
was called twice, using J and JT respectively. For example,
computing the PFs of the local mode −0.874121 + 5.372230i
shows that it is highly influenced by the controls of generator
g6, located in the CENTRAL area. Its corresponding mode
shape [1] is shown in Fig. 6.

It should be noted that IRAM with all three solvers finds
exactly the same eigenvalues. As mentioned in Section III,
the DPS performs an exact solution of system (6), without
any approximations.

B. Expanded Nordic system
This section reports on results obtained with a large-scale

combined transmission and distribution network model based
on the Nordic system presented previously. The TN model is
expanded with 146 DNs that replace the aggregated distribu-
tion loads (presented in Fig. 4). The model and data of the
DNs (sketched in Fig. 7) were taken from [20] and scaled
to match the original loads seen by the TN. Multiple DNs
were used to match the original loads, taking into account
the nominal power of the TN-DN transformers. Each DN
includes 100 buses, three PhotoVoltaic (PV) units [21], three
type-2 and two type-3 Wind Turbines (WTs) [22], and 133
dynamically modeled loads, namely small induction machines
and exponential loads.

In total, the combined transmission and distribution system
includes 14653 buses, 15994 branches, 23 large synchronous
machines, 438 PVs, 730 WTs, and 19419 dynamically mod-
eled loads. The resulting model has 137186 differential-
algebraic states, of which 61298 are differential. When de-
composing the system, there are N = 20610 injectors. The
penetration of renewable energy sources (here defined as the
total active power injected by the PVs and WTs divided by
the total load, including the TN loads) reaches 15%.

For this system, the state-space Jacobian matrix Js is
61298 × 61298, which requires inverting a sub-matrix of
75888 × 75888. MATLAB failed to perform the elimination
and supply the matrix to QZ with an error concerning the
available memory. Using the IRAM with a shift σ = 0.0,
it was able to find ten eigenvalues closest to zero: seven
eigenvalues were at 0 + 0i and the remaining at the cluster
around −0.0155 + 0i.

Next, with a shift σ = 6.28i, IRAM was able to find
the local modes, shown in Fig. 5 with rhombus markers. It
can be seen that the local modes are slightly shifted towards
more negative real values, but remain close to the ones of the
original TN.

Computing the PFs of the same local mode as previously
(now shifted at −0.854175 + 5.342921i), it is seen that the
highest PF is still by generator g6. However, the PF analysis
shows that the type-3 WTs situated in the DNs attached
to transmission bus 1042 (closest to generator g6) can also
influence this mode. Although individually each one of the
WTs has a small PF, coordinating their controllers can strongly
influence the mode. This observation allows to affect local



Table I. NORDIC: PERFORMANCE COMPARISON

Elapsed time (s)
Nb of threads 1 4 8

QZ method 0.070 - -
IRAM

∗
(KLU) 0.097 - -

IRAM
∗

(PARDISO) 0.157 0.083 0.070
IRAM

∗
(DPS) 0.249 0.102 0.071

∗
Shift σ = 6.28i, calculating ten eigenvalues with tolerance τ = 10−6

Table II. EXPANDED NORDIC: PERFORMANCE COMPARISON

Elapsed time (s)
Nb of threads 1 4 8 16 32 48
QZ method - - - - - -
IRAM

∗
(KLU) 41.9 - - - - -

IRAM
∗

(PARDISO) 50.1 25.7 21.6 19.6 18.6 18.5
IRAM

∗
(DPS) 98.3 28.3 16.6 10.8 7.7 7.1

∗
Shift σ = 6.28i, calculating ten eigenvalues with tolerance τ = 10−6

modes by modifying the control parameters of DGs rather
than relying on the large generators.

C. Performance comparison

For the smaller Nordic system, the performance of the QZ
method and the IRAM with different solvers is shown in
Table I. For the QZ method, the time needed for building
the state-space Jacobian matrix (Js), calculating the full-
spectrum of eigenvalues and the corresponding left and right
eigenvectors, is shown. For the IRAM, the time needed to
compute the ten eigenvalues closest to σ = 6.28i and their
corresponding left and right eigenvectors is shown. Due to the
small size of the system, the QZ method performs really well
and the IRAM is not able to compete. Moreover, for these
timings, IRAM only calculates ten eigenvalues, while the QZ
computes the full spectrum. It is obvious that for such small
systems, full space methods are the preferred choice.

Among the IRAM solvers, KLU performs best in sequential
mode, while the DPS performs worst. The latter is to be
expected, as the DPS has the extra OverHead Cost (OHC)
of calculating the Schur-complement terms and bookkeep-
ing for the decomposition structure. Some of this OHC is
counterbalanced by the numerical acceleration presented in
Section III-C. When parallel computing is used, the DPS
reaches the performance of PARDISO at 8 threads. Both
PARDISO and the DPS do not achieve any better performance,
and actually show a slow-down for higher number of threads.
This can be explained by the small size of the system which
does not offer high parallelization potential compared to the
OHC of creating and managing the extra parallel threads.

For the expanded Nordic system, the performance of the
IRAM with the different solvers is shown in Table II. Again,
in sequential execution the KLU solver is the fastest. The DPS
is the slowest due to the extra OHC mentioned above. When
more computational threads are used, the DPS becomes faster
than PARDISO at 8 threads and at 48 threads it is 2.6 faster;
calculating the eigenvalues, left and right eigenvectors in 7.1 s.

Table III. EXPANDED NORDIC: DPS PROFILING

% Parallel
Injector shift, factorization, and computation 12.76 YESof Schur-complement terms (BLOCK A)
Addition of Schur-complement terms 2.20 NO
and factorization of D̄ (BLOCK A)
Computation of b̄V (BLOCK B) 0.95 YES
Solution of Schur-complement system 2.15 NOfor ∆V (BLOCK C)
Solution of injector systems (BLOCK D) 81.95 YES
Total 100.00% 95.66%

In this test case, the DPS is called 41 times for the computation
of the eigenvalues and left eigenvectors and another 41 times
for the right eigenvectors. In total, the Schur-complement
terms and the factorization of the injector matrices and D̄ are
computed twice, while the solution of the Schur-complement
and the injector systems is performed 82 times.

The scalability of a single DPS iteration depends on the
percentage of work needed for treating the network part (which
is in sequential execution) versus the percentage of work
for treating the injectors (which is in parallel execution). A
profiling of the sequential execution of the solver is shown in
Table III. It can be seen that 95.66 % of execution time is
spent in the parallel sections of the code. Using Amdahl’s law
[23], the DPS can provide a theoretical maximum scalability of
1/(1− 0.9566) = 23 times, assuming infinite parallel threads
and no OHC. Of course, the scalability actually observed is
smaller due to the OHC for creating and managing the threads,
the limited number of parallel cores, and the extra sequential
part in the “non-solver” part of the eigenanalysis method.

Overall, this investigation has shown that for small to
medium-scale systems, full-space methods are preferable.
While, for large-scale systems on sequential computers, the
sparsity of the matrices should be exploited and a fast sparse
linear solver (such as KLU) offers significant speedup.

Nevertheless, when parallel computers are available, a
higher speedup can be obtained with the use of an “off-
the-shelf" parallel solver (such as PARDISO) or a dedicated
parallel solver that can extract higher parallelization potential
by decomposing the system (such as the proposed DPS). In
this work, it was shown that a dedicated decomposed solver
can achieve up to 2.6 times higher performance than a state-
of-the-art, general, parallel sparse linear solver.

VI. CONCLUSION

Eigenanalysis methods have been used in power systems
for stability analysis and the design, tuning, and coordination
of controllers. The eigenvalues help to analyze the stability of
the system and the existence of oscillatory modes. At the same
time, the mode shape and participation factors of these modes
can help identify the control parameters that need tuning or
coordination [1].

When small and medium-scale systems are considered, full
space methods are used to compute all the eigenvalues and
eigenvectors. However, these methods cannot be used for



large-scale systems, due to the huge CPU and memory re-
quirements. For these systems, iterative methods are frequently
used that compute a subset of eigenvalues in a specific area
in the complex plane.

In this paper, some methods to accelerate the computation
of eigenvalues with iterative methods by exploiting the sparsity
of the descriptor systems, have been reviewed. Then, a new
parallel solver has been proposed for the solution of sparse lin-
ear systems deriving from the computation of eigenvalues. The
solver employs domain decomposition and parallel processing
techniques to accelerate the solution. It was implemented using
the shared-memory parallel model with the use of OpenMP
API and tested on a multi-core desktop computer.

The accuracy and performance of the solver was bench-
marked against some very fast, sequential and parallel sparse
linear solvers, using a small and a large-scale power system
models. It was shown that the DPS can achieve high per-
formance when employed on multi-core parallel computers,
decreasing the eigenanalysis computation time. Such fast com-
putations can be useful in external procedures for tuning and
coordinating controllers in a closed loop (requiring hundreds
of eigenvalue computations).
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