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Introduction

» The emergence of Active Distribution Networks and their
g Power Distribution Network increased impact on the grid, requires more accurate
f modeling, both in investment and operation planning
Distributed pec problems
Generation o
@Z‘b Eﬁﬂ » A major tool used for planning in power systems is the
(1 Optimal Power Flow (OPF) which aims at obtaining a
= feasible and optimal operating point that satisfies operational

and physical constraints at the minimum cost.
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Distributed Loads
» However, OPF is a complex problem due to the non-linear

~, and non-convex nature of the AC power flow equations that
f\ ﬁ ﬁ govern the grid's physical laws
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» The challenge in finding the solution to an OPF problem, lies
between AC feasibility, global optimality, and
computational efficiency of the adopted model.




Background and Motivation

» Nonlinear, nonconvex OPF models, provide locally optimal solutions that exactly satisfy power flow
equations.

» Convex relaxations/restrictions are tractable alternatives that provide lower/upper bounds on the optimal
cost, yield a global optimum and can certify problem feasibility.

» Linear approximations are simplifications to the power flow equations based on assumptions to a certain
variable in the network.

» Solutions provided by relaxations, restrictions, and approximations may not be physically applicable in
cases leading to AC infeasibility.
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Contributions

@ Analysis of five of the most widely adopted OPF formulations used in active distribution networks under
different performance metrics i.e. the basic Non-Linear OPF!, DistFlow (DF)2, Linearized DistFlow
(LinDF)* without line shunts, Extended DistFlow (ExDF) with line shunts*, and Extended Augmented
DistFlow (ExAgDF)®

© Comparison of performance in practical situations based on metrics defining the optimality gap and
normalized distance to a local AC feasible solution

© An evaluation of computational performance in a multi-period optimization problem with varying load and
generation profiles for the IEEE 34-bus test system, and therefore examine suitability for adoption in LV
networks

1Konstantina Christakou et al. “AC OPF in radial distribution networks — Part I: On the limits of the branch flow convexification and the alternating direction method of multipliers”. In
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(2018), pp. 682-697. DOI: 10.1109/TAC.2017.2722100.
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10.1109/61.26627.
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Generic AC OPF Formulation

Model 1: Extended AC Optimal Power Flow Model (with
line shunts)
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> Power flow equations, (1)-(3), are non-linear resulting

in a non- non-convex model only solved through the
adoption of non-linear programming (NLP)
techniques.

» Model solution converges to local optimality with no
guarantees on global optimality.
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Approximations and Relaxations to the Branch

Linear \ Nonconvex
approximation A feasible set

Convex relaxation ™
(outer approximation)
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Model 1: Extended AC Optimal Power Flow Model with line
shunts (NLP)

» Defined by the nonconvex feasible space
Model 2: Adapted DistFlow Relaxation without line shunts
(DF)

» Relaxes the NLP power flow equations based on
Second-Order Cone Programming (SOCP)

» Defined by the outer approximation of the feasible space
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Approximations and Relaxations to the Branch

Linear \ Nonconvex
approximation 4 feasible set
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Convex relaxation ™
(outer approximation)
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Model 1: Extended AC Optimal Power Flow Model with line
shunts (NLP)

» Defined by the nonconvex feasible space
Model 2: Adapted DistFlow Relaxation without line shunts
(DF)

» Relaxes the NLP power flow equations based on
Second-Order Cone Programming (SOCP)

» Defined by the outer approximation of the feasible space
Model 3: Modified Lin-DistFlow Relaxation without line shunts
(LinDF)

» Power flow equations defined with the assumption that
line losses indicated are negligible in comparison with the
active and reactive power flows

» Defined by a linear approximation of the feasible space
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Approximations and Relaxations to the Branch

Model 4: Extended DistFlow Relaxation with Line Shunts
(ExDF)

Linear —~— Nonconvex » Current flow here are defined at both ends of the line and
approximation feasible set not in the longitudinal section

» Defined by the outer approximation of the feasible space
based on Second-Order Cone Programming (SOCP)

Convex relaxation -
(outer approximation)
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Approximations and Relaxations to the Branch
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Model 4: Extended DistFlow Relaxation with Line Shunts
(ExDF)

» Current flow here are defined at both ends of the line and
not in the longitudinal section

» Defined by the outer approximation of the feasible space
based on Second-Order Cone Programming (SOCP)
Model 5: Augmented DistFlow with Line Shunts (ExAgDF)

» Relaxes the NLP power flow equations based on
Second-Order Cone Programming (SOCP)

» Defined by both outer and inner approximations of the
feasible space
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Model Feasibility Assessment
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Simulation Results - Optimality Gap and Deviations

LinDF

DF

ExDF ExAgDF

Figure 1: Optimality gap of each model w.r.t the
total operational cost of the AC non-linear model

solution.
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Figure 2: Voltage, active and reactive power flow deviations of the
different relaxations to the local solution of the NLP model.




Simulation Results - Computational Performance

Table 1: Computation time, optimal cost and average variations of the different algorithms

| NLP | LinDF | DF | ExDF | ExAgDF

Comput. Time [s] | 727.34 | 0.18 2.04 | 286 171.52
Total Cost [§] | 38133 | 39088 | 41155 | 38122 | 38080
% ot - 052 | 057 | 0.005 | 0.003
% ot - 754 | 319 | 024 | 0.03
% brctax - 23.60 | 23.65 | 033 | 031
% Ot - 6.69 | 423 | 020 0.03
% 6 - 1414 | 1458 | 019 | 0.16
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Conclusions

» The optimality gap metric does not provide a conclusive indication of the feasibility of the power
flow approximations and relaxations.

» The divergence of variables in approximated/relaxed models using their average deviations provided
an indication of AC feasibility with significant deteriorations where line shunts are ignored.

» Computation time increases with model accuracy thus necessitating a compromise given the size of
the study network and end application of the model.
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Questions and Comments: ell4amn@leeds.ac.uk

Thank youl
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