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Abstract—An increasing penetration of renewable generation
has led to reduced levels of rotational inertia and damping in
the power network. The consequences are higher vulnerability
to disturbances and deterioration of the dynamic response of the
system. To overcome these challenges, novel converter control
schemes that provide virtual inertia and damping have been
introduced, which raises the question of optimal distribution
of such devices throughout the network. This paper presents
a comprehensive framework for performance-based allocation of
virtual inertia and damping to the converter-interfaced genera-
tors in a detailed low-inertia system. This is achieved through
an iterative, eigensensitivity-based optimization algorithm that
determines the optimal controller gains while simultaneously
preserving small-signal stability and ensuring that the damping
ratio and frequency response after disturbances are kept within
acceptable limits. Two conceptually different problem formula-
tions are presented and validated on a modified version of the
well known Kundur’s two-area system as well as a larger 59-bus
South-East Australian network.

Index Terms—eigensensitivity optimization, low-inertia sys-
tems, voltage source converter, frequency constraints

I. INTRODUCTION

THE ELECTRIC power system is currently undergoing a
major transition integrating large shares of distributed

generation interfaced via Power Electronic (PE) converters.
This is accompanied by the phase-out of conventional Syn-
chronous Generators (SGs) leading to a loss of rotational
inertia. Such developments have serious effects on system
dynamics, especially in terms of performance [1], such as
larger frequency excursions and Rate-of-Change-of-Frequency
(RoCoF) after disturbances [2], [3]. To address the underlying
issues, different technologies and control techniques have been
proposed, primarily in terms of restoring the lost inertia by
emulating a Synchronous Machine (SM)-like behavior through
converter control. A number of control schemes have been
designed to make power converters behave as closely as
possible to SMs [4]–[6]. These schemes can vary in the level
of detail and complexity, but they all rely on replicating the
dynamic behavior of SGs, therefore providing virtual inertia
and damping. Moreover, all such strategies require energy on
the DC side acting as converter’s equivalent to the missing
kinetic energy of the rotor; either in the form of energy storage
(e.g., batteries, flywheels, supercapacitors), or by employing a
power source with available kinetic energy (e.g., wind turbines
and diesel generators) [7], [8].

Synthetic inertia and damping are thus becoming design
parameters of the power system and could potentially serve as
a foundation for ancillary service [2], [3]. Therefore, a natural

next step is to quantify the required amount of virtual inertia
and damping for a particular system. However, it is not clear
yet based on which performance metrics such quantification
should take place. Traditionally, the total aggregated inertia
and damping in the system were used as the main metrics
used for measuring system resilience [9]. However, the authors
of [10], [11] show that, in addition to aggregate inertia and
damping, the distribution of these parameters in the system
could be of crucial importance, with spatially heterogeneous
inertia profiles resulting in worse dynamic response after a
disturbance. Other performance metrics such as frequency
nadir, RoCoF and minimum damping ratio are also commonly
used in the literature [12]–[15] In contrast, the problem of op-
timal tuning and large-scale placement of Virtual Synchronous
Machine (VSM) control gains pertaining to virtual inertia and
damping has recently been tackled from the perspective of
system norms [10], [16]–[21], namely using the H2 norm in
[10], [16]–[18], [22], H∞ norm in [19], L2 and L∞ norms in
[20], and all of the above approaches in [21].

The existing literature on large-scale inertia and damping
placement suggests two main directions to approach this
problem. On the one hand, [13] analyzes the sensitivity of
eigenvalues with respect to inertia and damping, and subse-
quently maximizes the critical damping ratio of the system
while ensuring that frequency overshoot is limited. Although
such formulation is non-convex by nature, it can be linearized
and solved numerically in an iterative fashion. Nevertheless,
the study considers an oversimplified representation of the
system, especially in terms of modeling of converter-interfaced
generation, and employs a sequence of approximations to
obtain an estimate of the frequency metrics of interest. In
[15], the power system is modelled using a swing equation
with first order turbine dynamics and the damping ratio and
frequency nadir are optimized subject to an economic cost.
On the other hand, [10], [16]–[18] use the H2 norm as a
measure of network coherency and characterization of the
system frequency response, as well as for quantifying the VSM
control effort. In particular, [10] and [16] aim at improving
the frequency response of the system by finding the inertia
distribution that minimizes the H2 norm, with the second
study specifically focusing on a network with high penetration
of wind farms employing doubly-fed induction generators.
However, neither of the studies include the damping constant
as a controllable parameter. This drawback is resolved in [17],
[18], where the authors argue that the performance metrics
such as the damping ratio and RoCoF are not sufficient for
quantifying the robustness of the system. They instead employ
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the H2 norm not only to characterize the system response, but
also to quantify the required control effort. Furthermore, [17]
incorporates simplified Virtual Inertia (VI) devices operating
in the grid-following mode as a feedback control loop, whereas
[18] also includes the grid-forming VI implementation. While
providing certain theoretical guarantees, the use of H2 norm
is limited by the underlying assumption of an impulse distur-
bance, which is not necessarily the case in power systems (e.g.,
load change and generation outage yield a step-like change in
active power). Another challenge is the computational burden
to solve the underlying Lyapunov equations for a detailed
low-inertia system. This was not an obstacle in [10], [16]–
[18] due to the simplistic representation of system dynamics
based on the swing equation. However, such models are not
sufficient to characterize the dynamic interactions present in a
realistic system with high inverter penetration [23], thus raising
concerns in terms of applicability of system norms.

The work proposed in this paper aims to combine and
improve the techniques and insightful conclusions from the
existing literature and provides a methodology for placement
of virtual inertia and damping in a high-fidelity low-inertia
system. The proposed algorithm is intended to be used pri-
marily as a planning tool. For a given network, where the
location of both conventional and renewable generators is
known, the algorithm could be used to compute the optimal
allocation of virtual inertia and damping control gains in order
to ensure adequate dynamic performance. Nevertheless, in
case the system operator would like to increase the range of
operating points under consideration or adaptively tune the
controllers during operation, one could run this algorithm in
real time for the specific operating point under investigation.

One of the main contributions of this study is the integration
of highly detailed models capturing all relevant system dynam-
ics within the optimization problem. To this end, a high-order
dynamic model previously presented in [23] is adapted for the
computational purposes of the iterative algorithm and used for
optimal VSM control design (i.e., control tuning) and assessing
the system performance. As will be shown later on, this level
of detail is imperative for obtaining any meaningful result that
could be applied to a real-world system. Furthermore, similarly
to [12], [13], we employ an iterative, eigensensitivity-based
optimization framework to determine the optimal incremental
allocation of virtual gains at each step. However, unlike the
approximations made in [13], we include exact analytical
expression for relevant frequency metrics previously derived in
[24]. Moreover, improvements in terms of the multi-objective
nature of the problem, computational efficiency and adaptive
step-size adjustments are also presented. Additionally, moti-
vated by [17], [18], we include different VI implementations
as well as theH2 andH∞ system norms in the analysis. While
computationally intractable within the iterative algorithm, the
two norms are studied and taken into consideration when
evaluating the system performance. As a result, we obtain a
computationally inexpensive and scalable problem formulation
that takes into account all relevant aspects of the dynamic sys-
tem response. The performance and scalability are validated on
the modified Kundur’s two-area system and the 59-bus South-
East Australian power network. To the best of the knowledge

of the authors, such comprehensive and multifaceted approach
has not been proposed in the literature thus far.

The rest of the paper is organized as follows. Section II
discusses the principles of eigensensitivity optimization and
the different performance metrics and problem objectives.
The mathematical formulation of the problem is presented in
Section III, followed by case studies in Section IV. Finally,
Section V discusses the future work and concludes the paper.

II. THEORETICAL PRELIMINARIES

A. Dynamic Properties of Low-Inertia Systems

The level of inertia and damping present in the network
largely influences the small-signal stability and frequency
dynamics after a disturbance. With the increased penetration
of converter-interfaced generation, the amount of inertia and
damping reduces and the system becomes increasingly vulner-
able to disturbances such as load fluctuations and generation
outages. A few commonly used metrics for assessing the
dynamic behavior of the system are listed and briefly discussed
below:
• Small-signal stability: Defined as the ability of the sys-

tem to maintain synchronism when subject to a small
disturbance. It was previously shown in [23] that the sys-
tem dominated by both grid-forming and grid-following
power converters can face small-signal instability under
insufficient levels of virtual inertia and damping (i.e.,
small VSM control gains).

• Damping ratio: Describes how fast the oscillations in the
system die out. A higher damping ratio increases system
resilience.

• Frequency nadir: Represents the maximum deviation of
frequency from a nominal value after a disturbance.
Frequency nadir is a nonlinear function of both inertia
and damping, as will be shown in Section III-B.

• Rate-of-Change-of-Frequency: Describes the maximum
rate at which the system frequency changes and usually
corresponds to the instantaneous RoCoF value after a
disturbance. Unlike frequency nadir, the RoCoF is solely
a function of system inertia.

B. Eigensensitivity Optimization Principles

Improving the worst-case damping ratio of all modes in
the system is important for ensuring an acceptable dynamic
response. The damping ratios are functions of, among other
parameters, inertia and damping constants of both synchronous
and converter-based generators. However, being functions of
system eigenvalues, the sensitivities of damping ratios to
respective parameters are highly nonlinear and could result in
a complex optimization problem [13]. This section provides
a brief introduction into the computation of such sensitivities
and how they can be incorporated into a sequential iterative
algorithm for improving the damping ratios.

The general state-space representation of a linearized system
is given by

ẋ = Ax+Bu, (1)
y = Cx+Du, (2)
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where x ∈ Rn, y ∈ Rm and u ∈ Rp are the respective state,
output and control input vectors, and A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rm×n and D ∈ Rm×p are the state-space matrices. Let
λi ∈ C denote the i-th eigenvalue of the system and σi ∈ R
and ωi ∈ R its real and imaginary parts. The right and left
eigenvectors ui, vi ∈ Cn of λi are then described as

Aui = λiui, (3)

vTi A = vTi λi, (4)

whereas the damping ratio ζi ∈ R is defined as

ζi :=
−σi√
σ2
i + ω2

i

. (5)

This value is positive for stable modes, zero for oscillatory
modes and negative for unstable modes. Moreover, the sensi-
tivity of eigenvalue λi with respect to a parameter α ∈ R can
be expressed as a function of eigenvectors, i.e.,

∂λi
∂α

=
∂σi
∂α

+ j
∂ωi
∂α

= vTi
∂A

∂α
ui, (6)

which in turn can be used to compute the sensitivity of
damping ratio ζi with respect to the parameter α, as follows:

∂ζi
∂α

=
∂

∂α

(
−σi√
σ2
i + ω2

i

)
= ωi

σi
∂ωi
∂α − ωi ∂σi∂α

(σ2
i + ω2

i )
3
2

. (7)

Since the underlying sensitivities are nonlinear, the task
of maximizing the damping ratio is performed using an
iterative approach [13]. More precisely, the sensitivities are
obtained at the start of the iteration using (7), from which the
new parameter values that maximize the damping ratios are
computed. Such iterative procedure yields

ζν+1
i = ζνi +

∂ζνi
∂α

(
αν+1 − αν

)
, (8)

where ν ∈ N0 denotes the iteration step and αν and αν+1,
i.e., ζν and ζν+1, represent the old and new values of param-
eters and damping ratios, respectively. The updated damping
ratios and the corresponding sensitivities are subsequently
used in the next iteration step, described in more detail in
Section III-E.

C. Applicability of System Norms

Apart from the metrics presented in Section II-A, system
norms such as H2 and H∞ provide a measure of the mag-
nitude of the system output after a disturbance. The system
output can include performance outputs such as frequency
stability and energy of the control effort, thereby making
system norms a useful tool for optimization. In general, theH2

norm measures the energy of the system’s impulse response,
whereas the H∞ norm represents the peak gain from the dis-
turbance to the output [25]. By defining a suitable performance
output, the energy metrics of the VSM control effort can be
directly considered in the H2 framework as the overall output
energy [22]. Nevertheless, both system norms have drawbacks
when it comes to computation and applicability to a detailed
model of a low-inertia system.

The H2 norm can be computed using the controllability
and observability Gramians of the system. While tractable

for small-scale systems, the computation of two Lyapunov
functions pertaining to the controllability and observability
Gramians becomes numerically intensive on larger systems.
Furthermore, the H2 norm quantifies the system performance
when subjected to an impulse disturbance, which is not
applicable to more common disturbances in the power system
such as a loss of generator or a load demand change. On
the other hand, the H∞ norm is not restrictive in terms of the
nature of the disturbance signal. However, unlike theH2 norm,
its computation cannot be expressed in a concise analytical
form and requires the use of iterative algorithms such as
those presented in [26], [27]. The bisection method in [26]
has similar computational drawbacks as the computation of
the H2 norm. On the other hand, the less computationally
intensive method provided in [27] is not suitable for our
purposes, since the eigensensitivity framework presented in
Section II-B requires the computation of norm sensitivities
to decision variables (specifically inertia and damping). It
should be noted that the computational effort for obtaining the
sensitivities of aforementioned norms to system parameters is
also an additional obstacle for explicitly including them into
the eigensensitivity-based problem.

Finally, an important question to consider is the practicality
of minimizing the system norms. Indeed, the main concern for
system operators is to ensure that the frequency metrics such
as RoCoF and frequency nadir are within the limits prescribed
by the system operator in order to prevent false triggering
of protection and load shedding schemes [28]. Meeting these
requirements is sufficient for providing reliable and safe oper-
ation and any further improvement of frequency response (i.e.,
minimization of speed and magnitude of frequency deviation)
is not necessarily of value to the operator. By minimizing
system norms significantly tighter bounds are imposed on
these frequency metrics, for which the required control effort
and cost may not be justified. Moreover, optimizing system
norms is not directly correlated with the damping ratio and
does not guarantee achieving sufficient damping of oscillatory
modes. Even though it is hard to prove any formal relationship
between the H∞ norm of a linear time-invariant system and
the damping ratio of its eigenvalues, the intuition suggests
that by improving the latter one could also reduce the former.
The results presented in Section IV also support these claims.
Therefore, the method proposed in this paper prioritizes the
improvement of the worst-case damping ratio while ensuring
that the frequency constraints are met, which simultaneously
leads to a compelling reduction of system norms.

III. OPTIMIZATION PROBLEM FORMULATION

This section describes the proposed optimization problem.
The overview of the dynamic model and analytical expressions
for frequency constraints are presented, followed by two
different problem formulations, i.e., multi-step and uniform.
In particular, the multi-step approach comprises three steps,
each of them with a different objective function and set of
constraints, whereas the uniform formulation combines all
of these objectives and constraints into a single optimization
problem.
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A. Dynamic Model of Low-Inertia System

We consider a state-of-the-art Voltage Source Converter
(VSC) control scheme previously described in [29], where the
outer control loop consists of VSM-based active and droop-
based reactive power controllers providing the output voltage
angle and magnitude reference by adjusting the predefined
setpoints according to a measured power imbalance. Subse-
quently, the reference voltage vector signal is passed through
a virtual impedance block as well as the inner control loop
consisting of cascaded voltage and current controllers. The
DC voltage is controlled through a DC current source and a
PI controller. To detect the system frequency at the connection
terminal, a synchronization unit in the form of a phase-locked
loop is included in the model of grid-following VSC units.
For more details, the reader is referred to [29].

For SGs we consider a traditional 6th-order round rotor gen-
erator model equipped with a prime mover and a TGOV1 gov-
ernor. Furthermore, the Automatic Voltage Regulator (AVR)
based on a simplified excitation system SEXS is incorporated,
together with a PSS1A power system stabilizer. Detailed
control configuration and tuning parameters are provided in
[23], [30], [31]. The SG is interfaced through a transformer
to the grid and modeled in the (dq)-frame defined by its
synchronous speed. Finally, transmission network dynamics
are also included in the model, with short transmission lines
modeled as π-sections and long transmission lines represented
by distributed line parameters. More details on the mathemat-
ical formulation and dynamic performance of the employed
model can be found in [23].

B. System Frequency Metrics

To incorporate frequency constraints into the optimization
problem, the first step is to obtain the corresponding analytical
expressions in terms of decision variables (i.e., parameters of
interest), namely inertia and damping. The detailed derivation
of frequency nadir and RoCoF metrics after a step disturbance
of magnitude ∆P ∈ R is presented in [24]. The underlying
expressions in SI are given by

ḟmax := −f0
∆P

M
, (9a)

∆fmax := −f0
∆P

D +Rg

(
1 +

√
T (Rg − Fg)

M
e−ζsωntm

)
.

(9b)

Here, ḟmax ∈ R and ∆fmax ∈ R are the maximum values of
RoCoF and frequency nadir, f0 = 50 Hz represents the nom-
inal frequency, M ∈ R≥0 and D ∈ R≥0 denote the weighted
system averages of inertia and damping, Rg ∈ R≥0 is the
average inverse droop control gain (effectively corresponding
to damping) and Fg ∈ R≥0 represents the fraction of the total
power generated by the high pressure turbines of the SGs. The
time instance of the frequency nadir is given by

tm :=
1

ωn
√

1− ζ2
s

tan−1 ωn
√

1− ζ2
s

ζsωn − T−1
(10)

with ζs ∈ R>0 and ωn ∈ R>0 representing the damping ratio
and the natural frequency of the system response:

ζs :=
M + T (D + Fg)

2
√
MT (D +Rg)

, ωn :=

√
D +Rg
M + T

. (11)

An additional constraint is introduced (see [24] for more
details) to ensure that the time instance of frequency nadir
is positive, i.e., tm > 0, which corresponds to M

T − Fg < D.
These expressions are highly dependent on the aggregate

system inertia and damping, and the limits enforced on fre-
quency metrics in (9) can be translated into bounds on M and
D. However, frequency nadir in (9b) is a nonlinear function
of system parameters. To incorporate such a constraint into
the iterative linear program, with inertia and damping being
decision variables, a first-order Taylor approximation is em-
ployed:

∆fν+1
max = ∆fνmax +

∂∆fνmax

∂M
∆Mν+1 +

∂∆fνmax

∂D
∆Dν+1,

(12)

where ∆fνmax and ∆fν+1
max are the values of frequency nadir in

iteration ν and ν + 1, and ∆Mν+1 ∈ R and ∆Dν+1 ∈ R are
the respective updates of system inertia and damping at each
iteration step.

C. Multi-Step Optimization Problem
LetN ⊂ N be the set of network buses, K ⊆ N and J ⊆ N

represent the subset of nodes with synchronous and converter-
interfaced generation respectively, and nk = |K|, nj = |J |.
The per-unit inertia and damping constants of unit j are
described by mj ∈ R>0 and dj ∈ R>0, whereas their
incremental changes computed at iteration step ν are denoted
by ∆mν+1 ∈ Rnj and ∆dν+1 ∈ Rnj . Note that we only
consider the virtual inertia and damping gains of converter-
interfaced generators as decision variables (i.e., control gains
to be tuned), and the parameters of SGs remain intact. More-
over, σνi ∈ R and ζνi ∈ R reflect the real part and the damping
ratio of the ith mode at iteration step ν.

To address all performance metrics listed in Section II-A,
we propose a sequential procedure comprising three consec-
utive optimization problems. This multi-step approach first
addresses the small-signal stability of the system, followed by
improving the worst-case damping ratio. Finally, the inertia
and damping are redistributed across the system such that the
total amount of additional control effort is minimized.

1) Step 1: Ensuring Small-Signal Stability: The first step
aims at restoring the small-signal stability of the system
by ensuring that the real parts of all eigenvalues become
negative, i.e., σi < 0,∀i ∈ N≤n. Let us define Φ1 :=
[mν+1, dν+1,∆mν+1,∆dν+1]T as the vector of optimization
variables at each iteration step. The problem can be formulated
as

min
Φ1,σν+1

σmax (13a)

s.t. ∀j ∈ J ,∀i ∈ N≤n,

σν+1
i = σνi +

∑
j∈J

∂σνi
∂dj

∆dν+1
j +

∑
j∈J

∂σνi
∂mj

∆mν+1
j ,

(13b)
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σν+1
i ≤ σmax, (13c)

dj ≤ dν+1
j ≤ dj , (13d)

mj ≤ mν+1
j ≤ mj , (13e)

∆djφ
d
j ≤ ∆dν+1

j ≤ ∆djφ
d
j , (13f)

∆mjφ
m
j ≤ ∆mν+1

j ≤ ∆mjφ
m
j , (13g)

∆dν+1
j = dν+1

j − dνj , (13h)

∆mν+1
j = mν+1

j −mν
j , (13i)

with the objective to minimize the real part (σmax) of the
rightmost (i.e., the most unstable) eigenvalue at each iteration
step, and [mT, dT]T ∈ R2nj

≥0 being the vector of decision
variables. Constraint (13b) iteratively computes the real parts
of all modes based on their previous values and the updates
arising from incremental step changes in m and d, while
(13c) is needed for achieving the aforementioned objective.
Inequalities (13d)-(13e) impose upper and lower bounds on
total inertia and damping at each node, whereas (13f)-(13g)
place limits on the permissible changes at each iteration;
φd ∈ Rnj and φm ∈ Rnj represent the normalization of
step size limits based on parameter sensitivities, which will
be further elaborated in Section III-E. Finally, (13h)-(13i)
declare the updated decision variables for the next iteration
step. The optimization ends once all modes become stable,
i.e., the condition σi < 0,∀i ∈ N≤n is met.

2) Step 2: Improving Damping Ratio: Once the system is
small-signal stable, the next step is to make sure that the worst-
case damping ratio is above a predefined threshold ζ ∈ R>0.
Apart from improving the damping ratio, limits are placed on
RoCoF and frequency nadir to ensure an acceptable frequency
response, which leads to the following problem:

min
Φ2,η

− cζζmin + cf
(
ηf1 + ηf2

)
+ cḟ

(
ηḟ1 + ηḟ2

)
(14a)

s.t. ∀j ∈ J ,∀i ∈ N≤n,
(13d)-(13i),

ζν+1
i = ζνi +

∑
j∈J

∂ζνi
∂dj

∆dν+1
j +

∑
j∈J

∂ζνi
∂mj

∆mν+1
j ,

(14b)

ζmin ≤ ζν+1
i , (14c)

Dν+1 =

∑
k∈K Pgkdk +

∑
j∈J Pgjd

ν+1
j∑

n∈N Pgn
, (14d)

Mν+1 =

∑
k∈K Pgkmk +

∑
j∈J Pgjm

ν+1
j∑

n∈N Pgn
, (14e)

∆Dν+1 = Dν+1 −Dν , (14f)

∆Mν+1 = Mν+1 −Mν , (14g)

∆fν+1
max = ∆fνmax +

∂∆fνmax

∂D
∆Dν+1

+
∂∆fνmax

∂M
∆Mν+1, (14h)

−∆f lim − ηf1 ≤ ∆fν+1
max ≤ ∆f lim + ηf2 , (14i)

− ḟ lim − ηḟ1 ≤ f0
∆P

Mν+1
≤ ḟ lim + ηḟ2 , (14j)

Mν+1

T
− Fg < Dν+1, (14k)

ηf1 , ηf2 , ηḟ1 , ηḟ2 ≥ 0. (14l)

Here, Φ2 := [ΦT
1 , ζ

ν+1,Mν+1, Dν+1,∆Mν+1,∆Dν+1,∆fν+1]T

and η := [ηf1 , ηf2 , ηḟ1 , ηḟ2 ]T are the vectors of optimization
and slack variables respectively, and ζmin represents the worst-
case damping ratio of the system to be maximized, with
cζ ∈ R>0 being the corresponding cost factor. Equality (14b)
defines the new damping ratios of all modes based on their
previous values and the corresponding updates of m and
k, whereas (14c) ensures achieving the targeted objective.
Constraints (13d)-(13i) from the first step still apply, with ad-
ditional expressions (14d)-(14l) imposing limits on frequency
metrics of interest discussed in Section III-B. In particular,
(14d)-(14g) define the total system inertia and damping as well
as the incremental changes between iterations, (14h) describes
the Taylor approximation of the nonlinear frequency nadir
constraint, (14j)-(14i) provide upper and lower bounds on
permissible RoCoF and frequency nadir magnitudes, and (14k)
ensures that the time instance of frequency nadir is positive.
Note that (14j)-(14i) are implemented as soft constraints, with
slack variables defined by (14l) and included in (14a), penal-
ized by factors cf ∈ R>0 and cḟ ∈ R>0. This optimization
is completed when the the damping ratios of all modes reach
a given threshold, i.e., ζmin ≥ ζ, while also ensuring that the
RoCoF and nadir conditions are satisfied.

3) Step 3: Reducing Control Effort: After achieving a
satisfactory dynamic performance in terms of metrics defined
in Section II-A, the goal of the final optimization step is
to reduce the total amount of inertia and damping in the
system without compromising the aforementioned dynamic
performance. This can be interpreted as a reduction of the
VSM control effort through redistribution of virtual inertia and
damping among different power converters, and formulated by

min
Φ2,η

cMM + cDD (15a)

s.t. ∀j ∈ J ,∀i ∈ N≤n,
(13d)-(13i), (14b)-(14k),

ζν+1
i ≥ ζ, (15b)

ηf1 , ηf2 , ηḟ1 , ηḟ2 = 0, (15c)

where cM ∈ R>0 and cD ∈ R>0 reflect the “price” of
control gains, (13d)-(13i) and (14b)-(14k) encompass the
system constraints from previous steps, and (15b) ensures
that the damping ratios stay above the minimum permissible
limit. In contrast to (14), the frequency constraints in (15)
are implemented as hard constraints, i.e., slack variables
ηf1 , ηf2 , ηḟ1 , ηḟ2 are set to zero, and normalization of step sizes
is neglected, i.e., φdj = φmj = 1,∀j ∈ J . The optimization
ends when the incremental change in aggregate values of
inertia and damping between 5 consecutive iteration steps
reaches a predefined lower bound ε = 10−4.

D. Uniform Optimization Problem

An alternative approach is to combine the objectives and
constraints of all three steps into a single “uniform” for-
mulation, which could potentially lead to a more effective
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allocation of virtual gains. Indeed, while employing different
and independent objectives for each stage of the multi-step
method effectively identifies the optimal parameters (i.e., the
local optimum) for that particular step, it can also yield a
suboptimal final solution compared to the uniform formulation.
For instance, in the first and second step (i.e., (13a) and
(14a) respectively) there is no cost associated with the amount
of inertia and damping being placed, which could lead to
unnecessarily high allocation of virtual inertia and damping.
Despite the reduction of the control effort in the third step,
the final distribution of virtual control gains can end up
significantly different compared to the uniform approach.

The uniform optimization problem can be formulated as
follows:

min
Φ2,η,ηζ

cζηζ + cf
(
ηf1 + ηf2

)
+ cḟ

(
ηḟ1 + ηḟ2

)
+ cMM + cDD

(16a)
s.t. ∀j ∈ J ,∀i ∈ N≤n,

(13d)-(13i), (14b)-(14l),

ζν+1
i + ηζ ≥ ζ, (16b)

ηζ ≥ 0. (16c)

The expressions (13d)-(13i) and (14b)-(14l) include previously
defined constraints, whereas (16b) introduces a relaxation of
the minimum damping ratio requirement, with cζ ∈ R>0 re-
flecting the cost of violating the respective limit and ηζ ∈ R≥0

being the new slack variable. Such formulation ensures that
once the criteria for the minimum damping ratio, RoCoF
and frequency nadir are met, the appropriate slack variables
become zero and stop affecting the objective function. At this
point, the only non-zero terms in (16a) pertain to the control
effort (i.e., virtual inertia and damping), which corresponds to
the final step of the multi-step formulation.

E. Sensitivity Computation and Solution Strategy

As mentioned previously, the eigensensitivities are nonlinear
and an iterative approach is used to compute the updates.
The system is linearized around the current parameter values
to obtain the state-space model from which the damping
ratios and their sensitivities are derived. For the simplified
model used in [13], it is possible to obtain the analytical
expressions for the specific sensitivities of the damping ratio.
However, when studying a realistic system with significantly
higher level of detail, obtaining the linearized system model
and the aforementioned sensitivities at each iteration is not
straightforward and can result in a high computational burden.
We overcome this issue by employing the Symbolic Math
Toolbox in MATLAB [32] and deriving a symbolic state-
space representation of the system. Note that this is done
only once, prior to initialization of the sequential program.
The eigenvalues and their respective sensitivities are then
numerically computed at each iteration and used to determine
the optimal updates of virtual control gains.

A flowchart describing the concept of the proposed iterative
algorithm can be found in Fig. 1. It should be noted that the
specific flowchart reflects only the second step (i.e., improve-
ment of the damping ratio) of the multi-step approach. At the

Linearization
validation

DAE model Linearization

Compute ζ̃ν

m∗ = mν

d∗ = dν
ζ̃ν ≥ ζ

|ζ̃ν − ζν | ≤ ε
∨

k ≤ kmax

Optimal
allocation

ν = ν + 1
k = 1

k = k + 1
∆mν,k = ∆mν,k/2
∆dν,k = ∆dν,k/2

mν = mν−1 + ∆mν,k

dν = dν−1 + ∆dν,k

k = 1
mν := mopt

dν := dopt
Compute ζν

ẋ = Ax+Bu
y = Cx+Du

ζ̃ν

yes

no
no

ζ̃ν

yes

mopt, dopt

mν , dν

yes

∆mν,k,∆dν,k

no

mν , dν

mν , dν

mν , dν , ζν

mν , dν

ζν

Fig. 1. Flowchart of the employed iterative procedure in the second step of
the multi-step approach.

start of each iteration, the set of nonlinear differential-algebraic
equations is linearized around the current parameter values
(mν , dν) by substituting the appropriate numerical values
into the symbolic state-space representation. Due to inherent
nature of the problem, it is possible that during the course of
optimization the update steps of the decision variables (i.e.,
control parameters) are too large, which would in turn imply
that the linearization equilibrium and the sensitivities used
to compute the updates are no longer valid. To counter this
problem, the following strategy is adopted. The damping ratios
ζ̃ν and their sensitivities are computed directly from the linear
model and are compared to the damping ratios ζν obtained
internally by the optimizer. If the difference between the two
is larger than a prescribed threshold ε, it indicates that the
changes in inertia and damping are too large for the current
linearization and the step size is reduced by half. This process
is repeated until the difference reaches a given threshold or
until the step size becomes too small (i.e., k = kmax). Once
the linearization is validated, the acquired damping ratios ζ̃ν

are compared against the threshold ζ. If ζ̃ν < ζ, the optimizer
computes the new allocation and the process continues until
the damping ratios meet the given criteria; otherwise the
optimization is completed.

As mentioned in Section III-C, another improvement to
the algorithm is introduced by continuously readjusting
the upper and lower bounds on incremental step changes
(∆mj ,∆mj ,∆dj ,∆dj) between iterations, based on the
damping ratio sensitivities represented by φdj ∈ R and φmj ∈
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Fig. 2. Topology of the investigated three-area test system.

R:

φmj =

∂ζmin

∂mj

max
j∈J

∂ζmin

∂mj

, φdj =

∂ζmin

∂dj

max
j∈J

∂ζmin

∂dj

. (17)

Such procedure assigns larger step limits to parameters with a
greater impact on the damping ratio. In particular, this ensures
that the virtual inertia and damping is added or removed
only at converters with a substantial influence on dynamic
performance of the system.

IV. RESULTS

A. Benchmark Test System

We first investigate the performance of the proposed opti-
mization algorithms on a modified version of the well known
Kundur’s two-area system, with an addition of one more area
forming a triangle depicted in Fig. 2. The modified system
comprises 6 generators, with the network, generation and load
parameters adapted from the original two-area system in [30].
The same test case has been previously used in other relevant
studies on placement and effects of inertia and damping in
low-inertia systems [13], [16], [17], [22]. To emulate different
system conditions, two test cases are considered: (i) a low-
inertia system with traditional SGs at nodes 1 and 5 and grid-
following converter-interfaced generation at the remaining four
generation nodes; (ii) a no-inertia system with a 100 % inverter
penetration, i.e., all six SGs replaced by VSC units. Nonethe-
less, only converters at nodes 1 and 5 are operating in grid-
forming mode, whereas the remaining VSCs are controlled as
grid-following units. As previously pointed out, we assume
that only the inertia and damping constants of converters
are controllable, with the initial VSC parameters taken as
m0
j = 0.5 s and d 0

j = 2 p.u. The minimum permissible
damping ratio is set at ζ = 10 %, whereas the thresholds
enforced on maximum RoCoF and frequency deviation are
ḟmax = 1 Hz/s and ∆fmax = 0.8 Hz. The system is subjected
to a disturbance ∆P , which is considered to be the worst-case
power deficit caused by the loss of a single generator. For the
purposes of this study it is assumed that the loss of generation
occurs at node 1. The upper and lower limits on incremental
changes of inertia and damping at each iteration step are set
to ∆mj = ∆dj = 0.5 and ∆mj = ∆dj = −0.5, respectively.

Several different case studies are conducted. Firstly, a com-
parison between the virtual gain allocations obtained for the

simplified model of a low-inertia system employed in [10],
[16], [17], [22] and the detailed model from [23] is presented.
Secondly, the performance of the two proposed problem
formulations on both test cases is investigated, together with
the impact of frequency constraints on final distribution of
virtual inertia and damping. Thirdly, the performance and
convergence properties of the iterative algorithm from Sec-
tion III-E are discussed. Finally, the proposed approach and
the underlying conclusions are validated on the 18-generator,
59-bus South-East Australian power network.

B. Simplistic vs Detailed Model

The goal of this case study is to demonstrate the need
for a detailed system modeling when tackling the allocation
of inertia and damping in a low-inertia system. First, the
uniform optimization problem (16) is solved for the low-
inertia test case described by the simplified model used in
[10], [16], [17], [22]. Subsequently, the obtained allocation
of inertia and damping is applied to the detailed model, with
the corresponding eigenvalue spectrums of the most critical
modes depicted in Fig. 3. The shaded region indicates the
root loci area where the damping ratio is above the predefined
threshold of 10 %. It is clear that the dynamic properties of a
full-order model are not completely preserved in a simplified
model, indicated by several modes having an unsatisfactory
damping ratio. In other words, while results of the proposed
algorithm meet the targeted objectives when applied to a
reduced-order system, the achieved dynamic characteristics do
not necessarily translate to a more realistic model, therefore
diminishing the effectiveness and practicality of studies em-
ploying simplistic system representation used in [13].

C. Uniform vs Multi-Step Optimization

Here, we analyze the performance of the two optimization
approaches presented in Section III, applied to both low- and
no-inertia test cases. To gain a better understanding of the
sequential nature of the multi-step approach, we first study the
outcome of each individual optimization step (13)-(15), with
the respective distribution of inertia and damping illustrated in
Fig. 4 for the low-inertia case.

The algorithm is capable of bringing the system to stable
operation by adding small amounts of inertia and damping at
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Fig. 3. Eigenvalue spectrum close to imaginary axis of the reduced- and
full-order models for the identical inertia and damping allocation.
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Fig. 4. Distribution of inertia and damping through multi-step optimization.

nodes 6 and 9, justified by the fact that controller states asso-
ciated with VSCs at those nodes have the highest participation
in the unstable modes. However, the dynamic performance of
the system does not meet prescribed requirements due to low
damping ratios and high values of RoCoF and frequency nadir.
Therefore, in the next step, a considerable amount of inertia
and damping is placed at every node with converter-interfaced
generation, which resolves the aforementioned issues. Finally,
Step 3 reduces the total amount of virtual inertia and damping
by readjusting the control gains of all four VSCs, while still
meeting the necessary frequency and damping ratio criteria.
The optimizer reduces inertia and damping at nodes that have
low or even negative sensitivities and redistributes it to nodes
with a larger impact on the system damping ratio.

We can now compare the performance of the multi-step op-
timization to that of the uniform formulation. The eigenvalue
spectrums in Fig. 5 indicate that the system is unstable at
the start of the optimization (corresponding to the original
allocation). Nevertheless, both formulations are capable of
restoring stability and achieving satisfactory damping ratios
and frequency response. Moreover, the total amount of virtual
inertia and damping used by the two approaches remains the
same, with the individual allocation differentiating between the
two methods1. This suggests that the frequency requirements,
precisely RoCoF limit, act as binding constraints and impose a
minimum aggregate inertia constant. Interestingly enough, in
contrast to the multi-step approach and the addition of damp-
ing at all converter nodes, the uniform formulation increases
virtual damping of only one VSC in each area, namely at nodes
2, 6 and 10. In general, the final inertia placement is such that
the aggregate inertia in different areas is approximately the
same. This qualitatively matches the results obtained in [13]
and [22], where the distribution of inertia is similarly even
across different areas. However, no such correlation can be
made for the allocation of virtual damping.

Fig. 6 showcases the performance of the two algorithms

1The inertia and damping at nodes 1 and 5 remain intact due to the fact
that only SGs are connected at these buses.
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Fig. 5. Comparison of uniform and multi-step formulation applied to a low-
inertia system: critical eigenvalue spectrum (top) and allocation of inertia and
damping (bottom).

under the no-inertia scenario, with the differences between
the two allocations being more pronounced. Indeed, the multi-
step approach yields a more even distribution of inertia but in
turn employs more virtual damping. The underlying reason
for such discrepancy lies in the problem formulation. In the
multi-step approach, the cost for inertia and damping is only
included in the final step, which resembles the most the
optimization formulation of the uniform method. However, this
also suggests that the starting point (and hence the computed
sensitivities of interest) of the two algorithms will be different
prior to the final step. In particular, due to no explicit cost
for virtual control gains in the objective functions (13a) and
(14a), the solution of the first two sequences of the multi-
step approach will reach a local optimum with a substantially
higher installation of inertia and damping. On the other hand,
the uniform formulation ensures that at each iteration only the
minimum (i.e., necessary) amount of virtual gains is added to
meet the prescribed system-level constraints. This might result
in an uneven allocation of the parameters across the system,
as shown in Fig. 6, but it can easily be resolved by including
an additional cost to promote the even distribution of inertia
and damping.

Another distinction in the outcomes of the two approaches
is the placement of critical modes. In the multi-step approach,
the critical eigenvalues are placed at the boundary of the
shaded region, i.e., their damping ratios are close to the
predefined threshold, whereas the uniform optimization results
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Fig. 6. Comparison of uniform and multi-step formulation applied to a no-
inertia system: critical eigenvalue spectrum (top) and allocation of inertia and
damping (bottom).

in critical modes being well within the shaded region. Due to
the nature of the proposed problem formulation, the first few
iterations of the multi-step approach focus on improving the
frequency constraints, while the uniform method prioritizes
the improvement of the damping ratio. Consequently, using
the multi-step formulation the frequency criteria is met within
fewer iterations compared to its uniform counterpart, and once
the damping ratio is sufficiently high the optimization ends.
In contrast, in the uniform approach the damping ratio criteria
is satisfied first, with the optimization procedure continuing
until the frequency limits (RoCoF in particular) are met. This
results in higher final values of the damping ratios, as they are
gradually increased over the course of remaining iterations.
Nonetheless, such properties are not observed in the low-
inertia test case (see Fig. 5) due to higher amount of inertia
present in the system at the initialization stage, leading to
lower RoCoF and frequency nadir values at the start of the
optimization.

Even though the uniform approach has a more generic
problem formulation, there are applications for which the
multi-step method would be more useful. For instance, the
multi-step approach can identify the key parameters of interest
for achieving different objectives. This information could
also be used for potentially selecting other decision variables
for different optimization steps. However, for the sake of
simplicity, only the uniform approach will be studied in the
remainder of the paper.

D. Impact of Frequency Constraints on Dynamic Performance

The impact of frequency-related constraints, namely the
limits on maximum permissible RoCoF and frequency nadir,
on the final solution is investigated by applying the uniform
optimization problem to the same two test cases, with and
without the inclusion of frequency constraints in (14i)-(14k).
It can be noticed in Fig. 7 that the total amount of inertia and to
some extent damping placed in the network is lower when the
RoCoF and frequency nadir constraints are not considered and
the reduction is more pronounced in the no-inertia test case.
This is primarily due to the removal of the maximum RoCoF
requirement, i.e., the minimum level of aggregate inertia
needed in the network. In particular, the sensitivity of the
minimum damping ratio to inertia and damping is in general
of opposite sign, with the former being negative and latter
being positive, which implies that the prescribed damping
ratio criteria could be met by simultaneously reducing virtual
inertia and damping gains at certain nodes. This indicates
that in converter-dominated power systems the allocation of
inertia is mostly influenced by the RoCoF constraint, whereas
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Fig. 7. Impact of frequency constraints on allocation in the low-inertia test
case (left) and the no-inertia test case (right).
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Fig. 8. Comparison of frequency response after a disturbance for the
cases with and without frequency constraints; thin lines represent individual
generator frequencies, whereas thick lines denote the respective CoI frequency
response.

the damping distribution is more relevant for preserving the
frequency nadir within thresholds and improving the critical
damping ratio.

Finally, the results of enforcing explicit limits on frequency
metrics of interest can be observed in the system response
following a disturbance, visualized in Fig. 8. The frequency
response is significantly improved with the inclusion of fre-
quency constraints, evidenced by lower values of RoCoF,
frequency nadir and the steady-state frequency error, which
is a direct consequence of the increased levels of inertia and
damping present in the network. Moreover, it is noticeable that
the RoCoF limit again poses as the binding constraint, with the
frequency nadir being within prescribed bounds even for the
optimal allocation scenario without the inclusion of frequency
limits.

E. Algorithm Performance and Convergence Properties

The performance of the uniform method on a low-inertia test
case, as well as the impact of imposing frequency constraints,
can be studied in more detail by observing the appropriate
metrics given in Table I. As previously discussed, the original
system has low levels of aggregate inertia and damping and is
small-signal unstable, indicated by the negative value of ζmin.
Additionally, the values of RoCoF and frequency nadir exceed
the predefined thresholds and the system norms2 are partic-
ularly high, suggesting an unacceptable frequency response
in case of a disturbance. Note that the H∞ norm has been
computed using the bisection method presented in [26].

By solving the optimization problem with frequency con-
straints, the total amount of inertia and damping in the system
increases by 52 % and 316 %, respectively, which results in
the worst-case damping ratio reaching the exact predefined
threshold of 10 %. Moreover, the values of RoCoF and nadir
are now within their acceptable limits, with RoCoF being at the
prescribed boundary. As a consequence, the H2 and H∞ gains
are substantially lower compared to their initial values. On the
other hand, when the frequency constraints are not considered,
the system inertia and damping increase by 8 % and 173 %
respectively. While the total amount of employed virtual gains

2Since the original system is unstable (resulting in ‖G‖2 = ‖G‖∞ =∞),
the system norms for this case are computed after employing the first stage
of the multi-step formulation, i.e., bringing the system to stability.

TABLE I
COMPARISON OF SYSTEM PERFORMANCE METRICS FOR THE LOW-INERTIA

TEST SYSTEM AND LOSS OF SG AT NODE 1.

Metric Original w/ f -const. w/o f -const.
Inertia [MWs2] 66.8 101.5 72.3

Damping [MWs] 23 95.8 62.9

ζmin −0.01 0.1 0.1

|ḟmax| [Hz/s] 1.59 1 1.4

|∆fmax| [Hz] 2.17 0.58 0.76

H2 gain 18.8 1.07 1.87

H∞ gain 3.71 0.76 1.11

is lower in this case, the maximum RoCoF is unacceptably
high and the H2 and H∞ norms have larger values, thus
suggesting a necessary trade-off between the control effort and
dynamic performance.

Finally, we study the numerical characteristics and conver-
gence of the proposed algorithm. The sensitivities of the worst-
case damping ratio with respect to virtual inertia and damping
constants of converters are highly nonlinear, illustrated by the
evolution of respective sensitivities over iterations in Fig. 9.
The oscillatory behavior justifies the need for adaptive step
sizing of parameter updates and the techniques mentioned in
Section III-E. Another key inference is that the sensitivity
of the damping ratio to inertia is in general negative and
smaller in magnitude compared to the positive sensitivity to
damping, which further supports the claim that damping is
a more relevant control gain of the two for improving the
damping ratios in the system.

The progressive iterative improvement of the worst-case
damping ratio and the value of the H2 gain during the course
of optimization are presented in Fig. 10. An important observa-
tion is that the rate-of-change of the worst-case damping ratio
varies considerably as a direct consequence of the oscillatory
nature of sensitivities from Fig. 9. Moreover, the increase in
the damping ratio and the reduction of RoCoF and frequency
nadir lead to a more desirable frequency response, which in

Fig. 9. Sensitivity evolution of the worst-case damping ratio to virtual inertia
and damping parameters of individual converters over iterations.
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Fig. 10. Evolution of the worst-case damping ratio and H2 norm over
iterations.

turn contributes to the improvement of system norms. This
validates the claims pertaining to similarities between improv-
ing the damping ratio and system norms raised in Section II,
since maximizing the damping ratio while simultaneously
limiting the frequency response metrics achieves a similar
target as directly minimizing the H2 and H∞ norms in [22].
However, the proposed approach imposes lower computational
requirements and can be directly applied to realistic low-inertia
systems. Further inspection of Fig. 10 reveals that during the
last 15 iterations the worst-case damping ratio and the H2

norm are fairly constant. This segment indicates the process
of inertia and damping redistribution, i.e., the minimization of
the employed control effort.

As far as the computational time of the algorithm is
concerned, it takes around 1 second to complete a single
iteration of the uniform approach and the optimization is
completed after 163 iterations, leading to an overall run time
of approximately 3 minutes. The algorithm ends when all the
limits are satisfied and there are no more changes occurring
in the decision variables. Although only the run time of
the uniform approach is reported, the multi-step approach
also converges within a similar time frame. All tests were
conducted in MATLAB on a standard laptop computer with
16 GB of RAM and a 4-core i7-8565U CPU.

F. South-East Australian Test Case

Having gained fundamental understanding of dynamic in-
teractions between different types of generators in a simplistic
test environment, we extend the analysis to an 18-generator,
59-bus South-East Australian system [33], [34] shown in
Fig. 11. This network represents a long, linear system as
opposed to the more tightly meshed networks found in Europe
and the United States. For convenience, it has been divided
into 5 areas, with areas 1 and 2 being closely electrically
coupled. Therefore, there are in essence 4 main regions,
namely South Australia (area 5), Queensland (area 4), Victoria
(area 3) and New South Wales (subsuming areas 1 and 2),
and hence 3 inter-area modes are present. Beside its string
topology, the system is characterized by the weak coupling
between South Australia and the rest of the system. The model
employed in this work considers the light loading scenario
provided in [34], [35].

Moreover, for the purpose of this work, the model presented
in [35] was modified to obtain a low-inertia case study by
replacing synchronous generators located at buses 301, 302,
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Fig. 11. Modified South-East Australian power system line diagram.

308, 314, 501, 502 and 503 by grid-following VSCs of iden-
tical power rating. This yields a total of 7 converter-interfaced
generators operating in grid-following mode and 11 conven-
tional SGs, representing the default test case for our analysis.
Such modeling choice is based on the high penetration of
renewable generation in the real-world system, particularly in
area 5, that does not provide standalone frequency support
[18], [36]. Note that the default test case comprises all-
inverter-based areas 5 and 3, corresponding to South Australia
and Victoria. Furthermore, the initial VSM parameters of
converter-interfaced generators are set to m0

j = 0.5 s and
d 0
j = 4 p.u.. Similar to the previous case studies, only the

inertia and damping gains of converters are assumed to be
controllable. In order to achieve a severe system disturbance,
the critical contingency considered in this case is the loss of
approximately 20 % of the total generated power.

Based on the previous conclusions, only the uniform ap-
proach is considered for optimization, with the corresponding
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Fig. 12. Performance of the algorithm on the South-East Australian system:
critical eigenvalue spectrum (top) and allocation of inertia and damping
(bottom).

critical eigenvalues and the distribution of inertia and damping
depicted in Fig. 12. It can be seen that the system has a number
of critically under-damped modes in the initial state and the
algorithm successfully ensures that all critical eigenvalues have
a damping ratio of at least 10 %. Finally, Table II shows the
values of different metrics at the start and the end of the
optimization run. Apart from the damping ratios reaching the
specified limit, it can also be seen that the values of RoCoF
and nadir are now within the limits.

In terms of computational time, it takes around 8 seconds
to complete one iteration of the algorithm and the overall
optimization converges (i.e., there are no further changes in the
values of inertia and damping) after 200 iterations, leading to
an overall run time of approximately 27 minutes and thereby
showing that the algorithm scales well. It is important to note
that the number of iterations required for the optimization to

TABLE II
COMPARISON OF SYSTEM PERFORMANCE METRICS FOR THE LOW-INERTIA

TEST SYSTEM AFTER A POWER LOSS OF 20 %.

Metric Original Final
Inertia [MWs2] 498 539

Damping [MWs] 166 561

ζmin 0.002 0.1

|ḟmax| [Hz/s] 1.06 1

|∆fmax| [Hz] 1.38 0.54

converge highly depends on the initial state of the system.

V. CONCLUSION

In this paper, we improve the dynamic performance of
an inverter-dominated power system by optimally allocating
virtual inertia and damping across the network. We tackle
this problem by formulating an optimization problem based
primarily on the sensitivities of damping ratios to inertia
and damping constants of individual generators. Moreover,
we consider several additional performance metrics such as
the frequency nadir, RoCoF and small-signal stability, and
incorporate them as explicit constraints into two concep-
tually different iterative problem formulations. Furthermore,
improvements in terms of accounting for the multi-objective
nature of the problem, computational efficiency and adaptive
step-size adjustments have also been made.

The results indicate that the simplified system models,
commonly used in the literature, do not accurately capture
the dynamics of a power system with both conventional and
converter-interfaced generation. In other words, a detailed
representation of low-inertia grids is needed when dealing
with inertia and damping allocation problems, which poses
issues for the existing methods based on minimizing system
norms. While conceptually different, both proposed formula-
tions provide meaningful results and insightful observations
in terms of the overall impact of different VSM control
gains and frequency-related constraints on system dynamics.
However, due to its more generic formulation and multifaceted
objective function, we conclude that the uniform approach is
the preferred method of the two. Moreover, we show that by
improving the worst-case damping ratio and constraining the
frequency metrics of interest, the algorithm also achieves a sig-
nificant reduction in H2 and H∞ norms, therefore combining
the objectives and targets of various studies in the literature
within a single optimization problem.
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framework for assessing renewable integration limits with respect to
frequency performance,” IEEE Trans. Power Syst., vol. 33, no. 4, pp.
4444–4453, July 2018.

[34] M. J. Gibbard and D. J. Vowles, “Simplified 14-generator model of the
se australian power system,” 2010.

[35] A. Moeini, I. Kamwa, P. Brunelle, and G. Sybille, “Open data ieee test
systems implemented in simpowersystems for education and research in
power grid dynamics and control,” in 2015 50th International Univer-
sities Power Engineering Conference (UPEC), Sep. 2015, pp. 1–6.
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2015. He is currently a Lecturer in Sustainable
Power Systems at the Cyprus University of Tech-
nology. His research interests include power system
dynamics, control, and simulation.

Gabriela Hug (S’05-M’08-SM’14) was born in
Baden, Switzerland. She received the M.Sc. degree
in electrical engineering in 2004 and the Ph.D.
degree in 2008, both from the Swiss Federal Institute
of Technology (ETH), Zurich, Switzerland. After the
Ph.D. degree, she worked in the Special Studies
Group of Hydro One, Toronto, ON, Canada, and
from 2009 to 2015, she was an Assistant Professor
in Carnegie Mellon University, Pittsburgh, PA, USA.
She is currently an Associate Professor in the Power
Systems Laboratory, ETH Zurich. Her research is

dedicated to control and optimization of electric power systems.

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 18,2021 at 09:29:15 UTC from IEEE Xplore.  Restrictions apply. 


