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Abstract—A rapid deployment of renewable generation has
led to significant reduction in the rotational system inertia and
damping, thus making frequency control in power systems more
challenging. This paper proposes a novel control scheme based
on Model Predictive Control (MPC) for converter-interfaced
generators operating in a grid-forming mode, with the goal of
exploiting their fast response capabilities to provide fast fre-
quency control service to the system. The controller manipulates
converter power injections to limit the frequency nadir and rate-
of-change-of-frequency after a disturbance. Both centralized and
decentralized MPC approaches are considered and compared
in terms of performance and practical implementation. Special
attention is given to the decentralized controller by generating an
explicit MPC solution to enhance computational efficiency and
reduce hardware requirements. Simulation results obtained from
a detailed dynamic model of the IEEE 39-bus system demonstrate
the effectiveness of the proposed control schemes.

Index Terms—model predictive control, voltage source con-
verter, frequency support, low-inertia systems

I. INTRODUCTION

ALARGE-SCALE integration of converter-interfaced genera-
tion imposes new challenges on real-time power system

control and operation, as the lack of rotational inertia and
governor droop control (i.e., damping) leads to faster dynamics
and larger frequency deviations [1]. In order to mitigate
potential stability issues and improve the resilience of low-
inertia systems, new ancillary services such as Fast Frequency
Control (FFC) are needed [2]. These requirements can be
fulfilled by grid-forming (i.e., grid-supporting) Voltage Source
Converters (VSCs) and the associated DC-side energy buffers,
as they can effectively adjust the power output in response to
frequency deviations.

The two most common grid-forming VSC control ap-
proaches in the literature are a Virtual Synchronous Machine
(VSM), i.e., an emulation technique based on the swing
dynamics of a synchronous machine [3], and a droop-based
control which takes advantage of the traditional droop char-
acteristic for regulating the converter’s active and reactive
power output [4]. Nevertheless, the majority of proposed
control strategies focuses solely on the converter’s AC-side,
disregarding the DC-link dynamics in the process and making
the simplifying assumption that an infinite amount of power
and energy is available at the DC-side capacitor [5]. Moreover,
while specifying a constant droop gain leads to satisfactory
VSC performance under small frequency deviations, it pre-
vents the converter from utilizing its maximum power capacity
in emergency cases.

Model Predictive Control (MPC), an optimization-based,
discrete-time control scheme, appears to be promising for
incorporating all of the aforementioned aspects into a uniform
problem formulation [6]. The capability to compute optimal
control inputs based on predictions of future state evolution
using a state-space system model and disturbance forecasts,
while taking operational constraints into consideration, has
made MPC attractive for frequency control in power systems.

In recent years several studies have considered the ap-
plication of MPC in Automatic Generation Control (AGC).
Centralized [7], hierarchical [8] and distributed [9] approaches
have been proposed and shown to improve frequency regula-
tion and robustness to uncertainty when compared to standard
PI control. In contrast, only a few studies have addressed
the application of MPC to fast frequency control [10]–[12].
A real-time optimal control scheme based on explicit MPC
for regulating frequency and providing inertial response was
presented in [10]. Although the advantages of an explicit MPC
scheme in fast frequency regulation were illustrated, this study
used a simplified power system model and did not include
converter-based generation.

The drawbacks of the aforementioned study were addressed
in [11] and [12], where MPC-based frequency support through
HVDC grids was investigated. In [11], a decentralized MPC
control scheme for frequency containment in emergency situa-
tions was proposed. Frequency predictions are made based on
Rate-of-Change-of-Frequency (RoCoF) measurements and the
VSC output is adjusted if constraint violations are detected or
expected. Despite being decentralized, this approach requires
global information about the grid topology and HVDC con-
verter locations to calculate sensitivity factors corresponding
to DC-voltage droop. Tuning of such parameters as well as
the increased computational burden (due to solving the MPC
problem online) are the limitations of this approach. Alterna-
tively, stabilization of large power systems using VSC-based
HVDC links equipped with a centralized MPC controller was
analyzed in [12]. Based on global measurements, the VSC
injections are manipulated to damp out oscillations in the
system. However, fast and reliable communication links are
required to leverage MPC benefits and resolve potential sta-
bility issues arising from communication delays and failures.

This paper presents both a centralized and a decentral-
ized MPC-based FFC strategy that can be incorporated as
an additional layer to the primary frequency control (droop
or VSM-based). While not active in normal operation, the
MPC is triggered in case of large disturbances to keep the
frequency deviation and RoCoF within limits prescribed by
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the operator. We start by introducing improvements to the
frequency prediction in [11] by employing a Center-of-Inertia
(CoI) frequency dynamics model of a low-inertia system devel-
oped in [13]. Subsequently, model identification methods are
applied to estimate the parameters of the frequency response
model based on historical data. Furthermore, improvements in
computational efficiency of the decentralized MPC approach
by means of an offline explicit solution scheme are assessed.
Finally, in contrast to the studies in [10]–[12], the proposed
control design is verified through time-domain simulations
using a detailed Differential Algebraic Equation (DAE) model
of a low-inertia system described in [14].

The rest of the paper is structured as follows. In Section II,
a general overview of MPC application to FFC is provided and
the MPC-based supervisory layer is introduced in the converter
control scheme. Sections III and IV elaborate on the design
of decentralized and centralized controllers, respectively, as
well as the underlying prediction models. Additionally, in Sec-
tion III, an explicit MPC solution and the model identification
procedure for estimating the prediction model parameters are
presented. Simulation results from different case studies are
illustrated in Section V, whereas Section VI draws the main
conclusions and discusses future work.

II. MPC-BASED FAST FREQUENCY CONTROL FOR VSCS

A. MPC Application to Fast Frequency Control

Traditionally, primary frequency control together with sys-
tem’s rotational inertia was sufficient for containing frequency
excursions in emergency cases. However, as the system in-
ertia and hence the time constants of frequency dynamics
decrease, the primary control response times fail to meet the
requirements for maintaining the frequency within limits in the
immediate aftermath of a disturbance. This raises the need for
control schemes operating on shorter timescales [15]; a service
that could be ideally provided through rapid active power
delivery of the VSC interfacing the renewable generation or
battery storage unit to the network.

The basic MPC concept can be outlined as follows. At
the current discrete time step k P Zě0, the controller re-
ceives the latest available measurements and uses state-space-
based predictions to compute the optimal control sequence
u˚pkq, u˚pk`1q, . . . , u˚pk`N´1q over a horizon of N P Zě0

future time steps to satisfy the required constraints at the
minimum cost. Subsequently, only the control action for the
first time sample is applied to the system and the rest of the
sequence is discarded. The procedure is repeated for every
following sample time step with the inclusion of updated
process measurements.

An MPC-based FFC scheme for converter-interfaced gener-
ators can be developed according to the following approach.
After a large disturbance, sufficient information is promptly
collected by observing changes in system variables in or-
der to predict frequency evolution for the next time period.
Optimal control actions are then computed based on the
state-space predictions to prevent critical threshold violations
(e.g., frequency nadir or RoCoF), while respecting device-level
constraints. Subsequently, each converter unit participating in
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Fig. 1. Simplified diagram of the implemented control structure with the
MPC-based supervisory layer.

FFC attempts to counteract a part of the estimated disturbance.
The frequency control scheme needs to be compatible with
and complementary to all grid-forming controllers and is
therefore designed as a supervisory control layer. Without loss
of generality, this chapter focuses solely on droop-based grid-
forming converters, but the same application can be easily
applied to VSM operation mode based on a well-known small-
signal equivalence between the two models [16].

B. VSC-Level Implementation
The model of a VSC used in this work comprises a DC-side

circuit, an AC-side circuit and a lossless switching unit which
modulates the DC-capacitor voltage vdc P Rą0 into an AC
voltage vsw P R2, as depicted in Fig. 1. Modeling and control
of the converter is implemented in a Synchronously-rotating
Reference Frame (SRF), with the mathematical model defined
in dq-vector form x :“ pxd, xqq P R2 and per-unit. Hence, the
electrical subsystem including an RLC filter prf , `f , cf q P R3

and a transformer prt, `tq P R2 can be represented by

9if “ ωb
`f
pvsw ´ vf q ´

ˆ

rf
`f
ωb ` jωbωr

˙

if , (1a)

9vf “ ωb
cf
pif ´ igq ´ jωbωrvf , (1b)

9ig “ ωb
`t
pvf ´ vtq ´

ˆ

rt
`t
ωb ` jωbωr

˙

ig, (1c)

where if P R2 and vf P R2 are the filter current and voltage,
ig P R2 denotes the transformer current, and vt P R2 is the
voltage at the connection terminal; the system base frequency
is represented by ωb P Rą0 and ωr P Rą0 is the normalized
reference for the angular velocity of the dq-frame.

The outer control loop consisting of active and reactive
power controllers provides output voltage magnitude }vc} P R
and frequency ωc P R references by adjusting the prede-
fined setpoints pp‹c , ω‹c , q‹c , V ‹c q P R4 according to the droop
control law and the power measurements pc :“ vTf ig and
qc :“ vTf j

Tig , as follows:

ωc :“ ω‹c `Rpcpp‹c `∆p‹c ´ p̃cq, 9̃pc :“ ωf ppc ´ p̃cq, (2a)

}vc} :“ V ‹c `Rqcpq‹c ´ q̃cq, 9̃qc :“ ωf pqc ´ q̃cq, (2b)

with Rpc P Rě0 and Rqc P Rě0 denoting the active and reactive
power droop gains, p̃c P R and q̃c P R representing the low-
pass filtered active and reactive power measurements, ωf P
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Rě0 being the low-pass filter cut-off frequency and ∆p‹c P R
indicating the setpoint change generated by the supervisory
layer. Assuming constant ∆p‹c , the RoCoF state 9ωc P R can
be computed from (2a) as

9ωc “ Rpcωf pp̃c ´ pcq. (3)

The output of active and reactive power controllers is then
passed to the cascade of voltage and current controllers (so-
called inner control loop), computing a switching voltage
reference v‹sw P R2. It encompasses a PI voltage controller

9ξ “ v‹f ´ vf , (4a)

i‹f “ Kv
P pv‹f ´ vf q `Kv

I ξ `Kv
F ig ` jωccfvf , (4b)

that provides a reference i‹f P R for a current PI controller

9γ “ i‹f ´ if , (5a)

v‹sw “ Ki
P pi‹f ´ if q `Ki

Iγ `Ki
F vf ` jωc`f if , (5b)

where pKv
P ,K

i
P q P R2ą0, pKv

I ,K
i
Iq P R2ě0 and pKv

F ,K
i
F q P

Z2
t0,1u are the respective proportional, integral, and feed-

forward gains, ξ P R2 and γ P R2 represent the integrator
states, and superscripts v and i denote the voltage and current
controllers respectively. Finally, we assume that the modula-
tion voltage reference v‹sw is perfectly transformed to the AC
side, i.e., vsw :“ v‹sw.

The DC-side model includes a battery storage unit with
the energy capacity eb P R, interfaced with the converter
through a parallel connection of the capacitance cdc P Rą0

and the conductance gdc P Rą0. The underlying dynamics are
described by

cdcω
´1
b 9vdc “ ´gdcvdc ´ isw ` idc, (6a)

9χ :“ ppdc ´ pswqe´1
b , (6b)

where isw denotes the current flowing into the switching block
and idc is the net current of the battery and the renewable
generation represented by the DC-current source. The battery
State-of-Charge (SoC) χ P Rě0 is derived based on the power
balance between the converter’s DC-side input power pdc :“
vdcidc P R and the AC-side output power psw :“ vTswif before
the filter.

Finally, a PI controller is employed to track the DC-voltage
setpoint v‹dc P Rą0 by adjusting the DC-current source

9χ “ v‹dc ´ vdc, (7a)

idc “ Kdc
P pv‹dc ´ vdcq `Kdc

I χ`Kdc
F i

‹
dc, (7b)

with χ P R being the internal state variable, and proportional,
integral, and feed-forward gains denoted by Kdc

P P Rą0,
Kdc
I P Rě0, and Kdc

F P t0, 1u, respectively. The DC current
reference i‹dc P Rą0 at a nominal operating point pV ‹c , p‹c , q‹c q,
including DC and AC circuit losses, is given by

i‹dc :“ v‹dc
´1

ˆ

p‹c ` rf
p‹c

2 ` q‹c 2
V ‹c

2

˙

` gdcv‹dc, (7c)

which indicates that for vdc “ v‹dc the DC-side current will
be idc “ i‹dc.

The supervisory control layer employs an MPC which,
based on a frequency prediction model and the newest avail-
able measurements xmes, generates a signal ∆p‹c to adjust the
active power setpoint in response to a disturbance. Whereas
inactive during normal operation, the supervisory layer is
triggered in emergency cases and remains active until the new
steady state is reached.

III. DECENTRALIZED CONTROL DESIGN

The main goal of the decentralized approach is to design an
FFC scheme where each VSC relies solely on local measure-
ments and proportionally participates in disturbance mitigation
based on its location in the system. Optimally, the converters
closer to the fault shall provide more support in order to avoid
stress on the transmission lines and losses. Communication
among converters is avoided and each individual VSC can be
included in FFC support in a plug-and-play fashion.

Since there is no need for provision of FFC in normal
operation, the controller remains inactive until a disturbance is
detected. As a disturbance indicator, internally obtainable Ro-
CoF estimates defined by (3) are used. As long as the RoCoF
stays within a predefined deadband the controller remains idle.
Once the threshold is violated, the FFC is activated and kept
in operation until the average RoCoF returns below prescribed
margins. A benefit of such approach lies in the simultaneous
activation and synchronous action of all VSCs participating in
FFC, without the need for communication and independent of
converter location.

In the remainder of this section, the derivation of an
accurate frequency prediction model is presented together with
mathematical formulation of the decentralized MPC problem.
Moreover, a data-driven approach for estimating the prediction
model parameters is described as well as the explicit MPC
solution scheme for efficient computation of the optimal
control inputs.

A. Frequency Prediction Model

The work in [11] proposes a simple RoCoF-based frequency
prediction model, where at each discrete time step k P Zě0 an
instantaneous RoCoF measurement rf pkq P R is obtained and
used to estimate the frequency deviation ∆fpk ` jq P R for
N P Zě0 future time steps j P t1, 2, . . . , Nu of the prediction
horizon, as follows:

∆fpk ` jq “ rf pkqTs ` ∆pcpk ` jq
2H

Ts. (8)

Here, Ts P Rą0 denotes the length of a single time step,
H P Rą0 is the aggregate inertia constant, and ∆pcpk`jq P R
represents the VSC power adjustment at the respective time
step. Although simple and convenient for MPC implementa-
tion, the proposed model predicts a linear frequency decay
based on the instantaneous RoCoF at the onset of the distur-
bance, and hence leads to large errors when estimating the
frequency nadir.

We improve the prediction accuracy by employing a CoI
frequency model of a generic low-inertia system introduced
in [13], accounting for the inertial response and primary
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frequency control of SGs as well as the frequency support
of converter-based generators. In Laplace domain, it can be
represented by a simplified, yet sufficiently accurate, transfer
function Gpsq relating the CoI frequency deviation ∆fpsq P C
to a change in power ∆ppsq P C:

Gpsq “ ∆fpsq
∆ppsq “

1

MT

1` sT
s2 ` 2ζωns` ω2

n

. (9)

The natural frequency ωn P Rą0 and damping ratio ζ P Rą0

are computed as

ωn “
c

D `Rg
MT

, ζ “ M ` T pD ` Fgq
2
a

MT pD `Rgq
, (10)

with parameters M P Rą0 and D P Rą0 representing the
weighted system averages of inertia and damping constants,
respectively. Similarly, Rg P Rą0 and Fg P Rą0 denote the
average inverse droop control gain and the fraction of total
power generated by the high-pressure turbines of Synchronous
Generators (SGs), while T P Rą0 stands for the generator time
constant. A simplification of assuming equal time constants for
all SGs is made according to the analysis in [17], suggesting
that the frequency nadir and RoCoF are the least sensitive
metrics to turbine time constants. Moreover, the inverter time
constants are approximately 2-3 orders of magnitude lower
than the ones of synchronous machines. A verification of the
proposed frequency model can be found in [13], together with
definitions and analytic expressions of all relevant parameters.

Transfer function (9) can now be transformed into a con-
trollable canonical state-space model
„

9q1ptq
9q2ptq
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„
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´ω2
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, (11b)

where A P R2ˆ2, B P Z2ě0 and CT P R2ě0 denote the state-
space matrices, and x :“ pq1, q2q P R2 represents the state
vector that does not correspond to any physical variable in the
system. A zero-order hold equivalent of the state-space model
given in (11) is used to obtain a discrete-time form suitable
for the MPC problem formulation.

Since ∆pptq is a control input in (11), it is necessary to mea-
sure the disturbance signal prior to predicting the frequency
evolution. By applying a stepwise disturbance ∆ppsq “ ∆P {s
to the model in (9), a relationship between the maximum
instantaneous RoCoF (i.e., RoCoF in the immediate aftermath
of the disturbance, before any system controls are activated)
9ωmax P R and the disturbance magnitude ∆P P R is known,
and yields 9ωmax :“ ´∆P {M [13]. Note that the formulation
is presented in per-unit, i.e., 9ωmax “ 9fmax{fb. Considering
that the RoCoF measurements are internally available at each
grid-forming VSC, the magnitude of the system disturbance
can be locally estimated and subsequently used for frequency
evolution prediction in (11).

B. Decentralized MPC Formulation

Let us denote by H “ tk, k ` 1, . . . , k ` Nu the MPC
prediction horizon of length N , including k as the current time
step. The proposed optimization problem aims at minimizing
the total control effort over the full horizon, i.e., @k P H, as
follows:

min
u

ÿ

kPH
CP pkq‖∆p‹cpkq‖` CH p‖ηf‖8 ` ‖ηr‖8q (12a)

s.t. xpk ` 1q “ Adxpkq `Bdp∆p‹cpkq `∆P q, (12b)
fpkq “ Cdxpkq ` f0, (12c)

9fpkq “ fpkq ´ fpk ´ 1q
Ts

, (12d)

pcpkq “ p‹c `
k
ÿ

r“1

∆p‹cprq `Rpcpω‹c ´ ωcpkqq, (12e)

χpk ` 1q “ χpkq ` Ts p
‹
c ´ pcpkq
eb

, (12f)

pc,lim ď pcpkq ď spc,lim, (12g)

χlim ď χpkq ď sχlim, (12h)

flim ď fpkq `Rpc∆p‹cpkq ď sflim, (12i)

flim ´ ηf pkq ď fpkq ď sflim ` ηf pkq, (12j)

9flim ´ ηrpkq ď 9fpkq ď s9f lim ` ηrpkq, (12k)

ηf pkq ě 0, ηrpkq ě 0, (12l)

with xpkq P R2 denoting a state vector at a discrete time
step k and u P RN`1 being the vector of setpoint changes
∆p‹cpkq. The coefficients CP pkq P Rě0 in the objective
function (12a) represent the cost of the converter action at
each time step k. Values of the coefficients are chosen such
that CP pkq ď CP pk ` 1q holds, which incentivizes the use
of control resources at earlier time steps in order to prevent
late reactions and frequency oscillations near the frequency
limit resulting from the converter setpoint alteration. Slack
variables ηf P RN`1

ě0 and ηr P RN`1
ě0 , in conjunction with

a large penalty factor CH P Rą0, are used to relax the re-
spective frequency and RoCoF constraints and avoid potential
feasibility issues.

The prediction model described in (12b)-(12d) aims at
anticipating the system frequency evolution for future time
steps. For that purpose, the discrete-time counterpart of the
frequency prediction model (11) is used, with Ad P R2ˆ2,
Bd P Z2ě0 and Cd P R2ě0

T describing the respective state
space, ∆P P R denoting the estimated disturbance magnitude,
Ts P Rą0 designating the length of a single discrete time
step, and f0 P Rą0 representing the frequency linearization
point (i.e., the nominal frequency). Equality (12d) augments
the frequency model with the prediction of average RoCoF
over a single time step.

Constraints (12e)-(12i) take into account the physical lim-
itations of the converter such as the upper and lower bounds
on power output pcpkq and battery SoC χpkq. The second
term in (12e) accumulates the setpoint changes from previous
time steps and the third term accounts for the contribution of
droop control; (12f) is a discrete formulation of the dynamics
pertaining to battery SoC, with pdc “ p‹c . Expression (12i)
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captures the impact of droop control on system frequency,
thus anticipating excessive frequency spikes coming from fast
setpoint changes at the converter nodes and preventing poten-
tial converter tripping. Finally, constraints (12j)-(12k) impose
upper and lower bounds on system variables, with subscript
“lim” indicating the respective threshold, whereas (12l) stands
for trivial non-negativity constraints of slack variables.

Each VSC participating in FFC is expected to compensate
for a portion of the total disturbance. Hence, the computed
optimal setpoint change ∆p‹ci of each converter i P Nc is
weighted by the participation coefficient kpi :“ sPi{Pt before
being applied to the VSC, with sPi P Rą0 being its rated
power and Pt P Rą0 representing the net installed power of
all converters participating in FFC.

C. Model Identification

Reliable performance of predictive control largely depends
on the accuracy of the prediction model. The parameters in (9)-
(11) vary with generator dispatch changes and require infor-
mation regarding the specifications of every online generator.
Hence, a methodology to obtain accurate model parameters
needs to be developed. Combining the known mathematical
structure of the prediction model with available measurement
data, the grey-box modelling approaches can be exploited for
online estimation of model parameters.

A grey-box model is mathematically formulated as a set
of continuous stochastic differential equations. It can be de-
rived by extending the state-space model (11) to account for
measurement errors and process uncertainty, which yields

9xptq “ ApΩqxptq `BpΩq∆pptq ` µ, (13a)
∆fptq “ CpΩqxptq ` ε, (13b)

with Ω P Rp representing the vector of unknown parameters,
µ P R2 denoting a Wiener process and ε P R being
the measurement error. The prediction error method [18] is
an efficient grey-box identification approach for parameter
estimation using a linear state estimator and minimizing the
square of prediction residuals over all measurement samples
m PM Ă Zě0. The optimization problem is formulated as

min
Ω

ÿ

mPM
‖∆fpmq ´∆f̂pmq‖22 (14a)

s.t. x̂pm` 1q “ ApΩqx̂pmq `BpΩq∆ppmq
`KpΩq

´

∆fpmq ´∆f̂pmq
¯

, (14b)

∆f̂pmq “ CpΩqx̂pmq, (14c)
x̂p0q “ x0, (14d)

where KpΩq P R2 is the parametrized Kalman gain, x0 P R2

represents the initial state vector, and symbol x̂pmq P R2

denotes the vector of estimated state variables from a mea-
surement sample m.

The data required for system identification process (∆fptq
and ∆pptq in particular) can be obtained by means of load
step-change tests carried out at the converter terminal. How-
ever, to ensure observability, the disturbance magnitude needs
to be significant. Another approach is to use disturbance

data acquired by the operator, but would require occasional
communication and result in the loss of a plug-and-play
feature. Nevertheless, note that this communication will be
on a much longer timescale, which preserves the controller’s
decentralized aspect. The optimization problem (14) is solved
using the MATLAB System Identification Toolbox [19], which
also ensures stability by preserving the eigenvalues of A´KC
inside the unit circle.

D. Explicit MPC

Explicit MPC offers an alternative approach for computing
optimal control actions without the need for executing an opti-
mization algorithm in real time. The basis for such application
lies in multi-parametric programming, whose solution yields a
complete map of all optimal solutions for different operating
conditions, and hence the effort needed to obtain the optimal
control inputs reduces to function evaluation. The embedded
control system can in turn be designed with low hardware and
software requirements.

Deriving explicit MPC formulation of (12) transforms the
given optimization problem into a multi-parametric Linear
Program (mp-LP) by treating lk “ pxpkq, χpkq, pcpkqq P P as
a parameter vector at current time step k, within a predefined
feasible polyhedral set P Ă R4. The solution of mp-LP gives
an explicit MPC control law

∆p‹cplkq “ Jiplkq ` qi, (15)

where Jiplkq P R and qi P R define a piecewise affine function
for all parameter vectors lk P Pi belonging to a polyhedral
subspace partition Pi Ď P of the original set [20]. The number
of subspace partitions depends on the number and complexity
of constraints, whereas the required offline computational time
depends on the length of the prediction horizon.

IV. CENTRALIZED CONTROL DESIGN

The aim of the centralized grid controller is to provide
fast frequency response by manipulating the active power
setpoints of all converter-interfaced generators simultaneously.
In contrast to decentralized control, which relies only on
locally available measurements, an estimate of the dynamical
system state can be globally obtained using a wide-area system
of Phasor Measurement Units (PMUs), thus improving the
regulation accuracy. A benefit of these additional measure-
ments is that FFC can be provided while taking line power
flow limits into consideration. In this study we assume the
communication links to be reliable and high-speed, therefore
neglecting any communication failure scenarios and delays and
focusing solely on the underlying control problem.

Similarly to the decentralized MPC, the centralized grid
controller is triggered by a large power imbalance. More
precisely, PMU measurements at every bus are compared
to the scheduled power injections in order to detect the
disturbance. Once detected, the power imbalance is used as
an input for the MPC problem. Upon activation, the MPC
solver runs on a constant clock until average RoCoF values
at every bus over a predefined time period fall below a given
threshold. The remainder of this section presents the derivation
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of an appropriate prediction model and formulation of the
centralized MPC problem.

A. Simplified System Model
Following the work in [21], we derive a prediction model

that captures frequency dynamics of individual units as well
as network line flows, while being simple enough for practical
MPC implementation. Each VSC-interfaced unit i P Nc, where
nc “ |Nc|, can be modeled with two dynamic states xci “
pθci , p̃ciq P R2, reflecting the voltage angle θci P r´π, πq and
filtered active power p̃ci P R from (2a). Using droop control,
the angle dynamics can be expressed by

9θci “ Rpcip∆p‹ci ´ p̃ciq, (16)

thus capturing the frequency response of the converter lin-
earized around a steady-state operating point.

For synchronous generation, a third-order SG model of the
form

Msj 9ωsj “ ´Dsjωsj ` p‹mj
´ psj , (17)

Tgj 9̃psj “ ´p̃sj ´Kgjωsj , (18)
9θsj “ ωsj (19)

is employed, where xsj “ pθsj , ωsj , p̃sj q P R3 is the state
vector describing the rotor angle θsj P r´π, πq, rotor speed
ωsj P Rě0, and dynamics of governor control p̃sj P R
of each synchronous generator j P Ng , with ng “ |Ng|;
psj P R indicates changes in the electrical power output,
Msj P Rą0 and Dsj P Rą0 denote generator inertia and
damping constants, whereas Tgj P Rą0 and Kgj P Rą0

represent the governor time constant and control gain respec-
tively. The swing equation (17) is linearized around steady
state and assumes constant mechanical input p‹mj

P Rě0 over
the timescales of interest. A first-order low-pass filter given
by (18) models the governor dynamics and droop control of
the generator [22].

A DC power flow approximation is used to model the
network comprising nn “ |Nn| nodes and nb “ |Nb|
branches, described by the graph Laplacian L P Rnnˆnn (i.e.,
the bus susceptance matrix of the grid). Under small-signal
DC power flow assumptions, the vector p P Rnn representing
the active power injection at each node can be linearized as

p “ Lθ ` pl, (20)

with θ P Rnn being the vector of nodal voltage angles and
pl P Rnn denoting the vector of load power changes at every
bus. Line flows pb P Rnb across branches are subsequently
computed as pb “ X̂bGθ, where X̂b “ diagpx̂´1

1 , . . . , x̂´1
nb
q P

Rnbˆnb denotes the line susceptance matrix1 and G P Znbˆnn

is the graph incidence matrix.
Finally, a uniform representation of the network comprising

nn nodes, nb branches, ng synchronous and nc converter-
interfaced generators can be established by combining (2a)
with (16)-(20), resulting in the linear system

9x “ Âx` B̂u, (21a)

y “ Ĉx` D̂u, (21b)

1x̂k represents the series reactance of branch k P Nb Ď Zě0.

where the state space matrices Â P Rp2nc`3ngqˆp2nc`3ngq,
B̂ P Rp2nc`3ngqˆpnc`nnq, Ĉ P Rpnc`ng`nbqˆp2nc`3ngq and
D̂ P Rpnc`ng`nbqˆpnc`nnq describe the system, and vectors
of variables are defined as

x “
´

xc1 , . . . , xcnc
, xs1 , . . . , xsng

¯

P R2nc`3ng , (22a)

u “
`

∆p‹c1 , . . . ,∆p
‹
cnc

, pl
˘

P Rnc`nn , (22b)

y “
´

fc1 , . . . , fcnc
, fs1 , . . . , fsng

, pb1 , . . . , pbnb

¯

P Rnc`ng`nb .

(22c)

In (22c), fsi “ fbωsi and fci “ fbωci represent individual
frequencies of SG and VSC units converted into SI, with fb “
50Hz being the base frequency.

B. Centralized MPC Formulation

The proposed optimization problem resembles the one pre-
sented in Section III. Nonetheless, there are few key distinc-
tions, as the centralized controller determines the power output
of each converter participating in FFC. The objective function
therefore aims at minimizing the total control effort over the
full horizon k P H and over all converter units i P Nc:

min
u

ÿ

kPH

ÿ

iPNc

CPipkq‖∆p‹cipkq‖` CH p‖ηf‖8 ` ‖ηr‖8q
(23a)

s.t. @k P H,@i P Nc,@j P N ,

xpk ` 1q “ Âdxpkq ` B̂dupkq, (23b)

ypkq “ Ĉdxpkq ` D̂dupkq `
„

f0
pb0



, (23c)

9fjpkq “ fjpkq ´ fjpk ´ 1q
Ts

, (23d)

pcipkq “ p‹ci `
k
ÿ

r“1

∆p‹ciprq `Rpcipω‹ci ´ ωcipkqq,
(23e)

χipk ` 1q “ χipkq ` Ts p
‹
ci ´ pcipkq

ebi
, (23f)

pci,lim ď pcipkq ď spci,lim, (23g)

χi,lim ď χipkq ď sχi,lim, (23h)

flim ď fipkq `Rpci∆p‹cipkq ď sflim, (23i)

pb,lim ď pb ď spb,lim, (23j)

flim ´ ηf pkq ď fjpkq ď sflim ` ηf pkq, (23k)

9flim ´ ηrpkq ď 9fjpkq ď s9f lim ` ηrpkq, (23l)

ηf pkq ě 0, ηrpkq ě 0, (23m)

where N “ Ng YNc denotes the index set of all generators
(including both synchronous and converter-interfaced ones) in
the system, and upkq P Rnc`nn is the vector comprising set-
point changes ∆p‹cipkq of all VSCs and nodal load injections
plpkq at time step k. The prediction model in (23b)-(23c)
represents the discrete-time counterpart (denoted by subscript
d) of the state space given by (21)-(22), with the vector of load
injections pl in (22b) being populated by PMU measurements
of system disturbances and remaining constant throughout the
prediction horizon. Vectors f0 P Rnc and pb0 P Rnb define
the linearization point for individual converter frequencies and
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network line flows. The RoCoF is calculated for all generators
in (23d) and branch flows are kept within permissible limits
in (23j). Constraints on each individual VSC (23e)-(23i) are
imposed to keep the SoC, power output and frequency spikes
within limits, with the notation adapted from (12). Frequency
and RoCoF constraints are enforced on all generators in (23k)-
(23l), whereas non-negativity constraints are imposed on slack
variables in (23m).

V. MODEL VALIDATION AND CONTROL PERFORMANCE

The two proposed FFC schemes have been implemented and
evaluated on the IEEE 39-bus test system depicted in Fig. 2.
This is a well-known 10-machine representation of the New
England power system, with generator at node 10 representing
the aggregation of a large number of generators. The relevant
network, load and generation parameters can be found in [23],
[24]. The simulations have been performed in MATLAB using
a DAE model described in [14] that encompasses detailed rep-
resentation of generator and transmission line dynamics. The
investigated system comprises seven conventional generators,
as three SGs from the original system (precisely at nodes 1,
2 and 3) have been replaced by converter-interfaced units of
1000MW installed power and 10MWh battery energy storage
capacity for the purposes of this analysis. The respective power
ratings and output limits of the remaining SGs have been
preserved. All VSCs operate in grid-forming mode and are
equipped with the FFC layer.

The disturbances are generated through step changes in ac-
tive power at network buses of interest, thus emulating either a
loss of generator or a loss of load. In this study we assume that
the first stage of automatic load-shedding is initiated in case
of frequency deviation beyond ˘0.5Hz, whereas the RoCoF
protection is triggered at ˘1Hz{s for RoCoF measurements
averaged over a 250ms cycle. Therefore, the frequency-related
thresholds in (12) and (23) are set as follows: flim “ 49.5Hz,
sflim “ 50.5Hz, 9flim “ ´1Hz{s and s9f lim “ 1Hz{s. The
battery SoC and VSC power output are defined in per unit,
and hence the minimum and maximum limits are set to 0 and
1, respectively.

The prediction horizon of the MPC-based controller is set to
three time steps with a sampling period of 250ms. On the one
hand, the prediction horizon length of 750ms reflects a trade-
off between controller performance and computational effort.
On the other hand, the MPC sampling period is selected such
that it exceeds all delays associated with the converter and
supervisory layer, as well as the time needed to compute the
optimal control decisions. The instantaneous RoCoF estimate
9ωmax required for computation of the disturbance magnitude
∆P is obtained by averaging the the internal RoCoF state
signal 9ω over a time interval of 10ms in the immediate
aftermath of a disturbance.

The following sections will first analyze the impact of
parametrization on the accuracy of the frequency prediction
model in (11), and compare it against the RoCoF-based
approach in (8). Subsequently, the controller performance for
different disturbance locations and magnitudes is evaluated,
followed by a discussion on the battery storage requirements
and explicit MPC formulation.
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Fig. 2. IEEE 39-bus New England test system. Inverter-based generation is
placed at nodes 1, 2 and 3. Disturbance locations under consideration are
indicated by red symbols.

A. Prediction Model Validation

The controller operation for N “ 5 time steps is shown in
Fig. 3, comparing the performance of the proposed frequency
prediction model against the RoCoF-based one. Predicted
frequency evolution in case of no corrective actions (indicated
by the dashed lines) demonstrates the conservative nature
of the RoCoF-based approach. In particular, due to constant
RoCoF estimate throughout the whole prediction horizon, the
anticipated frequency nadir is well below the actual value. As

Fig. 3. Comparison of decentralized MPC performance under two frequency
prediction models. Anticipated frequency evolution and adjusted power injec-
tions are used for evaluation.
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a result, the control effort is significantly higher than with the
CoI model. Being proven advantageous and more efficient,
only the CoI model is considered hereinafter.

It was noted previously that inaccurate knowledge of system
parameters in the CoI model could lead to degradation of
response quality and potential control failure. To investigate
the severity of this problem, a parametric sensitivity analysis
was performed for an arbitrary disturbance by considering all
possible combinations of two SGs in the IEEE 39-bus system
going offline. The error envelope around the median frequency
response, derived from simulations and illustrated in the upper
plot of Fig. 4, indicates the maximum nadir error of « 0.01%
for the considered generator sets.

The aforementioned issue with parameter uncertainty can be
mitigated through the grey-box system identification procedure
outlined in Section III. To illustrate the efficiency of such
approach, an active power step change of 1575MW at bus 16
is simulated, with generator frequencies presented in Fig. 4.
The individual frequencies are compared to the frequency
prediction of the CoI model, once parametrized using the exact
generator parameters (clear-box) and once through the grey-
box model identification procedure. The individual generator
frequencies are matched well by the CoI model response
in both cases, with a negligible difference between the two
parametrization methods. The data used for system identifi-
cation process were retrieved by simulating a different load
step disturbance and collecting VSC frequency measurements
at node 1. Parameter fitting was subsequently employed using
the MATLAB System Identification Toolbox, obtaining a fit
with an RMSE of 2%.

B. Control Performance and Comparison

Performance of the decentralized control depends on how
well the power imbalance can be estimated through internal
RoCoF state of the active power controller. It is well known
that frequencies, and correspondingly the instantaneous Ro-
CoF values, will vary significantly at different nodes of a

Fig. 4. Accuracy of the frequency prediction model: sensitivity to model
parameters (top) and CoI-model verification (bottom).

large power system following a disturbance. For this reason,
a symmetrical placement of a sufficient number of converters
providing FFC support is crucial for coverage of disturbances
at as many system nodes as possible. Since power ratings of all
VSCs are the same, each unit is expected to participate equally
in disturbance mitigation. Unlike the decentralized approach,
the centralized grid controller obtains an accurate disturbance
estimate through wide-area measurements, independent of the
disturbance location, and hence operates with low error.

In the following, we evaluate and compare the performance
of both control approaches by analyzing the system response
for different disturbance locations indicated in Fig. 2. The
values of applied and estimated disturbance magnitudes for
every considered bus and for each VSC are presented in
Table I. As can be seen from the table, significant mismatches
between the actual and estimated disturbance exist in several
cases, which will be the subject of the following analysis.

First, let us consider a power disturbance of 1575MW
at node 16. Fig. 5 shows frequencies and active and reac-
tive power outputs of individual generators for both FFC
approaches. The dashed line represents the lowest (i.e., “worst-
case”) frequency nadir of any unit in the system when FFC is

Fig. 5. Individual frequency, active and reactive power output responses
for the decentralized (top) and centralized (bottom) FFC scheme following a
disturbance at bus 16. Dashed line depicts the worst-case generator frequency
without the use of FFC.
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Fig. 6. Individual frequency, active and reactive power output responses
for the decentralized (top) and centralized (bottom) FFC scheme following
a disturbance at bus 26.

disabled. Note that the droop control of all units is still active.
The VSC at node 3 remains inactive due to the large electrical
distance to the fault location and consequent underestimation
of the disturbance. However, the support from the other two
converters is sufficient to compensate the disturbance and
prevent load-shedding. On the other hand, the global MPC-
based grid controller dispatches all three units equally, with
the identical total control effort for both MPC approaches.

In contrast, Fig. 6 illustrates the control performance for a
disturbance at bus 26, in the vicinity of converter-interfaced
DG at node 3 . Hence, this VSC unit overestimates the distur-
bance and significantly increases its power output, whereas the

TABLE I
FAULT SCENARIOS AT DIFFERENT BUSES WITH INDICATED APPLIED

DISTURBANCE MAGNITUDES AND ESTIMATED IMBALANCES FOR EACH
VSC LOCATED AT NODES 1, 2 AND 3, RESPECTIVELY.

Bus Disturbance rMWs
Estimated disturbance rMWs

VSC 1 VSC 2 VSC 3
16 1575 1550 1955 835
26 1430 1100 790 3860
38 1850 1390 520 650

Fig. 7. Individual frequency, active and reactive power output responses
for the decentralized (top) and centralized (bottom) FFC scheme following
a disturbance at bus 38.

other two converters remained idle. Similarly, the centralized
controller increases only the power output of the VSC at node
3, which due to its location has the most influence on the
relevant frequency dynamics. An overall lower control effort
is employed in the centralized approach.

Lastly, we consider a disturbance at bus 38, located such
that it exhibits a large electrical distance between all three
VSCs. The individual frequency response of all generators
is given in Fig. 7. Understandably, decentralized controllers
underestimate the disturbance due to a large electrical distance
from the fault location. VSC-based DG at bus 1 is the
only one to react, though insufficiently to compensate for
the disturbance and prevent load-shedding. Having accurate
global measurements, the centralized grid controller detects
the disturbance and reacts appropriately and timely through
all available converter-interfaced units.

C. Analysis of DC-side Dynamics

The most relevant variables describing the dynamics of the
DC-side circuit, namely the capacitor voltage vdc, the input
current ix and the battery SoC χ are shown in Fig. 8 for
individual VSC units and the disturbance at bus 16. The
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installed energy capacity of the batteries is assumed to be
10MWh, with the initial SoC for all three inverters set to
0.5 p.u. The disturbance and the inverter setpoint changes
cause power imbalances at the capacitor node, leading to DC
voltage dips which are quickly restored by the DC-side con-
trols using available energy of the battery. As a consequence,
SoC levels of individual inverters decrease at different rates
depending on the applied setpoint change by the FFC layer.
Note that for a smaller battery size the SoC levels would
decrease faster, justifying inclusion of the SoC constraints in
the MPC problem formulation. Finally, the input DC current
indicates faster dynamics compared to the output power (see
Fig. 5), which could potentially lead to high current injections.
While highly relevant for safe operation of power electronic
devices, such problems and limitations are addressed by the
overcurrent protection schemes incorporated within the device-
level control, and are therefore out of the scope of this work.

D. Analysis of Computational Efficiency

The solution of the linear MPC optimization problems (12)
and (23) was performed using the CPLEX solver, an LP solver
based on interior point algorithms, for numerical computation
and YALMIP [25] for high-level modeling. The computational
time required for solving the decentralized MPC problem
is 185ms, whereas the centralized MPC problem is solved
in 343ms on average. The computational efficiency for the
decentralized controller can further be improved by generating
an explicit solution, as discussed in Sec. III. The explicit
MPC solution was generated using YALMIP for modeling
and the MPT3 toolbox [26] for low-level numerical solution

Fig. 8. Individual DC voltage, input current and SoC responses for the
decentralized FFC scheme following a disturbance at bus 16.

of the multi-parametric optimization problem. The solution
partitions the parameter space in 452 regions and takes 95 s
to be generated. In this case, the time required to obtain the
optimal control inputs reduces to 15.86ms.

VI. CONCLUSION

This paper presents a novel FFC scheme for converter-
interfaced DGs in low-inertia systems, which exploits their fast
response to prevent load-shedding scenarios. An MPC-based
supervisory control layer is added to the traditional converter
control scheme, which in response to a large disturbance ma-
nipulates converter setpoints to contain the frequency within
predefined bounds. Both centralized and decentralized control
approaches were considered and compared. Novel prediction
models were developed and compared to the state-of-the-art,
which showcased improvements in prediction accuracy.

The centralized approach has proven to be advantageous
in several cases indicating the value of fast communication
infrastructure. On the other hand, the decentralized controller
proves to be efficient for containing frequency excursions for
disturbances occurring in the vicinity of at least one or few
converter-interfaced generators. Advantages of this approach
are a simple, plug-and-play architecture, as well as a low-
cost and computationally efficient implementation. Simulation
results do not suggest any potential frequency instabilities
arising from the control actions of the MPC-based supervisory
layer, but we leave a theoretical proof of the controller stability
for future work.

A. Outlook and Future Work

An interesting avenue for future work is a distributed
approach, where controllers of individual VSCs carry out
their calculations in separate processors, but efficiently co-
operate using only communication links between different
local controllers. The extension of this study will focus on
applying machine learning frameworks such as data-driven
support vector machine on the CoI model to improve the
system frequency prediction in the aftermath of a disturbance.

Present work focuses on designing the FFC layer that aims
to react and stabilize the system in the events of generator
outages and sudden load changes. As the RoCoF estimates are
an essential part of the proposed controller, it is important to
consider the impact of transmission line faults on the control
behavior. Such events as well as the instances of converter
disconnection will be the subject of future research.

Upon the successful frequency containment by virtue of
joint efforts of the primary and fast frequency control schemes,
the AGC is activated and slow-acting reserves are dispatched
to replace the missing generation. The converter setpoints can
now be readjusted (i.e., decreased) and a recovery period
whose aim is to prepare the FFC providing units for the
next operation cycle begins. Development of optimal control
schemes for FFC deactivation and recovery will be addressed
in future work.
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