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Abstract—Controllable Distributed Energy Resources (DERs)
in Active Distribution Grids (ADGs) provide operational flexi-
bility to system operators thereby offering the means to address
various challenges. Existing local controllers for these resources
are communication-free, robust, and cheap, but with sub-optimal
performance compared to centralized approaches that heavily
rely on monitoring and communication. Data-driven local con-
trols can bridge the gap by providing customized local controllers
designed from historical data, off-line optimization, and machine
learning methods. These local controllers emulate the optimal
behavior, under expected operating conditions, without the use
of communication. However, they exhibit high implementation
overhead with the need of individual programming of DER
controllers, especially when there are many DERs or when new
units are installed at a later stage. In this paper, we propose
a clustering method to decrease the implementation overhead
by reducing the individual DER controls into a smaller set while
still achieving high performance. We show the performance of the
method on a three-phase, unbalanced, low-voltage, distribution
network.

Index Terms—Time-series clustering, optimal control, data-
driven control design, active distribution networks, OPF, machine
learning

I. INTRODUCTION

Distribution networks (DNs) experience significant changes
through the introduction of large shares of Distributed Genera-
tors (DGs), such as Photovoltaics (PVs) or wind turbines, and
new load types. These renewable and intermittent resources
are mostly connected to the DN through power electronic-
based devices that allow controllability in terms of active and
reactive power. This gives DNs the option to provide ancillary
services to higher voltage levels [1].

Whereas centralized, e.g. [2], [3] and distributed, e.g. [4],
schemes rely -to a certain extent- on communication among
the DERs, local control schemes, e.g. [5], utilize only lo-
cal information to decide on the DER response. Such local
schemes exist already in grid codes [6] since they are simple
to implement, robust, and cheap due to null communication
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requirements. However, such a one-size-fits-all approach is
suboptimal, when the same control parameters are employed
to all DERs irrespective of their location and surrounding grid
topology.

Data-driven control methods that design customized local
controllers by using off-line optimization techniques, historical
data and machine learning methods are lately explored [7]–
[11]. In [7], we proposed the idea of using data to design
controllers that emulate the OPF behavior, considering reactive
and active power control via characteristic curves. In [8],
the curves are derived by support vector machines, while [9]
considered also controllable loads and storage systems using
machine learning tools, such as segmented regression and sup-
port vector machines as regressors and classifiers. Initially, [7]
designed the curves based on piece-wise linear segments, and
accounted for the needed monotonicity and slope constraints
of the curves ex-post, similar to [8]. In [9] on the other hand,
we relied on segmented regression with unknown breakpoints
considering the needed constraints within an optimization
problem to design the curves. Finally, the authors in [10],
[12] use multiple linear regression to control reactive power in
an open-loop fashion, without voltage magnitudes as inputs,
and [11] compares all different methods based on the input
features and their response to unseen conditions. However, all
these works calculate a unique characteristic curve for each
DER, imposing implementation challenges in large DNs with
high penetration of DERs.

Clustering the local rules that dictate the DER response
would ease the transition to a customized local control
scheme derived from an off-line optimal response. Clustering
approaches have been used in power systems for various
purposes. Many works, e.g. [13]–[16], focus on the demand
side identifying consumers with similar consumption pro-
files, on network segmentation for preventive islanding to
minimize power disruption [17], or voltage collapse area
identification [18], phase identification [19] and forecasting,
e.g. [20], [21]. Finally, the authors of [22] provide an extensive
review of clustering methods in the renewable energy sector.
In [13], the authors use a hierarchical agglomerative approach
to cluster static smart meter data, and reduce the dimensions
of the regression problem that calculates the system’s voltage
sensitivities. In [14], [15], partitional clustering based on the
k-means algorithm is applied to smart meter data, in order to
group together similar consumers based on various features.
However, the main focus was on the grouping itself and not
on deriving a summarized consumption profile. In most cases
of the reviewed papers, clustering was used to cope with the
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dimensionality problem when investigating grids with many
components.

In this paper, we focus on the state-of-the-art, data-driven,
local control schemes and aim at tackling implementation
challenges. However, the proposed methodology can be im-
plemented for any individual local control scheme as long
as it is expected that altering the default scheme would
be beneficial. First, we present the method to derive the
data-driven local control schemes, using historical data, off-
line Optimal Power Flow (OPF) calculations, and Machine
Learning (ML) methods. The derived local schemes rely on
segmented regression with unknown breakpoints [9]. Then, we
propose a method of creating customized controllers for each
DER, taking into account the implementation challenges in
the presence of numerous DERs. The benefit of clustering the
individual controllers is threefold. First, it offers a solution to
DNs with hundreds of individual DERs, which is realistic in
many distribution grids across the world. Instead of designing
and implementing a unique control rule for each of them, we
can cluster the available controllers in a finite set which can
be downloaded by all DERs regularly. Although the overhead
of computing individual optimal control laws is not significant
and is considered in the off-line methodology, there are im-
plementation challenges, i.e. how to implement the customized
control laws in the possibly thousands of DER controllers. Pro-
gramming each DER controller separately is a challenging task
in active DNs without advanced communication infrastructure
and hundreds of controllable units. However, by clustering the
control laws into a finite set, we propose to communicate the
clustered set to all DERs and then assign only the selected
control law to each DER. Modern inverters, e.g. [23] offer
the possibility of updating the firmware and operating with
custom rules. Thus, receiving the clustered set of control
laws e.g. every four months is straightforward. In real-time,
sending an integer that will assign the final control law to each
DER is relatively easy and is already a simple and common
way to control appliances in many countries. For instance,
in Switzerland, households’ appliances such as heat pumps
or hot water boilers can be blocked by this kind of ripple
control, where a signal can change the status of a controller to
‘blocked’ or ‘no blocked’ [24]. This would reduce significantly
implementation challenges without sacrificing the quality. Sec-
ond, the clustering provides a solution to assign optimized
control rules to new DERs being installed in DNs. Relying on
individual control laws for each DER would require computing
and assigning the new optimal control laws to every single
controllable unit. Thus, the computationally expensive training
methodology can be avoided when new units are connected,
by assigning them to clustered control schemes according to
similarity measures. Finally, the clustering method provides
useful information about coherent nodes according to their
optimal behavior. For example, one can identify which nodes
do not face power quality issues and can be used to provide
ancillary services or loss minimization and which nodes should
focus on local power quality issues, e.g. operate in inductive
mode to tackle overvoltage problems, e.g. [25].

More specifically, the contributions of this paper are:
• A method to cluster individual customized local control

schemes, in the form of volt/VAr and volt/watt character-
istic curves, to decrease the implementation overhead in
customized local controls for ADGs.

• A comparative performance analysis between using indi-
vidual, customized control curves and the curves resulting
from the clustering.

• An analysis of the impact of using standard (text-book)
grid parameters in the design stage, when real grid
parameters are not available.

The general overview of the proposed methodology com-
prises three stages and is sketched in Fig. 1. In Stage I, off-line
calculations, based on OPF formulations, process the historical
data (network parameters and load and generation profiles)
and define the optimal DER control setpoints for different
operating conditions. At this stage, different objectives can be
formulated, such as loss minimization, maximization of self-
consumption, maximization of the DN revenues by provision
of ancillary services, or combinations of these. System security
and power quality are ensured through hard constraints that
need to be respected by the OPF. However, the final real-
time operation does not provide any guarantees that network
limits will not be violated. The importance of the features
selection in terms of the robustness in the real-time operational
is addressed in [11] which highlights the use of voltage
magnitude as a local feature that brings global information.
In [26] the authors propose an online self-adapting algorithm
to solve local power quality issues under changing operating
conditions, since constraint satisfaction cannot be guaranteed
without continuously updating the training dataset with new
operating conditions [27].

In Stage II, we apply ML techniques on the optimal set-
points obtained from Stage I to design local real-time DER
controls. The goal is to derive simple and efficient, individual
(i.e., one for each DER), optimized local controls that can
mimic the behavior of centralized OPF-based schemes without
the need of any communication infrastructure. In the last
step of this stage, a clustering method is proposed to reduce
the number of the optimized controllers and overcome the
implementation burden of assigning unique controllers to each
DER. Finally, in Stage III, we evaluate the proposed method,
by comparing the real-time response against existing local
schemes and a real-time OPF scheme.

The remainder of the paper is organized as follows. In
Section II, we present the mathematical formulation of the
centralized OPF scheme (Stage I). In Section III, we describe
the data-driven local control design scheme and the methodol-
ogy to cluster these local curves (Stage II). In Section IV, we
present a case study and the simulation results, and, finally,
we conclude in Section V.

II. STAGE I - CENTRALIZED OFFLINE OPF SCHEME

The centralized scheme is used offline in order to calculate
the optimal response of various conditions (normal or not) that
will be captured by the optimized local schemes described in
Section III-A. Thus, in real-time operation no monitoring and
communication infrastructure is required.

As input, we require the topology of the network as well
as the installed capacity of DERs and loads, information that
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Fig. 1: General overview of the data-driven scheme and the proposed clustering methodology.

is usually available to the operators. Some other required
data might not be available (e.g. normalized solar radiation,
load profiles, or cable impedances). In this case, we can use
typical/default values from the literature, but the impact of this
uncertainty needs to be examined and quantified. As output,
we derive optimal setpoints which will comprise the training
dataset for the data-driven approach of Stage II.

There are various centralized schemes that can be used to
derive the optimal DER setpoints. In this work, we use an
OPF framework derived from [2], [28], [29] that integrates a
backward-forward sweep (BFS) power flow into the optimiza-
tion problem. The main advantages of this scheme include
high computational performance, AC feasibility, and handling
of weakly meshed grids. The interested reader is referred
to [9], [29] for the three-phase modeling of the DN and the
DERs. It is important to emphasize that any other suitable
OPF formulation for ADGs can be used to derive the optimal
DER setpoints.

A. OPF formulation

The task of the DN operator is to guarantee safe grid
operation minimizing the system losses and operating costs.
Here, we assign cost to the curtailment of active energy and
provision of reactive power support by DGs. The objective
function is evaluated by considering the DER control cost
over all network nodes Nb, branches Nbr and the entire time
horizon TOPF , i.e.

min
u

NOPF∑
t=1

∑
z∈{a,b,c}

{ Nb∑
j=1

(
CP ·Pc,j,z,t +CQ ·Qctrl,j,z,t

)
+

Nbr∑
i=1

CP ·Ploss,i,z,t

}
·∆t

(1)

where u denotes the vector of the available active control
measures and ∆t the length of each time period. The curtailed
power of the DERs connected at phase z, at node j and time
t is calculated by Pc,j,z,t = Pmax

g,j,z,t − Pg,j,z,t, where Pmax
g,j,z,t is the

maximum available active power and Pg,j,z,t the active power
injection of the DERs. The use of reactive power provided
by the DERs connected to phase z of node j and time t,
i.e. Qctrl,j,z,t = |Qg,j,z,t| is minimized, where Qg,j,z,t represents
the DER reactive power injection or absorption. The DER
cost of curtailing active power and providing reactive power
support (DER opportunity cost or contractual agreement)
is represented by the coefficients CP and CQ, respectively.
Priority is given to the utilization of reactive power control, i.e.
we set CQ � CP. Finally, the total losses in the three-phase
framework are calculated by using the difference between

input and output power in each branch of each phase [30].
Thus, Ploss,i,z,t = Re(Sjs,z,t + Sjr ,z,t), where Sjs,z,t and Sjr ,z,t
represent the apparent power flowing into branch i from each
end; js and jr are the sending and receiving ends of the branch.

The power injections at every node j, phase z and time step
t are given by

Pinj,j,z,t = Pg,j,z,t − Pl,j,z,t, (2a)

Qinj,j,z,t = Qg,j,z,t − Pl,j,z,t · tan(φload), (2b)

where Pl,j,z,t and Pl,j,z,t · tan(φload) are active and reactive node
demands of constant power type, with cos(φload) being the
power factor of the load.

A single iteration of the BFS power flow problem is con-
sidered to represent the power flow constraints, following our
previous work [9]. That is: Ibr,t = BIBC ·

(
(Pinj,j,z,t+jQinj,j,z,t)

∗

V̄ ∗
j,z,t

)
and Vt = Vslack +BCBV · Ibr,t, where V̄ ∗j,z,t is the voltage of
phase z, at node j at time t, ∗ indicates the complex conjugate
and the bar indicates that the value from the previous iteration
is used (the interested reader is referred to [9] for more details);
Ibr,t is the vector of the three-phase branch flow currents; and,
BIBC (Bus Injection to Branch Current) is a matrix with
ones and zeros, capturing the three-phase topology of the DN
(including any single-phase laterals); ∆Vt = BCBV · Ibr,t
is the vector of voltage drops over all branches and phases;
BCBV (Branch Current to Bus Voltage) is a matrix with the
complex impedance of the lines as elements (including mutual
coupling); Vslack is the three-phase voltage in per unit at the
slack bus (here assumed to be {1<0◦, 1<−120◦, 1<120◦}).
Thus, the constraint for the current magnitude for all branches
i and phase z at time t is

|Ibr,t| ≤ Imax, (3)

where Imax is the maximum thermal limit of the three phases.
For the voltage magnitude constraint, we follow [29] and

rotate the three voltage phases {a, b, c} by R = {1<0◦, 1<
120◦, 1<−120◦} to avoid the non-convex Vmin ≤ |Vj,z,t| ≤
Vmax constraints yielding

|RVj,z,t| ≤ Vmax, Re {RVj,z,t} ≥ Vmin. (4)

Finally, the limits of the inverter-based PVs are given by

Pmin
g,j,z,t ≤ Pg,j,z,t ≤ Pmax

g,j,z,t, (5a)

Q2
g,j,z,t ≤ (Smax

inv,j )
2 − P 2

g,j,z,t, (5b)

where Pmin
g,j,t , Pmax

g,j,t , are the lower and upper limits for active
DER power, and Smax

inv,j is the capacity of inverter j.
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After we obtain the optimal OPF setpoints, we perform an
exact power flow calculation to derive an AC feasible operating
point. The voltages of this point are used in the next OPF
iteration, and the loop is repeated until we reach convergence
in terms of voltage magnitude mismatch. The interested reader
is referred to [9] for more details regarding the three-phase
OPF algorithm.

III. STAGE II - DATA-DRIVEN LOCAL CONTROL DESIGN

In this section, we describe the mathematical model of the
used local data-driven control schemes, detailed in [7], [9].
This stage uses as input the optimal setpoints derived from the
OPF problem of the previous Stage, and provides as output
first the individual customized control laws for each DER and
finally the clustered set which is the main focus of this paper.
Here, we focus on a closed-loop scheme, using the voltage
magnitude as a local feature to control active and reactive
power of the DERs. These volt/watt and volt/VAr curves are
similar to the ones used today in modern grid codes. In contrast
to existing standards, the proposed curves are composed of an
arbitrary number of piece-wise linear segments and they are
optimized for each DER based on its location and the DN
objectives.

There are various data-driven methods which differ in terms
of the number and type of local measurements they rely on.
The voltage magnitude measurement is a very important local
feature since it carries global information from the whole
network due to the physics of the system [11]. Therefore,
this fact can be used in order to design controllers that can
perform adequately in conditions that were not met in the
training phase. Thus, many require only one feature, e.g. local
voltage [7], or a set of measurements, such as local demand,
generation and maximum capacities [10]. Although, a larger
set of measurements can better map the OPF setpoints into
a model, the inclusion of voltage magnitudes is essential for
secure system operation under unexpected conditions.

Regarding notation, the real-time response of the jth

inverter-based DER (j ∈ [1, 2, ..., NJ]) in terms of reactive
power control q(j)

t and active power curtailment c(j)
t is derived

from the NOPF optimal setpoints (t ∈ [1, 2, ..., NOPF]) obtained
in the offline calculations which are described in Section II.
The scope of data-driven schemes is to derive models which
will mimic the optimal setpoints using only local input
measurements (features). In other words, we try to emulate
the optimal setpoints of a multi-dimensional space, through
rules that depend only on local features. The feature matrix
Φ(j) ∈ RTOPF xNK contains as columns the NK features and
as rows the TOPF observations of the kth input measurement
φ(j)
k ∈ RTOPF , i.e.

Φ(j) =

φ(j)
1 φ(j)

2 . . . φ(j)
NK

 . (6)

To simplify notation, we omit the subscripts of the phase z for
the rest of the section. In the rest of the paper, we focus on the
simplest scheme that relies only on local voltage magnitudes,
and can be easily implemented in the form of characteristic

curves that define the real-time DER response in terms of
active and reactive power.

A. Design of optimized local control schemes

In this part, we present the procedure to derive the piece-
wise linear curves, originally presented in [9]. We calcu-
late the characteristic curves for reactive power control and
active power curtailment, by applying segmented-regression,
optimizing also the placement of the break-points. Instead
of solving the non-linear and non-differentiable problem of
obtaining the piece-wise linear fitting problem with unknown
breakpoints, we use an iterative algorithm and solve a Residual
Sum-of-Squares (RSS) optimization problem inspired by [31].
The procedure is summarized below.

First, we define the number of break-points ns, initialize
them, and solve for each inverter j the following residual sum
of squares problem

RSSī := min
x̃0,β,γ

∑
t∈TOPF

Pg,j,t · (xt − x̃t)
2 +

ns∑
k=1

γ2
k, (7)

subject to

x̃ī= x̃0 ·1T +β0 ·Φ(j) +

ns∑
k=1

βk · (Φ(j)− sīk) · I(Φ(j) > sīk)+

−
ns∑
k=1

γk · I(Φ(j)>sīk), (8)

β0 ≤ 0, β0 + β1 ≤ 0, ... , β0 +

ns∑
k=1

βk ≤ 0, (9)

|β0| ≤ βmax, |βk| ≤ βmax, (10)

where x̃ī ∈ {p, q} refers to the active and reactive final
models, and Φ(j) = [|Vj,t|] is the vector of voltage magnitudes
used as input to the fitting problem. We fit the linear model
based on the known breakpoints sīk, ∀k = 1, . . . , ns at the
current iteration ī, the left slope β0 and difference-in-slopes
βk. The indicator function I(·) becomes one when the inside
statement is true. Finally, x̃0 is the model intercept and γ
a parameter which updates the location of the breakpoints
towards the optimal one. The monotonicity constraint (weakly
decreasing for the volt/VAr case) is imposed by (9), and the
slope constraints by (10) avoids sudden changes of the control
actions. After the problem is solved, we update the breakpoints
sī+1
k = γk

βk
+ sīk and iteration index ī = ī + 1, repeating

the procedure until the RSS does not change between two
subsequent iterations, i.e. when RSSī −RSSī−1 ≈ 0.

The same method is used for both the active power cur-
tailment and reactive power control curves, using respectively
the PV optimal active and reactive setpoints from the OPF in
Section II.

B. Clustering of local control schemes

In this section, we describe the process of clustering the
individual local controls of the DERs into a finite set. Clus-
tering refers to the task of grouping similar objects together,
i.e. objects within a cluster are similar to each other, and
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Fig. 2: Two types of local reactive power control. Type 1 provides continuous
reactive power control, while Type 2 includes a deadband where no reactive
power is utilized.

dissimilar to objects of other clusters. There are various
clustering algorithms that differ mainly in terms of a) the
applied measure to calculate distance or similarity among
the objects, (e.g. Euclidean distance), b) the cluster model
representation they use to describe a cluster (e.g. connectivity,
medoid-based or centroid-based models), c) the input they
need (e.g. the total number of clusters, the need to have equal
length of trajectories) and d) their suitability to cluster static
data, or trajectories (e.g. clustering over time-series data). The
evaluation and suitability of these clustering algorithms depend
on the application.

In this paper, we are interested in clustering different DER
characteristic curves, and thus, we investigate trajectory or
time-series clustering (in our case voltage-series similar to the
two versions of local volt/VAr curves described in grid codes,
e.g. [6], [32] and shown in Fig. 2). In most cases of time series-
clustering, the procedure is similar to the static clustering
algorithms, but the notions of similarity and prototype function
are altered to account for the whole time-series dataset. The
prototype is a time-series that effectively summarizes the
most important characteristics of all series in a given cluster.
This time-series is referred to as an ‘average series’, and
prototyping refers to time-series averaging [33]. The inter-
ested reader is referred to [34] for a comprehensive review
of time-series clustering algorithms, which organizes recent
works in terms of the aforementioned types, computational
complexity, applications and evaluation measures. Another
general overview is given in [33], where the author not only
categorizes different time-series clustering algorithms, but also
provides implementation examples in R [35].

In our application, the time series are actually voltage series
and we will therefore refer to the series to be clustered as
voltage or data series. The voltage series to be clustered
have by design the same length. Thus, in our comparison we
use the two most common clustering algorithms, namely the
hierarchical and the partitioning types, that are both readily
applicable in this case.

1) Clustering Types:
a) Hierarchical clustering: This type constructs a hi-

erarchy of clusters following one of two approaches. In the
agglomerative one, each time-series starts as its own cluster,
followed by pair-wise merging until we build up the hierarchy
in a bottom-up scheme. On the contrary, the divisive approach
follows a top-down scheme, i.e. all the data-series start in

Algorithm 1 Hierarchical agglomerative clustering algorithm
Input: X j, d
Output: Dendrogram structure of the input data

1: Define each voltage series X j as its own cluster.
2: Calculate the pair-wise distances between the clusters

(based on d).
3: Merge the closest 2 clusters based on the minimum

average linkage value.
4: Repeat Steps 2-3 until there is only one cluster, comprising

all the voltage series.
Return: Tree illustration of the clusters’ arrangement

one cluster and they are split recursively as we move down
the hierarchy. Let us denote with X j = (X1, ..., XNJ)T the
vector containing the NJ voltage series in terms of the active
or reactive characteristic curves each of which comprising
nq elements, e.g. X j = [xj1, x

j
2, ..., x

j
nq ], and d(·) a distance

measure. Algorithm 1 summarizes the iterative procedure for
the agglomerative approach. Hierarchical clustering is com-
putationally costly when dealing with a lot of data, but the
results can be illustrated in a dendrogram, providing intuition
about similarities in the used datasets and the needed number
of the final clusters, which is denoted by Ncl.

b) Partitioning clustering: In this clustering approach,
the amount of final clusters is decided a-priori. The data-series
are disaggregated into the decided amount of clusters each
of which is then represented by the data-series centroid or
medoid. The centroids are formed by taking the mean (e.g. k-
means algorithm) values of the data series in the respective
cluster and are calculated by an iterative approach which
minimizes the total distance between all members of a cluster
and their cluster prototype. Similarly, another commonly used
approach is to use partition around medoids (PAM), where a
medoid is a representative data-series object from a cluster,
whose average distance to all other objects in the same cluster
is minimal. Medoids are similar to means or centroids, but
they are restricted to be members of the cluster’s dataset [33].
Algorithm 2 summarizes the iterative procedure implemented
in many software platforms, such as in [35]. We denote
Cjcl = (C1, ..., CNcl)T as the vector containing the Ncl < NJ
cluster trajectories.

2) Distance measures:
There are many distance, or dissimilarity measures in order

Algorithm 2 Partitioning clustering algorithm
Input: X j, d, Ncl
Output: Cjcl final clusters

1: Initialize Ncl centroids/medoids randomly.
2: Calculate the distances d between each voltage-series and

the centroids/medoids and then assign each object to the
cluster of its closest centroid/medoid.

3: Apply a prototyping function to each cluster and update
the centroid/medoid.

4: Repeat Steps 2-3 until no object is changing its cluster.
Return: Cjcl = f(X j, d,Ncl)
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to compare and group the different time-series into clusters.
The choice among the various alternatives [36] is not straight-
forward and depends on the scope of the grouping. As we deal
with normalized data-series, i.e. from −1 p.u. to 1 p.u., data-
series of the same length, and are interested in a ”shape-based”
clustering, we use the following distance measures:

a) Minkowski: This is the most commonly used distance
measure that is defined by

dLc(X
j , X j̃) =

(
nq∑
n=1

(xjn − xj̃n)c

)1/c

, (11)

where j, j̃ ∈ Nj are two time-series of X , and c is a positive
integer. Typically, it is used with c = 2 representing the
Euclidean distance and c = 1 for the Manhattan distance.
Although this measure provides very good results in many
applications, it is sensitive to shifting and time scaling (stretch-
ing or shrinking of the time axis). Using this measure, we
can construct the cluster prototypes, i.e. the clustered volt/VAr
curve, based on the mean (c = 1) or median (c = 2) values
of the voltage-series within a cluster.

b) Dynamic time warping: To avoid the drawbacks of the
Minkowski measure, we also use the Dynamic Time Warping
(DTW) distance measure, where the sequences are warped
such that their distance is minimized. Following [36], we
denote M as the set of all possible sequences of m pairs, that
warp the time-series and are used to calculate the minimum
distance. We preserve the observations order in the form
r =

(
(xjα1

, xj̃β1
), ..., (xjαm , x

j̃
βm

)
)

with αζ , βζ ∈ {1, ..., nq},
such that α1 = β1 = 1, αm = βm = nq , and αζ+1 = αζ or
αζ + 1 and βζ+1 = βζ or βζ + 1 for ζ ∈ {1, ...,m−1}. Thus,
the DTW distance is given by

dDTW (Xj , X j̃) = min
r∈M

 ∑
ζ=1,...,m

|(xjαζ − x
j̃
βζ

)|

 . (12)

In the case study, we evaluate the hierarchical and partitioning
clustering schemes using the Euclidean and the DTW dis-
tances.

IV. CASE STUDY - RESULTS

A. Network description - Case study setup

To demonstrate the performance of the proposed approach,
we compare four methods using the benchmark radial res-
idential LV grid presented in [37] and shown in Fig. 3.
The load and PV panels are distributed to the three phases
unevenly, resulting in unbalanced conditions. The total load,
taken from [37], is shared 25%-60%-15% among the three
phases. The installed PV capacity, is set to SPV, total

rated = 150%
of the total maximum load of the entire feeder and connected
equally to the PV nodes = [3, 5, 7, 10, 12, 16, 17, 18, 19]. The
shares among the three phases are 25%-25%-50% and real data
from a PV station in Switzerland are used to derive realistic
PV profiles for the investigation.

In the design stage, we use the algorithm presented in
Section II to process a 30-day summer dataset with forecasts
of load and PV production, and generate the optimal DER

|| 4/22/2018Stavros Karagiannopoulos 1

1 2
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12 17 19

13
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Fig. 3: European three-phase residential LV grid based on [37].

setpoints. Then, the algorithm is evaluated based on a new,
unseen dataset. The operational costs of the centralized prob-
lem are assumed to be cP = 0.3 CHF

kWh and cQ = 0.01 · cP. The
implementation was done in MATLAB using YALMIP [38]
as the modeling layer and Gurobi [39] as the solver. For the
clustering schemes, we used R [35], and all the results were
obtained on an Intel Core i7-2600 CPU and 16 GB of RAM.

B. Individual optimized local control schemes

Figure 4 presents the local volt/VAr characteristic curves of
all PV units in phase C, assuming perfect knowledge about the
grid’s parameters. The PV at node 3 in general injects reactive
power to optimize losses and reduce the reactive power needs
from the substation, while the remaining nodes absorb reactive
power in order to keep voltages smaller than the maximum
acceptable value of 1.04 p.u..

In order to examine the impact of erroneous input data
regarding the impedances of the cables, we investigate the ro-
bustness of the clustered characteristic curves under erroneous
impedances, i.e. assuming that the impedance of the cables
deviates from the actual values reported in [37]. This can be
the case in distribution grids where the operator cannot mea-
sure the actual values and uses default values instead, or when
the impedance parameters have changed over time. Figure 5
shows the optimized local curves for three nodes at phase C
after superimposing a uniformly distributed random error to
the impedances of each branch up to ±10% (superscript ′)
and ±20% (superscript ′′), respectively. These nodes show the
greatest difference compared to the perfect information case
of Fig. 4. We observe, that up to ±10% error in the parameters
of the grid does not have a significant influence on the optimal
setpoints and hence, on the final derived local curves. On the
contrary, errors up to±20% change the behavior of the PV unit
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Fig. 4: Individual local characteristic curves for reactive power control of the
PV units at phase C.
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TABLE I: Summarized clustering results for all methods

Clustering Type Distance Measure Prototype Cluster Members Average inter-cluster distance

1 Hierarchical Euclidean PAM centroids [3], [5 10 16 18 19], [7 12 17] [0], [0.593], [0.521]
2 Hierarchical DTW PAM centroids [3], [5 10 16 18 19], [7 12 17] [0], [0.940], [1.647]
3 Partitional Euclidean mean [3], [5 10 16 18 19], [7 12 17] [0], [0.692], [0.542]
4 Partitional Euclidean median [3], [5 10 16 18 19], [7 12 17] [0], [0.594], [0.545]
5 Partitional Euclidean PAM centroids [3], [5 10 16 18 19], [7 12 17] [0], [0.593], [0.521]
6 Partitional DTW mean [3], [5 10 16 18 19], [7 12 17] [0], [0.409], [0.287]
7 Partitional DTW median [3], [5 10 16 18 19], [7 12 17] [0], [0.190], [0.203]
8 Partitional DTW PAM centroids [3], [5 10 16 18 19], [7 12 17] [0], [0.187], [0.238]
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Fig. 5: Comparison of individual local characteristic curves for reactive power
control of three PV units at phase C, using erroneous cable impedances.

at node 3, rendering its behavior from capacitive to inactive
above the voltage magnitude of 1.01 p.u.. By observing that
in all nodes the erroneous curves are shifted downwards, we
can conclude that the erroneous cables’ impedances are rather
overestimated, i.e. the true values are lower than the used ones.
Thus, they impose a behavior that favors more consumption
of reactive power than the curves using the true network
parameters.

C. Clustering of the optimized local control schemes

In this part, we apply the hierarchical and partitioning
clustering algorithms in order to obtain a reduced set of local
rules. The optimal number of clusters in data clustering has a
crucial impact on the quality of the final solution. However,
there is no consensus in terms of theoretical methods that
can calculate the optimal number of needed clusters. The
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Fig. 6: Hierarchical clustering based on different distance measures.

optimal number depends on the method used for measuring
similarities, the main scope of the data-driven scheme, and
the parameters used in the partitioning process. There are
various metrics that can evaluate the performance of clustering
algorithms, and these can be used as indicators to assist in
the selection of the needed cluster number [40]–[42]. The
Calinski–Harabasz and the Davies–Bouldin indices introduced
in [40] and [41], respectively, are based on the means of the
time-series as the clustering centers, while the silhouete index
presented in [42] is based on the clustering validity of each
time-series separately. Typically, by inspecting the dendrogram
produced using a hierarchical clustering approach in time-
series data provides some intuition regarding the number of
clusters that can summarize the behavior of the original data
in a satisfactory way, as they are based on the same similarity
measures as the aforementioned indices. Figure 6 shows the
dendrograms derived by the Euclidean and DTW distance
measures using the true values of the cables’ impedances.
We observe that although there are some differences in the
derived tree diagrams, they both lead to the same conclusions
irrespective of the distance measure used: a) Three clusters
group the curves in the most efficient way, b) the local curve
of the PV inverter at Node 3 is very dissimilar compared to
the other rules, which is also observed in Fig. 4.

We choose the number of clusters Ncl = 3, construct
the different clusters and assign them to the respective in-
verters. Table I summarizes the main characteristics of two
clustering types analyzed under 8 different configurations. The
approaches differ in terms of the used distance measure and
the selection of the prototype, i.e. the series that effectively
summarizes the most important characteristics of all series in
a given cluster. PAM provides the advantage of not having to
examine the monotonicity and slope constraint requirements of
the medoid, since this is already considered in the design stage
of the individual curves. Finally, the cluster members and the
average inter-cluster distance are given for all configurations.
We observe that all the methods converge to the same grouping
of the characteristic curves into 3 clusters, irrespective of the
selected type and distance measure. The differences in the
clustered curves are marginal and result from the selection of
the cluster prototype.

Figure 7 shows the clustering of the characteristic curves,
and the centroid prototype of each cluster according to con-
figuration 6. As it has been already observed from Table I,
all configurations select the characteristic for the PV inverter
at node 3 to comprise one cluster, which is dissimilar to all
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the other curves. Furthermore, using the mean approach to
construct the centroid prototypes results in the creation of new
clustered curves. On the contrary, all the other methods, i.e.
based on the PAM centroids or the median, select one time-
series dataset as the cluster centroid. More specifically, these
methods result in the following centroid prototypes: cl1 = [3],
cl2 = [16], cl3 = [7], where the numbers correspond to the
volt/VAr curve of the respective PV unit.

The same procedure is followed for the other two phases,
and for the volt/watt curves for active power curtailment.

D. Comparison of power flow results

We compare the behavior of the individual and clustered
local schemes running power flow computations, under the
following configurations:

• Method 0: The DERs are operating according to the Ger-
man grid-code [32], where all DERs become inductive
as soon as they inject more than 50% of their installed
capacity. The power factor decreases linearly from 1 to
0.95 or 0.9 based on the DER installed capacity.

• Method 1: All DERs are controlled based on the central-
ized OPF-based algorithm summarized in Section II. Here
we assume perfect knowledge of the grid’s impedances
and perfect communication and monitoring infrastructure.
We use this scheme as the benchmark for the best
achievable performance.

• Method 2: All DERs are operating according to the
individual controls according to Section III-A derived
using a uniformly distributed random error up to ±10%
of the true impedances.

• Method 3: All DERs are operating according to clustered
controls according to Section III-B using the same error
values as in Method 2.

Table II summarizes the results from applying these meth-
ods in real-time operation for a test period of one month.
Representing the benchmark, Method 1 satisfies all security
constraints in the optimal way. Method 0 (standard industry
practice) results in high losses, due to increased reactive power
needs by the PV units, without solving the overvoltage and
overload issues. Finally, Methods 2 and 3 mitigate adequately
the overvoltage and overload issues, while being capable
of mimicking the OPF-based control without the need of
communication. However, they result in more active power
curtailment than needed, making the losses comparison incon-
sistent. Finally, we observe that the clustered scheme behaves

TABLE II: Summarized monthly results for all methods

Method 0 1 2 3
Losses (%) 5.75 5.38 4.84 4.76
|V |max (p.u.) 1.073 1.04 1.046 1.047
|I|max (%) 124.04 100 89.47 87.57
Pcurt (%) 0 1.39 4.64 4.8

similar to Method 2, with marginal differences arising from
the “averaged” and fewer local control schemes.

Figure 8 displays, as an example, the voltage magnitude
evolution of Node 19, phase C, over the first evaluation
week. Here, the same conclusions as before can be drawn:
Methods 2 and 3 mimic the optimal centralized solution
(Method 1) without communication needs, and current in-
dustrial practice (Method 0) can be insufficient in cases
of large DER penetration. The Root-Sum-of-Squares Values
(RSSVs) over the whole evaluation month compared to the
voltage magnitudes of the centralized OPF, i.e. Method 2, is
summarized as follows: RSSV0 = 0.2416, RSSV2 = 0.0693,
RSSV3 = 0.0664. We observe that Method 3 results in
marginally smaller values due to the higher active curtailment
which results in voltage magnitudes closer to Method 1.

E. Sensitivity analysis with respect to the number of clusters

In this part, we highlight the importance of selecting the
right number of clusters, by considering two additional con-
figurations. More specifically, we compare Methods 2 and 3
against the following setups:
• Method 4: All DERs are grouped into 2 clusters using

the PAM method as the prototype according to Sect. III-
B with erroneous cable impedances up to ±10%.

• Method 5: Finally, the same setting is applied here, but
the DERs are now grouped into 4 clusters.
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Fig. 8: Voltage magnitude evolution at Node 19, phase C.
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Fig. 9: Active power curtailment at Node 19, phase C varying the number of
clusters in the optimized local control schemes.

The more clusters we allow, the closer the performance is
to Method 2, which allows a unique model for each DER.
On the contrary, less clusters lead to a behavior further
away from the optimal. This is observed also in Fig. 9 that
compares the hourly active power curtailment of Node 19,
phase C, among Methods 3, 4, and 5 over the period of 3
days. Method 4 uses only 2 clustered curves for reactive and
active power curtailment for all units, resulting in higher total
curtailment than Methods 3 and 5. Over the period of the
whole evaluation month, Method 4 required 75% more total
active power curtailment than Method 3. Finally, although
Method 5 employs more curves, it results in a marginal benefit
of 2.28% less curtailment than Method 3.

V. CONCLUSION

More and more controllable DERs are connected to the grid
making a safe, reliable and efficient grid operation challenging.
Central OPF-based approaches for the coordination of the
DERs can achieve optimal results, but rely on communication
and monitoring infrastructure which raises privacy and invest-
ment concerns. On the other hand, purely local schemes are
robust and cheap, but incapable of coping with the modern
DN challenges. Lately, optimized data-driven local control
schemes show promising results, mimicking the centralized
optimal behavior using only local features. However, the
individual customized controls needed in these methods in-
crease the implementation overheads and complexity since
they require setting the unique customized control law to
each DER separately. In this paper, we tackle the practical
challenges of requiring unique control rules, by clustering
them into a limited set. All DERs can easily download
the clustered control laws during firmware upgrade and the
method is generic to every inverter-based DER. For the real-
time operation a very simple signal can be used to set each
DER to one control law of the clustered set. By comparing
the performance under normal conditions we concluded that
the clustered schemes still perform adequately, reducing the
demand of customizing each inverter control. Future work will
focus on the experimental verification of the proposed scheme
both in terms of active power curtailment and reactive power

characteristic curves, as well as on more complicated models
with multiple features based on machine learning tools.
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