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I The emergence of Active Distribution Networks and their
increased impact on the grid, requires more accurate
modeling, both in investment and operation planning
problems

I A major tool used for planning in power systems is the
Optimal Power Flow (OPF) which aims at obtaining a
feasible and optimal operating point that satisfies operational
and physical constraints at the minimum cost.

I However, OPF is a complex problem due to the non-linear
and non-convex nature of the AC power flow equations that
govern the grid’s physical laws

I The challenge in finding the solution to an OPF problem, lies
between AC feasibility, global optimality, and
computational efficiency of the adopted model.

Introduction
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I Nonlinear, nonconvex OPF models, provide locally optimal solutions that exactly satisfy power flow
equations.

I Convex relaxations/restrictions are tractable alternatives that provide lower/upper bounds on the optimal
cost, yield a global optimum and can certify problem feasibility.

I Linear approximations are simplifications to the power flow equations based on assumptions to a certain
variable in the network.

I Solutions provided by relaxations, restrictions, and approximations may not be physically applicable in
cases leading to AC infeasibility.

Nonconvex 
feasible set

Convex restriction 
(inner approximation)

Convex relaxation 
(outer approximation)

Linear 
approximation

Background and Motivation
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1 Analysis of five of the most widely adopted OPF formulations used in active distribution networks under
different performance metrics i.e. the basic Non-Linear OPF1, DistFlow (DF)2, Linearized DistFlow
(LinDF)3 without line shunts, Extended DistFlow (ExDF) with line shunts4, and Extended Augmented
DistFlow (ExAgDF)5

2 Comparison of performance in practical situations based on metrics defining the optimality gap and
normalized distance to a local AC feasible solution

3 An evaluation of computational performance in a multi-period optimization problem with varying load and
generation profiles for the IEEE 34-bus test system, and therefore examine suitability for adoption in LV
networks

1Konstantina Christakou et al. “AC OPF in radial distribution networks – Part I: On the limits of the branch flow convexification and the alternating direction method of multipliers”. In:
Electric Power Systems Research 143 (2017), pp. 438–450. issn: 0378-7796.

2M. Nick et al. “An Exact Convex Formulation of the Optimal Power Flow in Radial Distribution Networks Including Transverse Components”. In: IEEE Trans. on Automatic Control 63.3

(2018), pp. 682–697. doi: 10.1109/TAC.2017.2722100.

3M. E. Baran and F. F. Wu. “Network reconfiguration in distribution systems for loss reduction and load balancing”. In: IEEE Trans. on Pow. Delivery 4.2 (1989), pp. 1401–1407. doi:

10.1109/61.25627.

4F. Zhou and S. H. Low. “A Note on Branch Flow Models With Line Shunts”. In: IEEE Trans. on Pow. Sys. 36.1 (2021), pp. 537–540.

5M. Nick et al. “An Exact Convex Formulation of the Optimal Power Flow in Radial Distribution Networks Including Transverse Components”. In: IEEE Trans. on Automatic Control 63.3

(2018), pp. 682–697. doi: 10.1109/TAC.2017.2722100.

Contributions

https://doi.org/10.1109/TAC.2017.2722100
https://doi.org/10.1109/61.25627
https://doi.org/10.1109/TAC.2017.2722100
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Model 1: Extended AC Optimal Power Flow Model (with
line shunts)

Sl+ = Vη(l+)t(Il+ )∗, Sl− = Vη(l−)t(Il−)∗, ∀lt (1)

Il+ = y s
l (Vη(l+) − Vη(l−)) + y sh

l Vη(l+), ∀lt (2)

Il− = y s
l (Vη(l−) − Vη(l+)) + y sh

l Vη(l−), ∀lt (3)

I Power flow equations, (1)-(3), are non-linear resulting
in a non- non-convex model only solved through the
adoption of non-linear programming (NLP)
techniques.

I Model solution converges to local optimality with no
guarantees on global optimality.

Generic AC OPF Formulation
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Nonconvex 
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Convex restriction 
(inner approximation)

Convex relaxation 
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Linear 
approximation

Model 1: Extended AC Optimal Power Flow Model with line
shunts (NLP)

I Defined by the nonconvex feasible space

Model 2: Adapted DistFlow Relaxation without line shunts
(DF)

I Relaxes the NLP power flow equations based on
Second-Order Cone Programming (SOCP)

I Defined by the outer approximation of the feasible space

Model 3: Modified Lin-DistFlow Relaxation without line shunts
(LinDF)

I Power flow equations defined with the assumption that
line losses indicated are negligible in comparison with the
active and reactive power flows

I Defined by a linear approximation of the feasible space

Approximations and Relaxations to the Branch
Flow Model
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Model 4: Extended DistFlow Relaxation with Line Shunts
(ExDF)

I Current flow here are defined at both ends of the line and
not in the longitudinal section

I Defined by the outer approximation of the feasible space
based on Second-Order Cone Programming (SOCP)

Model 5: Augmented DistFlow with Line Shunts (ExAgDF)

I Relaxes the NLP power flow equations based on
Second-Order Cone Programming (SOCP)

I Defined by both outer and inner approximations of the
feasible space

Approximations and Relaxations to the Branch
Flow Model
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Optimality Gap

OGrelax =

∣∣∣∣ΘNLP −Θrelax

ΘNLP

∣∣∣∣ (4)

Average Normalized Deviation

δrelaxχ =
1

|T | × |Ω|
∑
t∈T

∑
n∈Ω

∣∣∣∣χNLP
nt − χrelax

nt

χNLP
nt

∣∣∣∣ (5)

Model Feasibility Assessment
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Figure 1: Optimality gap of each model w.r.t the
total operational cost of the AC non-linear model
solution.
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Figure 2: Voltage, active and reactive power flow deviations of the
different relaxations to the local solution of the NLP model.

Simulation Results - Optimality Gap and Deviations
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Table 1: Computation time, optimal cost and average variations of the different algorithms

NLP LinDF DF ExDF ExAgDF

Comput. Time [s] 727.34 0.18 2.04 2.86 171.52
Total Cost [$] 38133 39088 41155 38122 38080

% δrelaxVi
- 0.52 0.57 0.005 0.003

% δrelaxpi - 7.54 3.19 0.24 0.03
% δrelaxqi - 23.60 23.65 0.33 0.31
% δrelaxPl

- 6.69 4.23 0.20 0.03
% δrelaxQl

- 14.14 14.58 0.19 0.16

Simulation Results - Computational Performance
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I The optimality gap metric does not provide a conclusive indication of the feasibility of the power
flow approximations and relaxations.

I The divergence of variables in approximated/relaxed models using their average deviations provided
an indication of AC feasibility with significant deteriorations where line shunts are ignored.

I Computation time increases with model accuracy thus necessitating a compromise given the size of
the study network and end application of the model.

Conclusions
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Questions and Comments: el14amn@leeds.ac.uk

T hank You!
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