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Abstract—Large-scale integration of renewable generation, usu-
ally interfaced to the network through power electronics, has
led to drastic changes in power system dynamics. This paper
presents novel insights into stability properties of such systems.
For that purpose, a high-fidelity dynamic model of a generic low-
inertia power system has been developed. The full-order, state-of-
the-art control schemes of both synchronous and converter-based
generators are included, with the latter differentiating between
grid-forming and grid-following mode of operation. Furthermore,
the dynamics of transmission lines and loads are captured in
the model. Using modal analysis techniques such as participation
factors and parameter sensitivity, the most vulnerable segments
of the system are determined and the adverse effects of timescale
coupling and control interference are investigated. More precisely,
this work characterizes the maximum permissible penetration levels
of inverter-based generation as well as the nature of the associated
unstable modes and the underlying dynamics. Finally, potential
directions for improving the system stability margin under different
generation portfolios are proposed for several benchmark systems.

Index Terms—differential-algebraic equations, voltage source
converter, synchronous generator, small-signal stability, low-inertia
systems

I. INTRODUCTION

DUE to convergence of economic and policy drivers, large-
scale electric power grids are hosting rapidly increasing

amounts of wind and solar generation as well as battery stor-
age. These sources often interface with the grid via Voltage
Source Converters (VSCs), whose interaction with the grid is
substantially different from synchronous machines and poses
many challenges for power system modeling, analysis and con-
trol [1]. Moreover, a high penetration of fast-acting VSCs may
create unexpected couplings and existing control approaches may
become less valid, thus adversely affecting frequency and voltage
stability. With the aim of providing solutions to the underlying
problems, detailed and accurate models of low-inertia systems
in the form of Ordinary Differential Equation (ODE) are needed
for the purpose of small-signal analysis.

The field of small-signal analysis is well established for con-
ventional power systems [2]–[4]. With the increasing integration
of renewables, a number of publications addressing modeling and
stability of 100 % inverter-based microgrids has emerged, vary-
ing from the analysis of individual converter operation modes in
a single-machine infinite-bus equivalent [5]–[10] to operation of
small and real-size distribution grids [11]–[21]. The former stud-
ies mostly emphasize the validation of the proposed small-signal
models and provide insights into the stability characteristics and
modes of individual inverter control schemes by analyzing their
sensitivities with respect to system parameters. In particular,
[5] and [6] investigate stability properties of grid-supporting
inverters operating as virtual synchronous machines, [7] com-
pares dynamic characteristics of droop-based grid-feeding and
grid-supporting VSCs, whereas [8]–[10] extend these analyses

to different types of grid-forming and grid-following converter
control schemes. While providing valuable insights into the
operation of individual converter-interfaced generation units, all
aforementioned studies consider single-generator models and a
stiff grid equivalent, which oversimplifies the problem.

Multi-inverter configurations have also been thoroughly in-
vestigated in the literature. Studies in [11]–[13] propose var-
ious state-space models for small systems comprised of two
or three inverters connected through constant impedance lines,
followed by stability analyses such as droop gain parameter
sweeps and the impact of R/X ratio of the interconnecting
cables. However, the authors use simplified inverter models
comprising only droop control and LCL filter dynamics, thus
neglecting device-level control and line dynamics in the process.
Moreover, they only consider grid-forming operation and do not
take into account a potentially adverse impact of Phase-Locked
Loops (PLLs) on system stability. Alternatively, [14] focuses
on interactions between a virtual synchronous generator and a
converter-interfaced load by considering small-signal stability
under different operating conditions. While the authors include
a dynamic model of the load and the interconnecting line, they
analyze stability solely via parameter sweeps of the virtual inertia
constant and load impedance, which does not provide enough
insight into the nature of potential instabilities. A more general
and rigorous approach towards synchronization and stability
analysis of droop-based microgrids is taken in [15]–[17], where
the appropriate conditions for synchronization, power sharing
and voltage stability of droop-controlled inverters in islanded
microgrids have been derived. Nevertheless, the aforementioned
simplifications in terms of model complexity are still present.

In contrast, the studies in [19]–[22] focus on detailed system
models which include both low and high inverter frequency
dynamics as well as the network and load dynamics, and propose
accurate small-signal representation of real-size microgrids. The
work in [22] provides analysis in terms of system eigenvalues
and their sensitivity to different states. It was observed that the
dominant low-frequency modes are highly sensitive to network
configuration and the parameters of the power sharing controller,
whereas the high frequency modes are largely sensitive to the
inverter inner loop controllers, network dynamics, and load dy-
namics. However, only grid-forming mode of operation has been
taken into consideration. Alternatively, the authors in [19] present
a new methodology for forming, augmenting, and modifying
the state-space matrices of large microgrids comprising both
grid-forming and grid-following inverter control schemes, and
investigate a 100 % inverter-based 69-bus distribution system.
The emphasis is however on model validation, state matrix par-
titioning and optimal control tuning for improving the oscillatory
modes in the system, but not on the stability analysis. Further-
more, [20] sets a particular focus on inner cascade loops and the
differences in small-signal stability of a three-inverter microgrid
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utilizing conventional PI-based and internal model-based control
approaches. Eigenvalue sensitivity analysis with respect to power
droop gains and filter inductance again reveals that the low-
frequency modes are highly sensitive to the parameters of the
power sharing controllers for both methods.

On the other hand, [21] proposes an approximation method
based on critical clusters for assessing the droop gain stability
margins of medium-scale islanded microgrids that takes ad-
vantage of the fact that the contribution of inverters to the
small-signal stability may depend on their location and the
interactions with each other. Both [20] and [21] are however
solely restricted to grid-forming VSCs and do not investigate the
adverse interactions between different converter control schemes.
The latter aspect is partially tackled in [23] by analyzing stability
issues between a grid-feeding VSC and an inverter operating as
a virtual synchronous generator, with a focus on virtual inertia
characteristics and interaction between power converters and the
AC grid. Moreover, [23]–[25] highlight some conceptual differ-
ences between a traditional and an inverter-based power system
in terms of associated control timescales. Nonetheless, they all
confine the analysis only to 100 % inverter-based microgrids.

While the aforementioned studies provide various perspectives
on stability of microgrids and zero-inertia systems, less em-
phasis has been placed on performance of large-scale systems
with a mixture of synchronous machines and VSCs. Having
in mind that operators in Ireland [26], Texas [27] and South
Australia [28] are already facing obstacles regarding high wind
penetration during certain periods of the day, the fundamental
understanding of low-inertia systems and their stability properties
is of crucial importance. Nevertheless, simulation and analysis of
large power systems with a mix of synchronous and converter-
based generation involves a significant computational burden.
To this end, commercial software packages such as PSLF [29],
DSATools [30] and PSS/E [31] are widely employed, both for
industrial and academic purposes. While these software tools
incorporate detailed dynamic models of different generator types
and provide means for large-scale time-domain simulations, they
are restricted in terms of analytical capabilities and flexibility.
This mostly stems from underlying modeling assumptions valid
for traditional Synchronous Generator (SG)-based power net-
works, which are not applicable to inverter-dominated systems.
For instance, the widely employed dynamic models for wind and
photovoltaic plants, originally proposed by WECC renewable
energy modeling task force [32], do not consider dynamics of
high-frequency converter controls and PLLs, which can have a
detrimental impact on stability. Furthermore, transmission line
dynamics are typically neglected in power system studies due to
drastically shorter timescales compared to SG dynamics. With
the introduction of fast-acting Power Electronic (PE) devices,
such assumptions are not valid anymore [1].

In turn, the existing literature on stability of large-scale trans-
mission systems with high share of inverter-based generation
tends to neglect important aspects of system dynamics and
confine the analytical analysis to simplified mathematical models
and state-space formulations. More precisely, [33]–[36] study the
impact of large-scale wind power generation on power system
oscillation, transient and small-signal stability. However, the
authors either use oversimplified synchronous generator models
(i.e., not equipped with governors and exciters) [33], neglect
inner control loops of inverter-interfaced wind generation [34],
[35] or focus on high-level probabilistic frameworks [36], which
obstructs them from capturing some important dynamic interac-

tions and phenomena. On the other hand, [37] and [38] employ
systematic nonlinear simulations and off-the-shelf small-signal
analysis tools to assess the impact of increased penetration of
wind and photovoltaic generation on stability of the Kundur two-
area and the western North American power system, respectively.
Both studies are however restricted solely to the investigation of
inter-area oscillations and the nature of underlying oscillatory
modes.

Alternatively, a two-bus system comprising a grid-following
VSC and a synchronous generator was investigated in [39] and
[40] through eigenvalue analysis. Both studies point out that the
PLL can be a source of oscillatory modes and instability. The
work in [39] incorporates relatively detailed control structures of
both units, but mostly focuses on model validation and sensitivity
analysis to determine the optimal ranges of relevant control
parameters. On the other hand, the authors in [40] provide
insightful remarks regarding the permissible penetration levels
of grid-following inverters, as well as the relevance of different
controllers on small-signal stability. However, they employ an
inverter scaling method that complicates model implementation
on a larger system and omit the Power System Stabilizer (PSS)
and important flux dynamics from the SG model. Furthermore,
neither of the aforementioned studies explore the deeper causes
of instability, nor consider the impact of different converter
operation modes. Finally, the focus is primarily on distribution
networks and microgrids, thus neglecting the potential impact of
transmission line dynamics.

The work presented in this paper improves on the existing
literature in several ways. In contrast to [19]–[25], we include
several converter operation modes and investigate their interac-
tions in a 100 % inverter-dominated transmission network. The
analysis is also extended to low-inertia systems and the adverse
interference between different components of synchronous and
converter-based generation. However, unlike the work in [33]–
[40], we employ a more detailed representation of a generic,
low-inertia system that captures all relevant physical properties
and associated dynamics, including various generation models
and control schemes as well as line and load dynamics. More-
over, unlike most of the existing studies, we are not primarily
concerned with parameter sensitivity but rather with investigating
maximum permissible penetrations of PE-interfaced generation
under various system configurations. In particular, the critical
levels of installed inverter-based generation and the key modes
of arising instability are identified and mapped back to the
respective controller dynamics.

Our findings suggest that the root cause of instability cannot
be associated solely with the aggregate power injection of VSC
units, as it varies depending on the installed capacity and operat-
ing setpoints of renewable generation. Additionally, the problems
arising from underlying timescale coupling of converter and
transmission line dynamics, as well as the timescale separation
between the respective VSC and SG controllers regulating the
same system quantities have been observed. As a result, new
insights into the overall stability of low- and no-inertia systems
are presented, together with potential directions for improving
the system stability margin under different generation portfolios
and the analytical expressions for necessary control criteria
pertaining to the impact of line dynamics. Furthermore, some
of the widely common premises in terms of stability and overall
system dynamics have been debunked solely as an artifact of
inadequate modeling and system representation, which justifies
the importance of the proposed ODE formulation and the level
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Fig. 1. Representation of the VSC model: two-level VSC connected through a
transformer to the grid (top); general input-output block structure of the power
converter model and its control scheme (bottom).

of detail included in this study.
The remainder of the paper is structured as follows. In

Section II, detailed dynamical models and control schemes
of synchronous and converter-based generators are presented,
together with the general ODE formulation of an arbitrary low-
inertia power system. Subsequently, the underlying timescales
and the potential adverse dynamical interactions are discussed
in Section III. The numerical results from different case studies
and the respective small-signal stability margins are illustrated
in Sections IV and V, whereas Section VI draws the main
conclusions and discusses the key findings and outlook of the
study.

II. POWER SYSTEM MODELING

The proposed model includes detailed representation of rel-
evant dynamics and controls pertaining to synchronous and
converter-interfaced generation, with the latter one encompassing
both grid-forming and grid-following mode of operation. In
addition, the dynamics of network elements such as impedance
loads, shunt capacitors and transmission lines are also taken into
consideration.

We use R to denote the set of real and natural numbers and,
e.g., R≥a := {x ∈ R|x ≥ a}. Given an angle θ ∈ [−π, π), the
2-D rotation matrix is given by

R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
∈ R2×2. (1)

Moreover, we define the 90◦ rotation matrix j := R(π/2) that
can be interpreted as an embedding of the complex imaginary
unit
√
−1 into R2. For column vectors x ∈ Rn and y ∈ Rm

we use (x, y) = [xT, yT]T ∈ Rn+m to denote a stacked vector.
Furthermore, In denotes the identity matrix of dimension n, ⊗
denotes the Kronecker product, and ‖x‖ denotes the Euclidean
norm. Matrices of zeros of dimension n × m are denoted by
0n×m, and 0n and 1n denote column vectors of zeros and ones
of length n.

Power
Converter
Model

xm = (if , vf , ig, vdc)

rd = (θr, ωr, v
?
sw, i

?
dc) ym = (if , vf , ig, vdc)

Fig. 2. Simplified MIMO structure of the device model.

A. Converter Control Scheme

The prevalent control architecture for power converters is the
two-level VSC shown in Fig. 1. In this setup, an outer system-
level control provides a reference for the converter’s terminal
voltage that is subsequently tracked by a cascaded device-level
controller. We first present the model of a two-level voltage
source converter and subsequently discuss the individual control
blocks depicted in Fig. 1.

1) Power Converter Model: The three-phase power converter
model (i.e., the device model in Fig. 1) used in this study
consists of a DC-link capacitor, a lossless switching block which
modulates the DC-capacitor voltage vdc ∈ R>0 into a three-
phase AC voltage vabcsw ∈ R3, and an output filter. Throughout
this work, we assume that the DC-source current idc ∈ R>0

is supplied by a controllable source (e.g., an energy storage or
a curtailed renewable generation) and can be used as a control
input. Averaging the dynamics over one switching period and
expressing them in per-unit yields:

cdc
ωb
v̇dc = −gdcvdc − isw + idc, (2a)

`f
ωb
i̇abcf = −rf iabcf + vabcsw − vabcf , (2b)

cf
ωb
v̇abcf = +iabcf − iabcg , (2c)

where cdc ∈ R>0 and gdc ∈ R>0 denote the DC capacitance
and conductance, and cf ∈ R>0, `f ∈ R>0, rf ∈ R>0

represent the AC filter capacitance, inductance and resistance,
respectively. The converter is controlled by the modulation
signal mabc ∈ [−13,13] that controls the modulated three-phase
voltage vabcsw = 1

2m
abcvdc and the current isw = 1

2m
abcTiabcf

flowing into the switching block. Moreover, we use iabcf ∈ R3,
vabcf ∈ R3, and iabcg ∈ R3 to denote the three-phase filter
current, three-phase converter voltage and three-phase current
injection into the system. As this work deals strictly with per-
unit formulation of converter models and controls, the explicit
per-unit declaration of system variables in (2) and the rest of the
paper will be omitted for brevity.

We assume that the three-phase signals are balanced and, given
a reference angle θr ∈ [−π, π), the converter variables can be
defined in a rotating dq-reference frame by applying the power-
variant dq-transform (see e.g., [41])

T (θr) :=
2

3

[
cos θr cos(θr − 2π

3 ) cos(θr + 2π
3 )

sin θr sin(θr − 2π
3 ) sin(θr + 2π

3 )

]
(3)

to the three-phase converter signals (e.g., vdqf = T (θr)v
abc
f ). For

reasons similar to the ones pertaining to per-unit notation, the dq
superscript will not be used in the remainder of the paper, i.e.,
the presented converter model will be described in dq-vector
form x := xdq := (xd, xq) and per-unit. Therefore, guided
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by the practice commonly employed in power electronics (see
Appendix A), we rewrite filter dynamics in (2b)-(2c) as

i̇f =
ωb
`f

(vsw − vf )−
(
rf
`f
ωb + jωbωr

)
if , (4a)

v̇f =
ωb
cf

(if − ig)− jωbωrvf . (4b)

The converter is usually interfaced to the grid through a trans-
former, with the dynamics of transformer current (i.e., current
injected into the grid) described by

i̇g =
ωb
`t

(vf − vt)−
(
rt
`t
ωb + jωbωr

)
ig, (4c)

where rt ∈ R>0 and `t ∈ R>0 denote the transformer’s per-
unit resistance and inductance, vt ∈ R2 is the voltage at the
connection terminal, and ωr ∈ R>0 is the normalized reference
for the angular velocity of the dq-frame.

Expressions in (4) represent the AC-side dynamics of the
power converter and, together with DC-side dynamics in
(2a), complete the 7th-order power converter model described
by xm = (if , vf , ig, vdc) ∈ R7 and depicted in Fig. 2.
The input vector comprises device-level references1 rd =
(θr, ωr, v

?
sw, i

?
dc) ∈ R5 and the measurement output ym encom-

passes full state feedback for system- and device-level control
(i.e., xm ⊂ ym), as well as the converter’s AC-voltage magnitude
Vc ∈ R>0 and instantaneous active and reactive power injection
(pc, qc) ∈ R2 given by

Vc := ‖vf‖, pc := vTf ig, qc := vTf j
Tig. (5)

The latter three measurements are directly obtained from con-
verter’s output voltage vf and current ig and are therefore not
explicitly included in ym := xm for brevity. However, these
measurements will be considered available to the system-level
control. In fact, this control layer often includes processing of
vf and ig such that the quantities in (5) are internally obtained.
Moreover, note that we assume vsw := v?sw, i.e., the modulation
voltage reference v?sw is perfectly transformed to the AC side.
Due to high modeling complexity and very fast underlying
dynamics [42], the converter switching is not included in the
model nor will it be considered throughout this study.

2) System-Level Control: The desired dynamic behavior of
the power converter as seen from the system point of view is
commonly prescribed by a dynamic controller of the form

ẋs = κ(xs, ys, us), (6a)
rs = h(xs, ys, us), (6b)

where xs ∈ Rn is a vector of internal controller states, ys ∈ Rm
are the measured converter outputs, us ∈ Rp are the prescribed
control setpoints, and rs ∈ Rq is a vector of computed references
sent to the device-level control. A simplified representation of
the general MIMO structure for both grid-forming and grid-
following operation mode is illustrated in Fig. 3, with the former
mode potentially differentiating between several representative
classes of control such as droop control [43], [44], Virtual
Synchronous Machine (VSM) control [45], [46], Virtual Oscil-
lator Control (VOC) [47], [48] and matching control [49], [50].
However, under certain trivial conditions, all aforementioned
control strategies showcase a small-signal equivalence (see e.g.,
[48]), and can be subsumed under a single droop-based controller

1We assume perfect tracking of the DC-current reference, i.e., idc = i?dc in
(2a).
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Fig. 3. Simplified MIMO structure of the system-level control: grid-following
operation mode (top) and grid-forming operation mode (bottom).

for simplicity. Therefore, the remainder of this paper will focus
only on droop control as a mean of system-level regulation.

Grid-Following Control: The two converter modes are fun-
damentally different. In the context of grid-following control,
the measurements ys = (vf , pc, qc) ∈ R4 are commonly the
output voltage and the active and reactive power. Moreover, (6)
models a synchronization device - usually a PLL - that estimates
the phase angle θs ∈ [−π, π) of the voltage vf as well as the
synchronous (grid) frequency ωs ∈ R>0 at the Point of Common
Coupling (PCC), and provides them as reference r̂s = (θs, ωs)
to the device-level control (see Fig. 3). Additionally, the so-
called outer control loop is used to calculate the current reference
i?f ∈ R2 based on the mismatch between measured signals ys
and prescribed setpoints us. Hence, the system-level controller
is described by xfollows = (θs, ε, p̃c, q̃c) ∈ R4, where p̃c ∈ R
and q̃c ∈ R are the internal states corresponding to active and
reactive power, respectively. Since the angle (θs) and frequency
(ωs) references are measured and passed through to device-level
control (i.e., they are not regulated by an appropriate control
law), we do not include them into the main output reference
vector r.

The most common PLL implementation is a so-called type-2
SRF PLL [51], which achieves synchronization by diminishing
the q-component vqf ∈ R of the voltage via PI control, thus
aligning the d-axis of the Synchronously-rotating Reference
Frame (SRF) with the output voltage vector vf [7], [9], [10]:

ε̇ = vqf , (7a)

ωs = ω0 +Ks
P v

q
f +Ks

I ε, (7b)

θ̇s = ωbωs. (7c)

Here, (Ks
P ,K

s
I ) are the proportional and integral control gains

of the synchronization unit, ω0 = 1 p.u. is the nominal angular
frequency, and ε ∈ R is the integrator state. Note that the grid-
following converters require an established three-phase voltage at
the connection terminal in order to obtain a reasonable frequency
(i.e., angle) signal. Therefore, they do not posses standalone nor
black start capabilities.

Having determined the synchronous angle and frequency
(θs, ωs), the outer control loop subsequently computes the cur-
rent reference i?f ∈ R2. By employing frequency and voltage
droop control (Rωc ∈ R≥0, Rvc ∈ R≥0) in combination with
integral controllers Kd

I,f ∈ R>0 and Kq
I,f ∈ R>0, the outer

control loop, described by internal states variables (p̃c, q̃c), regu-
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lates the power output (pc, qc) to its respective setpoint (p?c , q
?
c ),

as follows:
˙̃pc = Kd

I,f (p?c − pc −Rωc (ωs − ω?c )) , (8a)
˙̃qc = Kq

I,f (q?c − qc −Rvc (‖vf‖ − V ?c )) . (8b)

Due to the P − f and Q − V droop characteristics, the active
power reference is adjusted in response to a deviation of the
measured frequency ωs with respect to the frequency setpoint ω?c ,
whereas the reactive power reference is modified according to the
mismatch between the magnitude of the output voltage ‖vf‖ and
the converter voltage setpoint V ?c . Hence, the internal state vector
of the system-level controller is xfollows = (θs, ωs, p̃c, q̃c) ∈ R4,
with p̃c and q̃c representing the power (i.e., dq-current) refer-
ences. It should be pointed out that the controller (8) can take
different forms, varying from a traditional frequency/AC-voltage
droop control [14] and droop control with a low-pass filter [10]
to DC-energy/reactive power droop control [52].

The computed power references are then transformed into
the corresponding current reference signal rs = i?f , with two
commonly used implementations for balanced systems: a con-
stant current and a constant power mode. The first approach
directly feeds the power references to the device-level control
i?f = (p̃c, q̃c), while the second mode adjusts them based on
output voltage measurement such that the converter’s power
output is kept constant:

i?f
d =

vdf p̃c + vqf q̃c

‖vf‖
, i?f

q =
vqf p̃c − vdf q̃c
‖vf‖

. (9)

Grid-Forming Control: Droop control is the prevalent con-
trol scheme for parallel grid-forming converters [53]–[55]. It
achieves synchronization through measuring power imbalance
and is inspired by the traditional primary frequency control of
a synchronous machine. In particular, by appropriately adjust-
ing the individual droop factors, it enables self-synchronization
through the power grid and power sharing in proportion to the
converter rating, while using only local measurements. Droop
control is given by

ωc = ω?c +Rpcλz(s) (p?c − pc)︸ ︷︷ ︸
ω̃c

(10a)

vdc = V ?c +Rqcλz(s) (q?c − qc)︸ ︷︷ ︸
ṽc

, (10b)

with Rpc ∈ R>0 and Rqc ∈ R≥0 being the droop gains,
λzθ(s) = ωz

ωz+s
representing the low-pass filter applied to the

power measurements, ωz ∈ R>0 denoting its cut-off frequency,
θ̇c = ωbωc and vqc = 0. We emphasize that, unlike for the grid-
following operation mode, in this case the angle θc, frequency
ω̃c ∈ R, and voltage ṽc ∈ R are internal states of the control. In
contrast, the active active and reactive power injections pc and
qc are measured, i.e., ys = (pc, qc) ∈ R2. Therefore, the control
state vector can be defined as xforms = (θc, ω̃c, ṽc), where

˙̃ωc = −ωzω̃c +Rpcωz(p
?
c − pc), (11a)

˙̃vc = −ωz ṽc +Rqcωz(q
?
c − qc). (11b)

3) Device-Level Control: We start off by analyzing the
device-level control of grid-forming converters, with a general
structure presented in Fig. 4. This control layer provides both AC
and DC-side reference signals for the VSC device. The AC-side
controller operates in a synchronously-rotating dq-frame, with
the reference angle θc and velocity ωc provided by the system-
level control (6). In particular, given a voltage reference v?f ∈ R2

in dq-coordinates defined by (θc, ωc), the device-level control
is described by a cascade of voltage and current controllers
(also called inner control loops) computing a switching voltage
reference v?sw ∈ R2 [5], [46]. More precisely, it encompasses a
PI voltage controller

ξ̇ = v?f − vf , (12a)
i?f = Kv

P (v?f − vf ) +Kv
I ξ +Kv

F ig + jωccfvf , (12b)

that provides an internal current reference i?f for a current PI
controller

γ̇ = i?f − if , (13a)

v?sw = Ki
P (i?f − if ) +Ki

Iγ +Ki
F vf + jωc`f if , (13b)

where (Kv
P ,K

i
P ) ∈ R2

>0, (Kv
I ,K

i
I) ∈ R2

≥0 and (Kv
F ,K

i
F ) ∈

Z2
{0,1} are the respective proportional, integral, and feed-forward

gains, ξ ∈ R2 and γ ∈ R2 represent the integrator states,
and superscripts v and i denote the voltage and current con-
trollers [9], [22], [56]. Note that the angular velocity ωc of an
SRF is reflected in the last terms of (12b) and (13b).

Finally, the DC voltage is controlled through the DC-current
source and a PI controller, as follows:

χ̇ = v?dc − vdc, (14a)

idc = Kdc
P (v?dc − vdc) +Kdc

I χ+Kdc
F i

?
dc, (14b)

with DC-voltage setpoint ud = v?dc ∈ R>0 being an external
control input, χ ∈ R the internal state variable, and proportional,
integral, and feed-forward gains denoted by Kdc

P ∈ R>0, Kdc
I ∈

R≥0, and Kdc
F ∈ {0, 1}, respectively. The DC current reference

i?dc ∈ R>0 is determined by the operating point (V ?c , p
?
c , q

?
c )

and the converter losses, which indicates that for vdc = v?dc the
DC-side current will be idc = i?dc.

Having computed the AC current and voltage (i?f , v
?
sw) and DC

current (i?dc) reference signals, the device-level control output
rd = (θr, ωr, v

?
sw, i

?
dc) is sent to the power converter, with

(θr, ωr) = (θc, ωc) being the angular reference adopted from
the system-level control. The state vector of the controller is
described by xd = (ξ, γ, χ) ∈ R5. In contrast, the system-level
controller of a grid-following converter provides filter current
reference. Therefore, the device-level control only comprises
AC and DC current computation given by (13)-(14) (i.e., xd =
(γ, χ) ∈ R3), thus bypassing the inner voltage controller. The
output reference vector rd = (θs, ωs, v

?
sw, i

?
dc) is provided to

the power converter model, with (θr, ωr) = (θs, ωs) being
the measured angle and frequency references obtained by a
synchronization unit within the system-level control.

4) Uniform Converter Model: In order to facilitate an ODE
form of an arbitrary, generic low-inertia system, we propose
a uniform converter model that comprises both grid-forming
and grid-following mode of operation within a single control
structure. More precisely, we modify the latter control design
(both in terms of system- and device-level control) such that it
fits the input-output characteristic of a grid-forming VSC while

Device
Level

Control

xd = (ξ, γ, χ)

yd = (if , vf , ig, vdc)

rs = v?f/i
?
f , ud = v?dc

rd =
(
θr, ωr, v

?
sw, i

?
dc

)

Fig. 4. Simplified MIMO structure of the device-level control.
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Fig. 5. General configuration of the implemented uniform VSC control structure.

still preserving its original dynamical properties. The general
configuration of the implemented control scheme is illustrated2

in Fig. 5, with three main segments (i.e., system-level control,
device-level control and device model) corresponding to the
block diagram in Fig. 1. However, the PLL has no function in
the grid-forming operation, as it is bypassed and the frequency
setpoint ω?c is directly fed to the Active Power Controller (APC).
Furthermore, the virtual impedance embeds an additional degree
of freedom for active stabilization and disturbance rejection by
providing a minor cross-coupling between d- and q-components
via the resistive and inductive elements rv and `v . This is
achieved by computing a new voltage reference

v?f = vc − (rvI2 + jω0`v)if , (15)

and passing it through to the device-level control.
In terms of grid-following operation, the main distinction lies

in the system-level control design, i.e., the droop implementation
of the outer control loop. Instead of applying the controller
(8) and drooping the frequency and voltage imbalance in order
to determine the power (i.e., current) references, we employ a
grid-forming control law given by (10). However, the frequency
and voltage setpoint inputs (ω?, V ?) := (ω?c , V

?
c ) are replaced

by measurements (ω?, V ?) := (ωs, ‖vf‖). Furthermore, we
introduce the terms for low-pass filtered active and reactive
power

p̃c =
ωz

ωz + s
pc, q̃c =

ωz
ωz + s

qc, (16)

and, by neglecting the low-pass filtering of constant setpoints p?c
and q?c , obtain

ωc = ω? +Rpc (p?c − p̃c) , vdc = V ? +Rqc (q?c − q̃c) . (17)

Although it does not meet the input-output criteria depicted in
Fig 3, the presented grid-following control still achieves power
reference tracking while simultaneously supporting the voltage
and frequency at the PCC. In contrast to the controller (8), where

2Colored blocks in Fig. 5 indicate the presence of internal control dynamics.

TABLE I
CONVERTER CONTROL PARAMETERS.

Parameter Symbol Value Unit
Active power droop gain Rp

c 2 %

Reactive power droop gain Rq
c 0.1 %

LPF cut-off frequency fz 5 Hz

RLC filter resistance rf 0.03 p.u.

RLC filter inductance `f 0.08 p.u.

RLC filter capacitance cf 0.074 p.u.

P-gain of SRF current control Ki
P 0.74 -

I-gain of SRF current control Ki
I 1.19 -

FF-gain of SRF current control Ki
F 0 -

P-gain of SRF voltage control Kv
P 0.52 -

I-gain of SRF voltage control Kv
I 1.16 -

FF-gain of SRF voltage control Kv
F 1 -

PLL proportional gain Ks
P 0.4 -

PLL integral gain Ks
I 4.69 -

Virtual impedance resistance rv 0.001 p.u.

Virtual impedance inductance `v 0.2 p.u.

the active power setpoint is adjusted according to the frequency
mismatch, the droop control in (17) ensures that the power
output meets its predefined setpoint by adjusting the reference
frequency and voltage accordingly. Furthermore, such uniform
structure implies that the same cascaded device-level control
can be used for both converter modes. Therefore, the proposed
uniform model can be described by (4)-(5) and (12)-(17) for the
grid-forming mode and (4)-(5), (7) and (12)-(17) for the grid-
following mode of operation, resulting in the 14th and 16th-
order models, respectively. Clearly, the only difference between
the two models is the presence of PLL dynamics (i.e., controller
states ε and θs) in the latter one. The most relevant model and
control tuning parameters are provided in Table I. Note that the
MATLAB SIMULINK version of the model comprising several
system-level controls is publicly available [57].
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Fig. 6. Block diagram of a synchronous generator equipped with a prime mover, a governor and a voltage excitation system. The internal state variables are denoted
by red color.

TABLE II
SYNCHRONOUS GENERATOR PARAMETERS.

Parameter Symbol Value Unit
Droop control gain Rg 2 %

Governor time constant Tg 0.5 s

Reheat time constant Tr 10 s

Mechanical power gain factor Km 0.85 -
Turbine power fraction factor Fh 0.1 -
Normalized inertia constant Mg 13 s

Normalized damping factor Dg 1 p.u.

Transducer time constant Te 0.05 s

AVR exciter control gain Ke 200 −
Saturation minimum output V min

f 0 p.u.

Saturation maximum output V max
f 4 p.u.

PSS stabilization gain Ks 5 -
Washout time constant Tw 2 s

1st lead-lag derivative time constant T1 0.25 s

1st lead-lag delay time constant T2 0.03 s

2nd lead-lag derivative time constant T3 0.15 s

2nd lead-lag delay time constant T4 0.015 s

B. Synchronous Generator Model

In this paper, we consider a traditional two-pole synchronous
generator equipped with a prime mover and a governor. Addi-
tionally, a voltage excitation system comprised of an Automatic
Voltage Regulator (AVR) and a PSS is incorporated into the
model. A detailed block diagram of the SG model and its
control scheme is illustrated in Fig. 6, where the generator is
connected to the grid through a transformer modeled as a series
impedance. The complete model is described in an SRF defined
by generator’s synchronous velocity and expressed in per-unit,
with the main parameters provided in Table II.

1) Internal Machine Dynamics: The internal machine dynam-
ics are characterized by the swing dynamics of the rotor as well
as the transients in the rotor circuits, as transients in the stator
windings decay rapidly and can thus be neglected. The swing
dynamics are traditionally represented by the swing equation

Mg∆ω̇r = ∆pe −Dg∆ωr, (18)

with Mg ∈ R> 0 and Dg ∈ R> 0 being the normalized inertia
and damping constants, ∆ωr ∈ R denoting the deviation of
rotor’s angular velocity from the nominal value, and ∆pe ∈ R
describing the mismatch between the mechanical power gener-
ated by the turbine and the electrical power at the SG’s output.

On the other hand, rotor circuit dynamics originate in the
armature reaction, i.e., in the effect of the stator field on the rotor
currents, which can be described through flux linkage dynamics:

ψ̇df =
ω0rf
xda,u

vdf −
ω0rf
xf

(
ψdf − ψda

)
, (19a)

ψ̇D1
= −ω0rD1

xD1

(
ψD1
− ψda

)
, (19b)

ψ̇Q1
= −ω0rQ1

xQ1

(ψQ1
− ψqa) , (19c)

ψ̇Q2 = −ω0rQ2

xQ2

(ψQ2 − ψqa) . (19d)

Here, subscripts f , D1, Q1 and Q2 stand for the quantities of
the field circuit, d-axis damping circuit and two q-axis damping
circuits respectively, whereas ψ ∈ R2, r ∈ R>0 and x ∈ R>0

denote the respective flux linkage, resistance and reactance of a
circuit. Moreover, vf ∈ R2 is the exciter’s output voltage with
zero q-component (i.e., ‖vf‖ = vdf ), ω0 ∈ R>0 designates the
synchronous angular velocity, and xda,u ∈ R>0 stands for the
unsaturated mutual reactance. Superscripts d and q are omitted
from damping circuit quantities for simplicity, i.e., ψD1

∈ R,
ψQ1 ∈ R and ψQ2 ∈ R. The dq-components of the armature
flux linkage ψa ∈ R2 are expressed as

ψda = x̂da,s

(
−ids +

ψdf
xf

+
ψD1

xD1

)
, (20a)

ψqa = x̂qa,s

(
−iqs +

ψQ1

xQ1

+
ψD1

xQ2

)
, (20b)

with the subtransient, saturated, mutual reactances x̂da,s ∈ R>0
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and x̂qa,s ∈ R>0 defined by

x̂da,s =
((
xda,s

)−1
+ x−1f + x−1D1

)−1
, (20c)

x̂qa,s =
((
xqa,s

)−1
+ x−1Q1

+ x−1Q2

)−1
. (20d)

Finally, the inclusion of stator’s circuit balance completes the
internal generator model:

eds = −raids + xli
q
s − ψqa, (21a)

eqs = −raiqs + xli
d
s − ψda. (21b)

In (21), stator voltage and current vectors are denoted by es ∈ R2

and is ∈ R2, while ra ∈ R>0 and xl ∈ R>0 represent the arma-
ture resistance and leakage reactance respectively. Expressions
(18)-(21) yield a 6th-order dynamical model described by the
state vector xintg :=

(
θs, ωs, ψ

d
f , ψD1

, ψQ1
, ψD2

)
∈ R6, where

θ̇s = ωbωs. For more details regarding the generator modeling
and internal parameter computation we refer the reader to [2].

2) Control Design and Electrical Interface: The proposed
control scheme comprises two independent loops for frequency
and voltage regulation [58]. The former one consists of droop
control and governor and turbine dynamics (see Fig. 6), de-
scribed respectively by state variables pg ∈ R and pm ∈ R
(i.e., a state vector xfreqg = (pg, pm) ∈ R2). On the other
hand, voltage control includes an AVR with a transducer and
a saturated exciter, and a PSS combining a washout filter and a
lead-lag phase compensation, with vectors xAVR

g := v1 ∈ R and
xPSS
g := (v2, v3, vs) ∈ R3 describing the underlying controller

states respectively. For brevity, we will omit a detailed derivation
of the control dynamics pertaining to frequency control, AVR and
PSS, as it can be easily deduced from the control block diagram
in Fig. 6. Note that all state variables are denoted by red color
in Fig. 6.

As mentioned previously, a synchronous generator is inter-
faced to the grid through a transformer modeled as a series
impedance rt ∈ R>0 and `t ∈ R>0. The dynamics of the current
it ∈ R2 flowing through a transformer can be expressed in an
SRF defined by (θs, ωs) as

i̇t =
ωb
`t

(es − vt)−
(
rt
`t
ωb + jωbωs

)
is, (22)

where vt ∈ R2 denotes the terminal voltage and terminal
current corresponds to stator current (i.e., is := it). Finally, by
combining (18)-(22) with the dynamics of frequency and voltage
control loops, we obtain a 14th-order SG model described by the
state vector xg =

(
xintg , xfreqg , xAVR

g , xPSS
g , it

)
∈ R14.

C. Network and System Modeling
1) Transmission Network Dynamics: Modeling of the trans-

mission network is described for a generic system depicted in
Fig. 7, composed of generators supplying local RL loads and the
interconnecting transmission lines modeled as π-sections; long
transmission lines with lengths above 250 km are represented
by distributed line parameters. In order to establish a consistent
mathematical formulation, all variables have to be defined within
a single SRF, including the reference frame of the network.
Neglecting grid dynamics has been a general assumption for
SG-dominated power systems, based on the premise of grid and
and generator’s armature dynamics being much faster than those
of the excitation and governor systems [59], [60]. Alternatively,
studies often oversimplify the problem and assume that the grid’s
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Rjk Ljkijk
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dq

dq

dq

dq

Fig. 7. Generic network model with line dynamics and respective dq-frame
alignment.

SRF rotates at constant nominal angular velocity, as pointed out
in [19].

Let us introduce a transformation fn : Z>0 7→ Z>0 that maps
the set of generator indices g ∈ G ⊂ Z>0 to the subset of nodal
indices of the network with generator connection j ∈ Ng ⊂ N ,
with N ⊂ Z>0 being the index set of network nodes. Hence,
the terminal currents3 itg ∈ R2 and voltages vtg ∈ R2 of each
generator unit g ∈ G are mapped to vectors itj ∈ R2 and vtj ∈
R2 corresponding to the terminal currents and voltages of the
network nodes j ∈ Ng , where j = fn(g). The nodal vectors
are subsequently aligned to the SRF of an arbitrary synchronous
generator or a grid-forming converter r ∈ G, rotating at angular
speed ω? := ωsr , i.e., ω? := ωcr , as follows:

xnj = R (θ? − θj)xtj , ∀j ∈ N . (23)

Here, xnj ∈ {inj , vnj} denotes the “nodal” metrics described in
the nominal reference frame, the uniform SRF angle is computed
as θ̇? = ωbω

?, and θj ∈ [−π, π) corresponds to the internal SRF
angle of the respective unit, i.e., θj := θsj for the synchronous
and θj := θcj for the converter-based generator. According to
[59], [61], such approach provides a good trade-off between the
computational complexity and model accuracy.

The nodal voltage and current dynamics can now be expressed
∀j ∈ N as

v̇nj
=
ωb
clj
icj − jωbω?vnj

, (24a)

i̇lj =
ωb
`lj
vnj
−
(
rlj
`lj
ωb + jωbω

?

)
ilj , (24b)

thus capturing the load and shunt phenomena at each node,
with rlj ∈ R>0 and `lj ∈ R>0 being the load’s resistance
and inductance, and cj ∈ R>0 reflecting the aggregate shunt
capacitance. Finally, the line dynamics are represented using a
conventional RL circuit formulation

i̇jk = ωb

`jk
(vnj

− vnk
)−

(
rjk
`jk
ωb + jωbω

?
)
ijk, ∀j ∈ N , k ∈ Kj ,

(25)
with ijk ∈ R2 being the current and (rjk, `jk) ∈ R2

>0 the
respective parameters of a transmission line connecting nodes
j ∈ N and k ∈ Kj , and Kj ⊂ N denoting the subset of
nodes adjacent to node j. Combining (23)-(25) with the algebraic
expressions for current balance at each node j ∈ N in the system
concludes the network model.

3Note that the terminal currents correspond to stator currents is of SGs (see
Fig. 6) or to grid injection currents ig of VSCs (see Fig. 5).
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2) Complete Model Formulation: Having defined models of
different generation units and the network, we can complete the
general ODE formulation of the system. Let us consider a large-
scale, low-inertia system with nodal and generation index sets
N and G defined previously. Furthermore, let S ⊂ Z>0 and
C ⊂ Z>0 (S ∪ C = G) be the index sets of synchronous and
converter-interfaced generators, with the second set differenti-
ating between the subsets CF ⊂ C and Cf ⊂ C of grid-forming
and grid-following units, respectively. Furthermore, let B ⊂ Z>0

denote the index set of network branches, where elements of the
branch current vector ib ∈ R|B| are mapped to the currents ijk
in (25) using the transformation fi : Z2

>0 7→ Z>0 such that
∀j ∈ N ,∀k ∈ Kj ,∃m ∈ B | m = fi(j, k) ∧ ibm := ijk.

The dynamical model of such system can be expressed by

ẋ = f(x, u), (26a)

where

x =
(
xFc1 , . . . , x

F
c|CF|

, xfc1 , . . . , x
f
c|Cf |

, xg1 , . . . , xg|S| , xn

)
,

(26b)

u =
(
uFc1 , . . . , u

F
c|CF|

, ufc1 , . . . , u
f
c|Cf |

, ug|S|

)
. (26c)

The state and control input vectors of grid-forming and grid-
following converters (denoted by superscripts F and f respec-
tively) in (26b)-(26c) are defined ∀p ∈ CF and ∀q ∈ Cf as

xFcp = (if , vf , ig, ξ, γ, χ, p̃c, q̃c, θc) ∈ R14, (26d)

xfcq = (if , vf , ig, ξ, γ, χ, ε, θs, p̃c, q̃c, θc) ∈ R16, (26e)

uFcp = (p?c , q
?
c , V

?
c , ω

?
c , v

?
dc) ∈ R5, (26f)

ufcq = (p?c , q
?
c , v

?
dc) ∈ R3. (26g)

Moreover, the SGs in (26b)-(26c) are described ∀r ∈ S by

xgr =
(
θs, ωs, ψ

d
f , ψD1

, ψQ1
, ψD2

, is, v1, v2, v3, vs, pg, pm

)
∈ R14,

(26h)
ugr =

(
p?g, v

?
g

)
∈ R2, (26i)

and the state vector of network dynamics is expressed in the
form

xn =
(
vn1

, . . . , vn|N| , il1 , . . . , il|N| , ib1 , . . . , ib|B|
)
∈ R4|N |+2|B|.

(26j)
The final model order is therefore N = 14|CF|+16|Cf |+14|S|+
4|N | + 2|B|, whereas the control input vector comprises M =
5|CF|+ 3|Cf |+ 2|S| setpoints.

The nonlinear ODE model (26) can also be represented in a
linear form

∆ẋ = A∆x+B∆u (27)

by linearizing (26a) around the steady-state point (x0, u0), with
A ∈ RN×N and B ∈ RN×M being the state-space matrices, and
∆ denoting small deviations around the equilibrium (x0, u0).
Nevertheless, while providing accurate dynamical representation
of the system, such linear model also leads to a minor steady-
state error compared to its nonlinear counterpart. The mismatch
can be seen in Fig. 8, showcasing a time-domain response of a
two-generator system after a step increase in load demand. The
steady-state error arises due to the linearization of the alignment,
i.e., the approximation of trigonometric terms within the rotation
matrix R(·) in (23). This also explains why power, and hence the
frequency, experience the highest mismatch, as they cumulatively
absorb the errors pertaining to alignment of each individual
voltage and current vector. Note that for a global SRF rotating at

Fig. 8. Time-domain performance of nonlinear and linear model representation
of a two-generator system after a load step change.

constant angular velocity ω?, the formulation (27) is not feasible,
i.e., the obtained linear model is unstable. This is again justified
by the linearization of (23), which cannot accurately capture the
alignment.

III. TIMESCALES IN LOW-INERTIA SYSTEMS

The overall complexity of dynamics pertaining to low-inertia
systems is well described through characteristic timescales il-
lustrated in Fig. 9. Conventional power systems based on syn-
chronous generators have a distinct difference in time constants
for frequency and voltage regulation, with turbines (Tr ≈ 10 s)
and governors (Tg ≈ 1 s) operating on much longer timescales
than the exciter (Te ≈ 50 ms) [58]. Moreover, swing and
flux dynamics reflect the time constants of the swing equation
and synchronous machine flux linkages, respectively. Consid-
ering that the time constants of the line dynamics vary in the
T` ∈ [1− 30] ms range, depending on the network type, it is
clear that the conventional control schemes would ensure system
stability. However, with the inclusion of fast-acting converter-
based generation, the system dynamics become more complex
and convoluted and may lead to unexpected couplings [1].
For instance, the traditional assumption of neglecting fast line
dynamics is not valid anymore, since the underlying dynamics
are of the same order of magnitude as the ones of converter
voltage control. On the other hand, the time constants of the
PI controllers and low-pass filters associated with the inner and
outer inverter control loops are one or two orders of magnitude
smaller than the ones of the synchronous machines, potentially
resulting in adverse control interference and instability, espe-
cially with high shares of renewables. Moreover, the time delays
associated with Wide Area Monitoring Systems (WAMS) would
make any type of emergency regulation without the use of high-
speed fibre optics obsolete [62].

It should be noted that by voltage and frequency dynamics
in Fig. 9 we refer to the controllers associated with voltage
and frequency regulation, respectively. While somewhat related,
these notions are not in direct correlation with the traditional
voltage and frequency stability terms [63], especially considering
the complex dynamics of low-inertia systems and a timescale
separation between the controls of different unit types regulating
the same system metric (voltage magnitude or frequency).
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Fig. 9. Characteristic timescales of different physical and control dynamics in a low-inertia system.

We also note that the impact of network line dynamics
becomes more profound in inertialess systems. Its effect on
frequency stability can be illustrated by analyzing a uniform
frequency control loop of an individual grid-forming inverter
connected to k ∈ Kj adjacent inverter units as follows:

τz θ̈cj +
(
1− ωbRpcB′j

)
θ̇cj + ωbR

p
cBjθcj + Cj = 0, (28)

with (ωc, θc) denoting the converter frequency and phase angle,
Rpc being the active power droop, ωb representing the base
frequency, Cj = ωbω

?
cj + ωbR

p
cp
?
cj , and

Bj =
∑
k∈Kj

ω0`jk

ωb

(
r2jk + ω2

0`
2
jk

)2 , B′
j =

∑
k∈Kj

2rjk`
2
jk

ωb

(
r2jk + ω2

0`
2
jk

)2 .
Here, ω0 is the nominal per-unit frequency and (rjk, `jk) denote
the resistance and inductance of the transmission line between
nodes j and k. The analytical derivation is omitted for brevity.

We also note that the impact of network line dynamics
becomes more profound in inertialess systems. Its effect on
frequency stability can be illustrated by analyzing a general
frequency control loop of an individual grid-forming inverter
j ∈ Ng connected to |Kj | VSC units k ∈ Kj adjacent to inverter
j, as follows:

τz θ̈cj +
(
1− ωbRpcB′j

)
θ̇cj + ωbR

p
cBjθcj + Cj = 0, (29)

with Cj = ωbω
?
cj + ωbR

p
cp
?
cj and

Bj =
∑
k∈Kj

ω0`jk

ωb(r2jk+ω2
0`

2
jk)

2 , B′j =
∑
k∈Kj

2rjk`
2
jk

ωb(r2jk+ω2
0`

2
jk)

2 .

The derivation of underlying expressions is provided in Ap-
pendix B.

In order to preserve system synchronization, the natural nega-
tive feedback terms for θcj and θ̇cj must be positive, indicating
an upper limit on the active power droop gain Rpc < (ωbB

′
j)
−1.

Such threshold is even more restrictive for distribution networks,
due to shorter node distances and a lower `jk/rjk line impedance
ratio. Furthermore, the impact of the power network also pertains
to inverter synchronization through θcj term, since very high
feedback control gains κj = ωbR

p
cBj might lead to inverter

frequency oscillations exciting the oscillatory modes of the trans-
mission lines. In other words, the inverters achieve synchroniza-
tion by inferring information about the phase angle differences
through local measurements of currents and voltages. Therefore,
the time constant of transmission lines can be interpreted as
a propagation delay of the information on the phase angles,
and the controllers cannot act faster than the time needed to

observe information through the network. Hence, larger time
constants require a lower feedback gain, which implies that
reducing transmission line impedance ratio or increasing network
connectivity can make a low-inertia system unstable. Similar
remarks have been pointed out for microgrids comprising solely
inverters based on droop [64] and dispatchable virtual oscillator
control [65]. While we only focus on frequency dynamics in this
example, it should be noted that the voltage dynamics could also
be assessed using the proposed approach, as indicated in [64]–
[66].

IV. STABILITY PROPERTIES OF A SMALL SYSTEM

A. Unit Interactions in a 2-bus Test System
For the first case study, we consider a simple 2-bus system

with two generators connected over a transmission line and
an RL load supplied at one node. The goal is to incorporate
different units into the system and investigate their dynamic
interactions and the respective stability margins. In order to
confine the observed phenomena solely to the generators under
study, the transmission line dynamics are neglected at this point,
i.e., line connections are represented only by algebraic equations.

We investigate three different scenarios based on the generator
type configuration: (i) a synchronous generator and a grid-
following VSC; (ii) a synchronous generator and a grid-forming
VSC; and (iii) a grid-forming and a grid-following VSC. Fur-
thermore, we introduce a penetration ratio η, which describes the
installed penetration level of inverter-based units. In the first two
cases this corresponds to η = pc/(pg + pc), whereas in the last
scenario this factor denotes the penetration of the grid-following
generation, i.e., η = pcf /(pcF + pcf ), with subscripts F and
f representing the grid-forming and grid-following converters
respectively. Note that all generators operate at 50 % of the
installed capacity, i.e., p? = 0.5 p.u.

The small-signal stability margins of different system config-
urations are illustrated in Fig. 10, where the stability is assessed
through real-part movement of the most critical eigenvalue λ̂.
Understandably, the system comprising both synchronous gen-
erators and grid-forming inverters can withstand higher levels
of PE-based devices (≈ 79%), as the voltage phasors at both
nodes are fully established and controlled by the local generators.
Additionally, the synchronization and power sharing properties
are inherently provided by both units. On the other hand, the
penetration of grid-following generation adversely affects the
system balance, and significantly reduces the maximum admis-
sible ratio to ηmax ≈ 60 % and ηmax ≈ 59 % for Scenarios I and
III, respectively. Scenario III also has a steeper progression of λ̂,
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indicating that it is difficult to achieve a noticeable improvement
of the critical penetration ratio.

As a second step, we thoroughly explore the fundamental
components contributing to the aforementioned instability. This
is achieved by determining the critical modes of the system, em-
ploying participation factor and parameter sensitivity analyses,
and determining the states (i.e., the controllers) that predomi-
nantly contribute to such modes. Each of the proposed scenarios
comprises a unique ODE system with specific dynamics. There-
fore, all three system configurations are individually investigated
and discussed in detail below:

1) Scenario I: It is observed that the inverter penetration
above 60 % leads to system collapse. Interestingly, the instability
initially originates in the voltage dynamics due to incompatibility
of the VSC inner control loop and the generator’s PSS, as
illustrated in Fig. 11. Subsequently, the vulnerability spreads
across the whole excitation system, including the AVR. At this
point the system is heavily unstable. This phenomena comes
from the time constants of the inner loops being drastically
smaller than the ones of the exciter. More specifically, once
the system becomes predominantly PE-based the “non-forming”
aspect of the inverter’s voltage phasor counteracts and diminishes
the firm voltage at the SG terminal, thus weakening the system.
For even higher VSC penetration levels (> 75 %) the network
faces frequency stability issues, as the PLL, and subsequently the
active power controller, cannot provide adequate synchronization
of the grid-following units due to an insufficiently stiff global
frequency signal.

By studying the movement of the critical eigenvalue spectrum
in Fig. 11 we notice that the real part <(λ̂) significantly
increases for inverter shares above 68 %. Considering that PSS
and inner SRF controllers largely participate in critical modes for
η ∈ [60, 68] %, one can assume that tuning the respective control
gains could restore system stability within this range. While
the increase in PSS stabilization gain proves to be relatively
beneficial for the system, the adjustment of inner loop PI
controllers has no impact on the eigenvalue spectrum, as shown
in Fig. 12. This is an expected outcome due to a large timescale
separation between the two feedback loops, which in turn hinders
the synchronous generation from providing a stiff voltage at
the terminal. Furthermore, inner converter control loops are
often predefined by the manufacturer and optimally designed for
providing fast and accurate voltage and power reference tracking,
implying that any parameter changes would distort its original
purpose and effectiveness.

Beside the SG voltage regulators, the dynamics of the swing
equation also prove to be relevant to a certain extent for the
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Fig. 10. Impact of inverter penetration on system stability for different unit
configuration.

Fig. 11. Impact of different controllers on system stability under high grid-
following inverter penetration in Scenario I.

overall stability. However, in contrast to the popular belief
that low inertia levels lead to vulnerability, it is in fact the
insufficient damping that propagates the problem. Similar to the
PSS stabilization gain, the higher damping constant facilitates
the integration of converters (see Fig. 12), whereas the inertia
constant has no impact on the overall penetration; an observation
that was also made in [40]. Nonetheless, damping is related
to physical properties of synchronous generators, while droop
gains, essentially corresponding to damping, are prescribed
within narrow ranges by the grid codes. This suggests that the
most viable and practical solution would be to improve the PSS
design, i.e., increase its responsiveness, in order to accommodate
a high penetration of grid-following inverter-based generation.

2) Scenario II: The issues pertaining to timescale separation
between different voltage controllers already highlighted in the
previous scenario remain also in this scenario. It can be noticed
that the “forming” inverter property bolsters the voltage vector at
the respective bus and drastically improves the stability margin
of the system. Nonetheless, for η > 78 % the AVR and PSS
controllers cannot achieve adequate voltage stabilization, as the
eigenvalues depicted in Fig. 13 are located deeply into the right-
hand side of the root loci spectrum. Hence, the maximum feasible
penetration of VSCs can hardly be improved. Another important
observation is that the frequency dynamics are not contributing
to instability anymore, since both units independently establish
an adequate frequency signal and subsequently synchronize.

Fig. 12. Stability maps in Ks−η and Dg−η planes indicating the effect of PSS
stabilization gain and SG damping on admissible penetration of grid-following
inverter units in Scenario I.
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Fig. 13. Impact of different controllers on system stability under high grid-
forming inverter penetration in Scenario II.

Fig. 14. Impact of different controllers on system stability under high grid-
following inverter penetration in Scenario III.

3) Scenario III: We tackle the 100 % PE-based scenario by
increasing the share of grid-following units (i.e., by increasing

Fig. 15. Stability map in the Kpll
p − η plane indicating the effect of propor-

tional PLL gain on admissible penetration of grid-following inverter units in
Scenario III.

factor η), with the results presented in Fig. 14. The main
distinction of this scenario is the elimination of voltage control
issues in the presence of SGs and inverters, as both VSCs
regulate voltage on the same timescale. In spite of improving the
voltage dynamics in the system, the synchronization problems
are aggravated due to an exclusion of a synchronous generator.
In other words, the dedicated “forming” capability of a grid-
forming converter is inferior to the one of a traditional generator.
As a result, for penetration levels above ≈ 59 % the PLL units
of grid-following inverters cannot accurately estimate the fre-
quency signal, leading to failure in the active power control and
preventing system-level synchronization. Similar properties are
also reflected when analyzing η as a function of the proportional
PLL gain, with a more responsive PLL potentially facilitating a
higher penetration factor (see Fig. 15). However, this approach
does not solve the fundamental problem at hand, and provides
only a marginal improvement of a few percent. It should be
noted that the integral gain of the respective PI controller does
not affect the system stability margin, indicating that the original
PLL time constant could be maintained in the process.

B. Inclusion of Transmission Line Dynamics

We broaden the scope of our analysis by including the
transmission line dynamics. The same three scenarios are re-
evaluated and compared against the previous case study, with the
respective results illustrated in Fig. 16. A noticeable difference
in the stability margin of a 100 % inverter-based system can
be observed, where the inclusion of line dynamics significantly
increases the maximum penetration ratio η. This can be explained
by the inductive and capacitive components of the lines acting as
energy buffers and augmenting the synchronization between the
two units. More precisely, the frequency issues associated with a
large proportion of PLL-based generation are alleviated through
interactions with the LC segments of the transmission lines,
which slows down the frequency dynamics and enables the grid-
following VSCs to more accurately detect the weak frequency
signal. Similar conclusions have been drawn for autonomous
microgrids [67] and networks comprised of a specific class of
grid-forming inverters [65], as well as in [3] using a mechanical
analogue of swings in a multi-machine system.

On the other hand, the scenarios experiencing instability
related to voltage dynamics are for the most part unaffected by
the transmission line dynamics. The voltage control interaction
between the synchronous and PE-based generation is somewhat
mitigated, due to the time constants of the line dynamics and the
SRF inner control loops being of the same order of magnitude.

Fig. 16. Impact of inverter penetration on system stability for different unit
configuration, with inclusion of transmission line dynamics. Transparent dashed
lines indicate results for scenarios without line dynamics from Fig. 10.
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However, the line dynamics do not have any impact on the slower
modes associated with the synchronous machines. Therefore,
the stability in Scenario I cannot be preserved for the grid-
following penetration above 70 %, as it is associated solely with
the AVR and PSS control design. The predominant impact of
SGs on system stability is even higher in Scenario II, with grid-
forming inverters only marginally affecting the critical modes
within a narrow range of η ∈ [78, 79] %. Hence, the maximum
admissible VSC penetration after the inclusion of transmission
line dynamics remains the same in this case.

As a mean of model validation, we investigate the same 2-
bus test case comprised only of synchronous generators or grid-
forming converters. Understandably, networks with such homo-
geneous configurations of generators with standalone capabilities
face no stability problems under any ratio of installed powers
between the two units. Therefore, these results are not included
in Fig. 16 for simplicity, nor will the respective scenarios be
discussed in the remainder of the study.

C. Impact of System Operating Point

In addition to the total installed capacity of PE-interfaced
generation, the actual dispatch (i.e., operating power setpoints)
of converter-based units can have a detrimental effect on small-
signal stability. In fact, it can completely change the nature of the
unstable modes and the controllers contributing to such modes
and instability. One such example is illustrated in Fig. 17, depict-
ing a root loci spectrum of the system from Scenario II. The SG
and grid-forming VSC have identical installed power capacities,
suggesting that η = 0.5. Note that for such configuration and
p?g = p?c = 0.5 p.u., the system in Scenario II is stable (see
Fig. 10). The original unit dispatch (set at 50 % for each unit)
is modified by gradually changing the power setpoints while
holding the total generation output constant, which corresponds
to redistribution of the load demand between the two generators.

Under SG-dominated operation the most critical mode (de-
noted by blue-edged squares in Fig. 17) is associated with
voltage control dynamics. This is also identified as the same
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Fig. 17. Root loci spectrum of interest for different system operating points:
general mode movement (top) and the most critical modes (bottom). In the
bottom figure, the edge color of the mode corresponds to the color of the
respective arrow indicating the direction of the movement. The size of the symbol
scales down with the increase in converter power setpoint p?c .

mode becoming unstable for increased installed VSC capac-
ity, previously pointed out in Section IV-A. However, when
increasing the converter dispatch point p?c , the aforementioned
mode moves to the left-hand side (indicated by the blue arrow),
whereas another mode (denoted by red-edged diamonds) shifts
to the right-hand side (indicated by the red arrow) and eventually
becomes unstable for p?c > 0.7 p.u. An interesting observation is
that the instability arises from synchronization issues, i.e., it is a
consequence of adverse interactions between the two frequency
controllers. Such finding confirms a very complex nature of
potentially unstable modes in a PE-dominated power system,
and implies that a single metric of inverter penetration might
not be sufficient to prescribe reliable stability margins. Another
insightful remark can be made regarding the nature of the most
critical modes, as they all have zero imaginary part. This implies
that the underlying instability is not oscillatory, and one should
not be thinking of “fast” and “slow” second-order dynamics but
rather of just first-order dynamics when referring to these modes.

V. STABILITY ANALYSES OF LARGER SYSTEMS

A. Stability Margins of the IEEE 9-bus System

In order to investigate the simultaneous interactions between
all three unit types, as well as to increase the network complexity,
the IEEE 9-bus system given in Fig. 18 is considered in this
case study. A grid-following VSC is placed at node 2 and a
grid-forming VSC at node 3. The transmission line dynamics
are included throughout the remainder of the study.

The stability mapping for the IEEE 9-bus system is shown in
Fig. 19, considering also different levels of network connectivity.
Each triangular axis denotes a penetration of the respective unit
type, more precisely ηSG refers to synchronous generators, ηF
to grid-forming and ηf to grid-following inverter-based units;
colored areas indicate a predominant penetration (≥ 50 %) of
a single generation type. It should be noted that the system
is always comprised of three generation units, i.e., axes points
indicating a 0 % penetration of a single generator type are
not considered, and the individual penetration levels are varied
in discrete steps of 1 %. We modify the original system by
gradually adding transmission lines, first between the generator
buses and subsequently between the load buses, as indicated
by the red and blue lines in Fig. 18 respectively. Such proce-
dure allows us to increase the network connectivity, defined as

3 6 7 8 2

5 9

4

1

Fig. 18. Network diagram of the IEEE 9-bus system. The blue and red lines
indicate the additionally incorporated transmission lines.
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Fig. 19. Stability mapping for the IEEE 9-bus test case under different levels of
network connectivity. Colored arrows indicate the appropriate reading direction
on the respective axes.

εg = 2Nb/(N
2
n−Nn), from 40 % in the original model to 60 %

and 80 % in the modified system.
Fig. 19 suggests that, for the generator configuration in this test

case, system stability cannot be maintained with less than 47 %
synchronous generation. Reducing connectivity (in particular by
removing network connections between generator buses) makes
the system even more reliant on synchronous generation. It
is clear that stability erodes at high VSC penetration levels
independent of the grid-forming share, which is consistent with
our previous findings in Section IV-A. Interestingly, the permis-
sible converter installation margin significantly reduces when
the ηF /ηf ratio diverges from 1, as the maximum value of
η = ηF + ηf drops from 44 % to 27 % in case of ηF ≈ 0 % or
ηf ≈ 0 %. This is due to different instabilities occurring between
various unit types, specifically voltage issues for a system com-
prised of synchronous and inverter-based generators (Scenarios I
and II) and synchronization obstacles related to a 100 % PE-
based system (Scenario III), as described in Section IV-A. For a
rather balanced portfolio, all of these problems are somewhat
confined within reasonable limits, while an imbalance in the
ηF /ηf ratio tends to emphasize the voltage dynamics issues and
endanger the whole network. Another valid point can be made
regarding the beneficial impact of transmission line dynamics.
As previously indicated in Section IV-B, a direct connection
between units experiencing frequency instability mitigates the
synchronization issues, thus facilitating a higher share of PE-
based devices. Nonetheless, this is not the case for transmission
lines between the load nodes, as increasing connectivity from
60 % to 80 % has a negligible impact on the stability margin.

We extend this analysis by differentiating between three
different generation portfolios: (i) P0 - a mix of all three unit
types, as previously discussed; (ii) Pf - a system comprised
only of synchronous generators and grid-following VSCs; and
(iii) PF - a system comprised only of synchronous generators
and grid-forming VSCs; in the latter two cases the portfolio
consists of two synchronous and one inverter-based generator,
i.e., one of the VSCs from the original portfolio P0 is replaced
by SG, whereas the total inverter penetration ratio is equal to
either ηf or ηF . The results for the IEEE 9-bus system presented
in Fig. 20 suggest that more homogeneous portfolios, such as
Pf and PF , can withstand drastically higher penetrations of
renewables, with ηmax reaching up to 75 % and 82 % respectively.
Understandably, portfolio PF has a higher η margin due to
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Fig. 20. Maximum permissible inverter penetration under different system
portfolios (P) and levels of network connectivity (εg).

less accentuated voltage instability compared to the Pf sce-
nario. However, increasing network connectivity balances these
penetration ratios out, as direct transmission line connections
resolve the timescale separation between the voltage controllers
of synchronous and converter-based generators (see Fig. 9). As
a result, the system can facilitate up to ηmax = 88 % of PE-
interfaced units; an increase of approximately 70 % compared to
the original portfolio P0.

Alternatively, a different configuration with a less heteroge-
neous portfolio comprised of two grid-forming and one grid-
following inverter is investigated. For higher levels of network
connectivity the system faces no stability issues under any share
of installed powers, whereas in case of εg = 40 % the maximum
permissible penetration of grid-following generation is 93 %.
This highlights the fact that the small-signal stability of low-
inertia systems is drastically more vulnerable compared to the
one of 100 % PE-based systems.

B. Stability Characteristics of South-East Australian Network

Having gained fundamental understanding of dynamic inter-
actions between different types of generators in a simplistic test
environment, we extend the analysis to a 14-generator, 59-bus
South-East Australian system [68], [69] shown in Fig. 21. This
network represents a long, linear system as opposed to the more
tightly meshed networks found in Europe and the United States.
For convenience, it has been divided into 5 areas, with areas 1
and 2 being closely electrically coupled. Therefore, there are
in essence 4 main regions, namely South Australia (area 5),
Queensland (area 4), Victoria (area 3) and New South Wales
(subsuming areas 1 and 2), and hence 3 inter-area modes are
present. Beside its string topology, the system is characterized
by the weak coupling between South Australia and the rest of
the system. The model employed in this work considers the light
loading scenario provided in [69], [70].

Moreover, for the purpose of this work, the model presented in
[70] was modified to obtain a low-inertia case study by replacing
synchronous generators located at buses 101, 202, 301, 302,
501, 502 and 503 by grid-following VSCs of identical power
rating. In addition, we install 4 more grid-following units, two
in each of the area 2 and 3, at nodes 212 and 214, i.e., 308 and
314 respectively. This yields a total of 11 converter-interfaced
generators operating in grid-following mode and 7 conventional
SGs, representing the default test case for our analysis. Such
modeling choice is based on the high penetration of renewable
generation in the real-world system, particularly in area 5, that
does not provide standalone frequency support [71], [72]. Note
that the default test case comprises all-inverter-based areas 5,
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Fig. 21. Modified South-East Australian power system line diagram (default
configuration in Scenario 1).

3 and 1, corresponding to South Australia, Victoria and the far
south region of New South Wales.

In the following step, we analyze the stability margins of
the South-East Australian network for 33 different configuration
scenarios categorized into 6 groups, as listed in Fig. 21a. The first
set of 8 scenarios (G1), including the default setup in Scenario 1,
is generated by successively replacing one of the existing SGs
in Queensland and New South Wales (areas 2 and 4) of the
default case by an equivalent grid-following inverter. Similarly,
set G2 considers 6 scenarios where two of the aforementioned
SGs are simultaneously converted into converter-interfaced units.
In contrast, G3 restores South Australia to its original condition
(i.e., makes area 5 SG-based) and presents 9 scenarios with a
substantially higher level of inverter penetration in areas 2 and 4,
with Scenario 23 only having one SG in Queensland and New
South Wales combined. The two scenarios in G4 are the only
instances with grid-forming VSC installation and represent 100%
inverter-based configurations, whereas sets G5 and G6 restore
original synchronous generation in areas 1, 3 and 5 and study
the impact of PE-based generators in areas 2 and 4. The main

distinction between the latter two sets is the substantially higher
inverter penetration in the second case.

By closely studying the inverter penetration levels and system
configurations4 in Fig. 21, we can make several insightful
observations that validate the claims raised in Section IV and
Section V-A. First of all, there is a clear upper bound on the level
of grid-following inverter penetration that a traditional power
system can withstand. For sets G1 and G2 this limit corresponds
to ηmax ∈ [60− 70] %, while for G3, G5 and G6 the maximum
permissible penetration increases to ηmax ∈ [60− 70] %. Under-
standably, the network configuration and unit placement play an
important role. This justifies the lower VSC installation margins
for former scenarios (sets G1 and G2) where South Australia (area
5) is inverter-based, since the electrical distances between the
synchronous and inverter-interfaced generation are the longest
and hence the system is more vulnerable. We also showcase
that the operator should not aim at enforcing a single margin
for maximum VSC penetration, as Scenario 22 is stable for
η = 78.5 % while Scenario 2 is unstable for η = 62 %; again,
solely due to the outline of the system and placement of the
grid-following VSCs in the network.

Finally, we validate the notion that an all-inverter network is
significantly less prone to instability, as Scenario 24 can with-
stand a share of ≈ 92 % grid-following inverters while having
only two grid-forming units in the grid. However, removing one
of those grid-forming converters leads to frequency instability
(Scenario 25). Note that in Scenario 24, the grid-forming VSCs
are placed at the end nodes of the system (node 501 in South
Australia and node 404 in Queensland), thus capable of covering
wide areas affected by their “forming” property and facilitating
a high grid-following inverter penetration. By replacing the
grid-forming unit at node 404 with a grid-following one, the
electrical distance between this converter and the grid-forming
VSC in South Australia becomes too large and the system cannot
preserve small-signal stability. We can therefore conclude that
the problem of placement of grid-forming inverters in a low-
inertia system could be of high importance in the future. This
topic is addressed in [72]–[74].

VI. CONCLUSION

The presented paper employs a high-fidelity ODE formula-
tion of a low-inertia system with detailed control schemes of
both synchronous and converter-based generators, as well as
the dynamics of loads and transmission lines. Using modal
analysis techniques we expose the most vulnerable segments of
the system under different penetration levels of inverter-based
units, various generation portfolios and system operating points,
and investigate the adverse effects of the underlying control
interference. As a result, some new insights into the overall
stability of low- and no-inertia systems are presented, together
with the proposed directions for improving the system stability
margin under different scenarios and configurations.

The key findings can be summarized as follows: (i) Small-
signal stability of low-inertia systems is significantly more
vulnerable and harder to ensure compared to 100 % inverter-
based power systems; (ii) Introduction of fast-acting PE devices
implies that traditional assumptions of neglecting transmission
line dynamics in power system studies might not be valid
anymore. Interestingly enough, the line connections could poten-
tially have both positive and adverse effects on system stability,

4Synchronous generators are denoted by “S”, whereas grid-forming and grid-
following converter-interfaced units are denoted by “F” and “f” respectively.
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Scenario Generation type at the respective node
η [%] stable system501 502 503 308 314 302 301 101 214 212 204 203 201 401 402 403 404 202

G1

1 f f f f f f f f f f S S S S S S S f 56.97 yes
2 f f f f f f f f f f f S S S S S S f 61.96 no
3 f f f f f f f f f f S f S S S S S f 66.35 no
4 f f f f f f f f f f S S f S S S S f 64.68 no
5 f f f f f f f f f f S S S f S S S f 63.36 yes
6 f f f f f f f f f f S S S S f S S f 60.83 yes
7 f f f f f f f f f f S S S S S f S f 63.36 yes
8 f f f f f f f f f f S S S S S S f f 61.3 yes

G2

9 f f f f f f f f f f S S S S S f f f 67.68 no
10 f f f f f f f f f f S S S S f f S f 67.21 no
11 f f f f f f f f f f S S S f f S S f 67.21 no
12 f f f f f f f f f f S S S S f S f f 65.16 yes
13 f f f f f f f f f f S S S f S f S f 69.74 yes
14 f f f f f f f f f f S S S f S S f f 67.68 yes

G3

15 S S S f f f f f f f f S S S S S f f 57.98 yes
16 S S S f f f f f f f f f f S S S S f 70.74 no
17 S S S f f f f f f f f f S S S S S f 63.02 yes
18 S S S f f f f f f f S f f S S S S f 65.75 yes
19 S S S f f f f f f f f S f S S S S f 61.36 yes
20 S S S f f f f f f f f S f S S S f f 65.69 yes
21 S S S f f f f f f f f S f f S S f f 72.07 yes
22 S S S f f f f f f f f S f f S f f f 78.45 yes
23 S S S f f f f f f f f S f f f f f f 82.31 no

G4 24 F f f f f f f f f f f f f f f f F f 91.95 yes
25 F f f f f f f f f f f f f f f f f f 96.27 no

G5
26 S S S f f S S S f f S S S S S S S S 22.47 yes
27 S S S f f S S S f f f S S S S S S S 27.45 yes
28 S S S f f S S S f f S f S S S S S S 31.84 yes

G6

29 S S S f f S S S f f S f f S f f S f 58.97 yes
30 S S S f f S S S f f f f f S f f S f 63.95 yes
31 S S S f f S S S f f f f f S f f f f 68.28 yes
32 S S S f f S S S f f f f f f f f f f 74.66 no
33 S S S f f S S S f f f f f f f f S f 70.34 yes

Fig. 22. Scenario configuration and stability analysis of South-East Australian grid based on the generation portfolio in the system.

depending on the generation portfolio; (iii) Contrary to popular
belief, low inertia on its own does not have a major impact
on the small-signal stability of power systems with high shares
of PE-interfaced generation. It does however affect frequency
dynamics and associated fast transients, which in turn can
adversely trigger numerous protection schemes based on Rate-of-
Change-of-Frequency (RoCoF) measurements; (iv) Controllers
of synchronous and inverter-based generators can interact in a
way that leads to frequency and voltage instabilities under high
penetration of renewables. This can only be observed under
sufficiently detailed modeling of underlying control schemes;
(v) In addition to installed inverter capacity, the operating points
have a crucial impact on overall stability and can drastically
change the nature of unstable modes and underlying dynamics,
which in turn could affect the optimal power flow dispatch.

Future research could include, among other things, a compre-
hensive analysis of potentially adverse effects of incompatible
converter control strategies, impact of unit placement on transient
and small-signal stability, as well as the overall system capability
for frequency regulation (e.g., limiting nadir and RoCoF) under
high inverter penetration. Furthermore, the aspects of large-signal
stability and the impact of HVDC and MTDC grids should be
thoroughly investigated.
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APPENDIX

A. Vector Formulation of Circuit Dynamics
We derive the dq-vector formulation for a general RL circuit

described by the per-unit series resistance r ∈ R>0 and induc-
tance ` ∈ R>0. Let us consider such series impedance, with
three-phase voltages vabc1 ∈ R3 and vabc2 ∈ R3 at the respective
ends and the three-phase current iabc ∈ R3 flowing through
it. Assuming a base angular velocity ωb ∈ R>0, the current
dynamics are described in per-unit by

d
dt i

abc = −ωb
`

(
vabc1 − vabc2

)
− r

`
ωbi

abc, (30)

Moreover, let us denote by X(θr) = T (θr)
−1 the inverse of the

power-variant dq-transform in (3). Assuming a balanced three-
phase system and, given a reference angle θr ∈ [−π, π) of the
dq-frame, expression (30) can be rewritten as

d
dt

(
Xidq

)
= −ωb

`
X
(
vdq1 − vdq2

)
− r

`
ωbXi

dq. (31)

Considering that d
dtθr = ωbωr and that j := R(π/2) can be

interpreted as an embedding of the complex imaginary unit
√
−1

into R2, the term on the left-hand side of (31) can be further
expressed as

d
dt

(
Xidq

)
= d

dt (X) idq +X d
dt i

dq = jωbωri
dq +X d

dt

(
idq
)
.

(32)
Substituting (32) into (31) and conducting a set of trivial math-
ematical operations yields

d
dt i

dq =
ωb
`

(
vdq1 − vdq2

)
−
(r
`
ωb + jωbωr

)
idq. (33)

B. Frequency Control Loop of a Grid-Forming Converter in a
Multi-Machine System

Let us consider an index setNg representing all interconnected
grid-forming converters with the droop-based active power con-
trol (10) described by

τzω̇cj = ω?cj − ωcj +Rpc

(
p?cj − pcj

)
, ∀j ∈ Ng, (34)

where τz = ω−1z is the time constant of the low-pass filter.
Having in mind that θ̇cj = ωbωcj , one can transform (34) into

τz θ̈cj = −θ̇cj + ωbω
?
cj + ωbR

p
c

(
p?ck − pck

)
. (35)

The converter’s output power pcj can be described as the sum
of all powers flowing across the transmission lines connecting
VSC j to the adjacent converter units k ∈ Kj :

pcj =
∑

k∈Kj

pjk =
∑

k∈Kj

vTcj ijk, (36)

with vcj := vfj corresponding to the filter output voltage of
the respective converter j ∈ Ng , ijk being the vector of the

current flowing through the line between converters j and k,
and θjk := θcj − θck Furthermore, considering line parameters
of the form (rjk, `jk) ∈ R>0, we express the electromagnetic
dynamics of the line current in a dq-frame by (see Appendix A)

i̇jk =
ωb
`jk

(vcj − vck)−
(
rjk
`jk

ωb + jωbω0

)
ijk, (37)

which is subsequently transformed into frequency (Laplace)
domain as

ijk =
vcj − vck

rjk + jω0`jk + s`jk/ωb
. (38)

Let us define i0jk ∈ R2 as the nominal current flowing through
the line (rjk, `jk) with the end voltages vcj ∈ R2 and vck ∈ R2,
i.e.,

i0jk =
vcj − vck

rjk + jω0`jk
. (39)

Substituting (39) into (38) yields

ijk =
i0jk

1 + s`jk/ (rjk + jω0`jk)ωb︸ ︷︷ ︸
σl

. (40)

Note that σl can be expressed using SI terms as

σl =
s`jk

(rjk + jω0`jk)ωb
=

sLjk
Rjk + jω0Ljk

=
sTjk

1 + jω0Tjk
,

(41)
with Tjk =

Ljk

Rjk
being the transmission line time constant.

Considering that Xl

Rjk
≈ 10, we can assume Tjk ≈ 0.03 s.

Therefore, it is reasonable to assume that σl � 1 holds for modes
evolving on the timescales shorter than the line time constant
Tjk [66]. By performing a first-order Taylor series expansion
(1 + σl)

−1 ≈ 1− σl, we can rewrite (40) as

ijk ≈ i0jk −
s`jk

ωb (rjk + jω0`jk)
i0jk, (42)

and transform it back into the time-domain form

ijk ≈ i0jk −
`jk

ωb (rjk + jω0`jk)
2

(
v̇cj − v̇ck

)
. (43)

Assuming nominal voltage magnitudes and small angle devia-
tions between the nodes, i.e., ‖vcj‖ ≈ 1 p.u. and θjk ≈ 0, ∀j ∈
Ng,∀k ∈ Kj , we can compute the time derivatives of voltage
vectors and subsequently the total active power injection as

pcj =
∑

k∈Kj


 ω0`jk

ωb

(
r2jk + ω2

0`
2
jk

)2 θcj +
2rjk`

2
jk

ωb

(
r2jk + ω2

0`
2
jk

)2 θ̇cj




= Bjθcj +B′j θ̇cj .
(44)

Substituting (44) into (34) yields the frequency dynamics of an
individual inverter of the form

τz θ̈cj +
(
1− ωbRpcB′j

)
θ̇cj + ωbR

p
cBjθcj + Cj = 0, (45)

with Cj = ωbω
?
cj + ωbR

p
cp
?
cj .
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