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Abstract—While distribution networks (DNs) turn from con-
sumers to active and responsive intelligent DNs, the question of
how to represent them in large-scale transmission network (TN)
studies is still under investigation. The standard approach that
uses aggregated models for the inverter-interfaced generation
and conventional load models introduces significant errors to
the dynamic modeling that can lead to instabilities. This paper
presents a new approach based on quantile forecasting to
represent the uncertainty originating in DNs at the TN level.
First, we aquire a required rich dataset employing Monte Carlo
simulations of a DN. Then, we use machine learning (ML)
algorithms to not only predict the most probable response but
also intervals of potential responses with predefined confidence.
These quantile methods represent the variance in DN responses at
the TN level. The results indicate excellent performance for most
ML techniques. The tuned quantile equivalents predict accurate
bands for the current at the TN/DN-interface, and tests with
unseen TN conditions indicate robustness. A final assessment
that compares the MC trajectories against the predicted intervals
highlights the potential of the proposed method.

Index Terms—Active distribution network, frequency stability,
dynamic equivalents, Monte Carlo simulation, quantile forecasts

I. INTRODUCTION

In the last decade, increasing PV generation and smart loads
have turned distribution networks (DNs) from passive elements
that only consume power into active, intelligent grids that
support the transmission network (TN) operation. Literature
on different control strategies to enable grid support from de-
centralized units is widely available [1]. However, the question
of how to aggregate and represent these inverter-interfaced
devices in TN level studies is still under investigation [2, 3].

Recent literature explores various techniques to approach
the aggregation of inverter-interfaced units in large-scale TN
studies. The authors in [4, 5] propose a generic gray box
model that consists of a composite load model and inverter-
based generation (IBG) in parallel. They employ simple
identification techniques to arrive at seventh-order state-space
representations. An advanced gray box model is developed
in [6], where elaborate models that include detailed repre-
sentations of protection and support functions are employed
for the DN components to formulate dynamic equivalents.
While all the literature above focuses on large disturbance and
voltage stability, an extension for frequency stability studies is
provided in [7]. The authors design a closed-loop identification
approach that captures the continuous interaction between the
TN and decentralized PV resources. The method is suitable

for low inertia systems. However, all of these equivalents are
only valid for the operating point they were designed for, and
only [6] assesses the uncertainty imposed by DNs on the TN
level in the derivation of dynamic equivalents [8].

Black box algorithms trained with machine learning (ML)
techniques are another approach for aggregating DNs. The
authors in [9] utilize a recurrent neural network (NN) to
represent all active resources within a DN and connect it at
the TN/DN interface. Batteries are included in [3] where two
parallel NNs, one for active and one for reactive power, predict
the response of distributed batteries at the TN level. However,
both studies use small datasets for training and only provide a
qualitative assessment instead of quantitative comparison and
evaluation of several models. While [3] includes frequency
and voltage disturbances in the training set, the uncertainty
originating from DN parameterization and initial conditions is
not reflected in the trained models.

This work addresses the aforementioned shortcomings and
proposes the use of ML-based quantile forecasting for creating
robust dynamic equivalents for representation of DN in time-
domain simulations and stability studies of low-inertia systems
at the TN level. In contrast to point forecasts, which are
deterministic and predict the most probable value, quantile
forecasts produce predictions with different probabilities and
are capable of representing the uncertainty of the data set.
A confidence interval for the quantity of interest is hence
obtained by combining two different quantile forecasts. While
they have been considered in the context of price forecasting,
voltage control, and flexibility quantification [10–12], the
quantile forecasts, to the authors’ knowledge, have not been
used for dynamic equivalents of DNs.

First, we generate a large dataset using Monte Carlo (MC)
simulations for a test DN subject to a load step at the TN
level. The dataset consists of 1000 time-series for different
frequency disturbances (i.e., load steps) and DN parameteriza-
tions (i.e., load and generation model parameters and operating
conditions). Besides employing detailed support and protection
functions for IBGs, detailed models of active thermal loads
(ATLs) are also included. Second, we comprehensively select,
tune, and train point forecast algorithms with the aim of
predicting the current at the TN/DN-interface in reaction to
a load step. To this end, we consider and compare different
ML regressors like linear regression, elastic net regression,
gradient boosting trees, and neural networks. Finally, we tune
their quantile versions to predict the current at the TN/DN-
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Fig. 1. Overview of the proposed structure for the ADN equivalent in
transmission grid stability studies.

interface within a given confidence interval. Besides testing
the obtained equivalents on the TN parameterization they were
trained for, we subject them to other TN conditions and assess
their robustness. Finally, the current bands obtained with the
tuned ML-based quantile dynamic equivalent are compared to
the responses of the MC dynamic simulations.

The remainder of this paper is structured as follows: Sec-
tion II details the proposed process for tuning and using
quantile dynamic equivalents. Then, Section III describes
the process of generating a rich dataset with MC dynamic
simulations on a detailed DN. Section IV details the tuning,
testing, and evaluation of the point forecast algorithms, while
in Section V, the quantile predictors are trained and evaluated.
Two additional assessments are performed in Section VI. First,
the quantile equivalents are tested on a dataset generated with a
weak TN equivalent. Then, the current bands obtained through
ML-based quantile forecasts are compared to the initial MC
simulation results. Section VII concludes the paper.

II. OVERVIEW OF THE PROPOSED QUANTILE DYNAMIC
EQUIVALENTS

This study aims to develop dynamic equivalents capable of
representing DNs in TN stability studies while capturing the
uncertainty originating inside the DN. In modern DNs, several
sources of uncertainty exist. For instance, model parameters
are typically inaccurate, especially for load and renewable gen-
eration modeling. In addition, the initial operating conditions
of the DN and the load and generation powers are typically
uncertain. Finally, some grid codes only specify boundary
conditions for protection and control parameters instead of
specific setting values [6, 13, 14].

One way of coping with the uncertainty is to use aver-
aged gray box models [6]. However, the resulting dynamic
equivalents only provide a mean response. In reality the actual
system behavior can differ from the mean. In the worst case,
the resulting analysis using such models might be optimistic,
leading to insecure system operation. To address this issue,
the presented work proposes the use of quantile models that
build an interval of potential responses in addition to the mean
behavior.

For tuning the underlying ML algorithms, suitable time-
series are required. Measured data from actual DNs are one
option. Unfortunately, such data is usually biased, including
mostly stable cases. However, it is of utmost importance to

train ML models on a rich dataset, especially in the case of
NNs. Thus, the considered problem requires data for cases
with severe, rare disturbances. In this study, MC dynamic
simulations on a detailed DN model are performed to obtain
time-series for different frequency events and a significant
number of events that trigger unit protections is included.

The proposed process is summarized in Fig. 1. First, a MC
simulation is used on a DN model with randomly selected
parameters. Based on this generated conditions, time-series
of frequency and voltage response are generated based on
dynamic simulations for different events that excite a dynamic
response. In the next stage, the generated time-series data are
used to train quantile forecasting models based on voltage
and frequency data. The trained quantile dynamic equivalent
produces three separate time-series for the DN current i at
the point of common coupling (PCC) per disturbance. While
one of them predicts the most probable (P = 0.5) behavior, the
remaining two estimate a lower and upper bound with selected
confidence, e.g. 90 % as shown in Fig. 1. These quantile
current bands could be employed in TN stability studies and
result in frequency and/or voltage bands that represent the DN
uncertainty at the TN level.

III. GENERATING TIME-SERIES

In this section, the modeling of the DN components and
the uncertainty of the DN model is described. Then, the
methodology for obtaining the time-series used for the training
phase is showcased.

A. Grid Model

The employed grid model is based on [8], which has been
extended for this work. Standard models are used for the lines,
transformers, induction motors, and synchronous machines.
For the IBGs and ATLs, recently developed models that com-
ply with modern grid support requirements are used [13–15].

1) Lines: Under the phasor approximation, the grid is
modeled with the following system of algebraic equations
i = Y v, where i represents the vector of complex current
injections at the system nodes and v is the vector of nodal
voltage phasors. The admittance matrix Y includes the line
and transformer impedances at nominal frequency fn. Note
that all lines and potential transformers are modeled with
standard Π-equivalents as described in [16].

2) Background Load: Each DN node might connect differ-
ent types of load and generation. While ATLs and IBGs are
modeled separately, all other load and generation is lumped
into a background load model. This generalized background
load consists of a static and a dynamic component. While
the former part is modeled by an exponential load model
[16], a single case induction machine (IM) with third-order
formulation represents the latter [16].

Unlike [8], where the ATL power and initial load per node
P0 are assumed to be known, in this study, only the latter is
known while the load distribution among thermal, static, and
dynamic load is uncertain. Thus, the initial static background
load power Pl,0 is formulated as:

Pl,0 = (1− fim − fatl) · P0, (1)
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Fig. 2. Overview of the thermal load model. Blocks that deviate from the
IBG model are highlighted.
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Fig. 3. Overview of the detailed inner thermal load model.

where fim and fatl are the initial load shares of the IM and
ATL, respectively.

3) Active Thermal Loads: The ATL model represents var-
ious compressor-based thermal loads, like heat pumps, refrig-
eration, and air conditioning devices. While it ignores the
switching of the internal power electronics, it captures the
primary behavior of the devices. Figure 2 provides an overview
of the outer control and protection layer. Besides incorporating
the latest grid support and protection functions required by
modern grid codes, the inherent dynamics of the thermal load
are considered in detail.

The inner ATL model, marked by the blue block in Fig. 2
and detailed in Fig. 3, captures the inverter, motor, and thermal
load dynamics as well as their various controls. While fast con-
trols like the rectifier and inverter controls are implemented,
the temperature control loop is omitted. The latter time scales
range in hours, while those of interest for this study range in
seconds. Refer to [8] for a detailed model description.

Unlike the implementation in [8] where most ATLs share the
same nominal power Sb, in this implementation, it is adjusted
by the load factor LF to consider different initial loading
conditions of the ATLs during MC simulations. The base
power Sb of the ATL is adjusted according to Sb = fatlP0/LF,
where the load factor is randomly chosen.
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Fig. 4. Overview of the IBG model. Blocks that are different from the ATL
implementation are highlighted.

4) Distributed Generation: Like the ATL model, the IBG
model complies with modern grid codes and implements
complementary protection and grid supporting functions. Fig-
ure 4 provides an overview of the grid-level controls and
protections. Despite the similarities, there are some particular
differences: while the ATL model only manipulates its active
power consumption to aid voltage and frequency, the IBG
model also supports the grid through reactive power control.
To this extent, reactive power control priority and a block that
updates the limits for reactive and active power are included.

The inner IBG model, marked in green in Fig. 4, only
considers the outer loop dynamics of its controllers. Therefore,
it assumes good tracking performance of the current control
and neglects the fast internal dynamics. The inverter current
is assumed to follow a first-order transfer function [6]. The
active and reactive current references are computed from
the active and reactive power setpoints. They are altered
by the various outer control and protection functions. The
implemented model complies with [13–15] and is described
in detail in [8].

5) Transmission Grid Equivalent: To capture frequency
dynamics, an equivalent synchronous machine (SM) model is
used as the TN equivalent. The SM is incorporated with a
fifth-order model [16] and connected to the TN/DN-interface
via an additional line for adjusting the short-circuit power and
R/X-ratio of the respective TN. In addition, the governor is
represented by the standard IEEE TGOV1 model from [17],
with T2 = T3 = 0, and the minimum and maximum voltages
are set to Vmin = 0 p.u. and Vmax = 1 p.u., respectively. The
standard IEEE AC1A model from [18] is employed for the
exciter.
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TABLE I
VARIATION OF PARAMETERS.

Active Thermal Load Induction Machines

PLL delay τpll [0.05, 0.1] s Stator resistance rs [0.03, 0.13] p.u.
Power control

[0.01, 0.03] s Rotor resistance rr [0.03, 0.13 p.u.
time constant τp Magn. inductance lm [2.5, 4] p.u.
Inertia constant H [0.03, 0.5] s Stator inductance ls [0.07, 0.15] p.u.
Friction constant b [0.0005, 0.002] p.u. Rotor inductance lr [0.06, 0.15] p.u.
Input resistance rt [0.005.0.05] p.u. Inertia constant H [0.2, 1] s
Input impedance lt [0.1, 0.9] p.u. Load factor LF [0.4, 0.6]
Anchor resistance ra [0.01, 0.1] p.u. Power factor cosϕ [0.85, 0.95]
Initial share fatl [0.01, 0.4] Initial share fim [0, 0.2]
Load factor LF [0.3, 1.3] p.u.

IBG Units Static Loads

PLL delay τpll [0.05, 0.1] s Load exponent α [1, 2]
Current control

[0.01, 0.03] s Load exponent β [1.5, 3]
time constant τi
Ramp limit dip

dt [0.2, 0.5] p.u.
s
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Fig. 5. Overview of the applied and adjusted CIGRE 18 Bus test case. Initial
generation per node is given in green, while the initial nodal consumption
including static, thermal and dynamic loads is provided in black.

B. Capturing Uncertainty

One of the key aims of this study is to use quantile dynamic
equivalents to represent the uncertainty caused by ADNs in TN
stability studies. Thus, several of the ATL model parameters
(i.e. motor inertia, friction constant, anchor resistance, outer
control loop parameters) are included in the uncertainty set.
The inner control loops are significantly faster and thus are not
included in the uncertainty set. Similarly, the outer control loop
and protection parameters of the IBGs are assumed uncertain
as proposed in [6, 8, 19].

In addition to parametric uncertainty, the initial operating
point also introduces uncertainty. This study considers one
operation point, assuming the initial nodal load is known.
However, the initial load distribution is varied, i.e., the share of
static, dynamic, and thermal load consumption. In addition, the
load factor of the ATLs is also included in the set of uncertain
parameters.

Table I provides an overview of all parameters of the uncer-
tainty set and their respective ranges. The initial thermal load
share relates to realistic ranges for German load data [8, 20].
Since the statistical distribution of the uncertain parameters
is unknown, a uniform distribution is assumed during MC
simulations as suggested in [21].

C. Obtaining the Time-Series

The required time-series are obtained by MC dynamic simu-
lations on the CIGRE European 18 bus residential low voltage
network published in [22]. First, the modifications of the test
system and the considered test cases are discussed. Then, the
implementation and obtained time-series are presented.
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Fig. 6. Generated data: 1000 time domain simulations with ten different load
step changes and 100 sets of random parameters for the strong grid case.

1) Test System: All line, transformer, and grid equivalent
parameters are taken from [22] and the loads are reduced to
50% of the initial loading, keeping the nodal voltages within
∆V = ±0.1 p.u. bounds. The initial load and generation per
node are stated next to the corresponding node in Fig. 5.
While the load distribution varies per MC simulation, the
PV generation remains constant. Note that all ATL and IBG
units operate at unity power factor. The protection and support
settings comply with [15] and are listed in [8].

The equivalent TN corresponds a strong grid with a short-
circuit power of 150 MVA and 6 s of inertia. The equivalent
SM nominal power equals that of the transformer connecting
the DN. Thereby, uncertainty in the DN is reflected in TN
quantities like the system’s frequency. It is similar to assume
that the TN connects several DNs in parallel that all respond to
a TN disturbance in the same fashion. A constant power load
is connected to the TN bus for simulating load step changes.

For each MC simulation, the parameters are drawn from
the ranges in Table I. One MC simulation set contains 10
different frequency events. In other words, each parameter set
is subjected to ten load steps ranging within ∆Pl = ±225 kW.
Overall, 100 parameterizations are drawn, resulting to 1000
time-series for ML training and testing. The load step always
occurs at t = 2 s and simulations are executed for 12 s.

2) Implementation: The test system and corresponding
models are implemented in the dynamic simulation software
PyRAMSES [23]. All models have been validated in [6, 8].
The sampling time for a time-series varies since a variable
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Fig. 7. Boxplot of the absolute maximum (from top to bottom) frequency
deviation, ROCOF, active and reactive current deviations for the ten different
load step changes and 100 random parameter sets.

step-size solver is employed for the simulations. Thus, each
of the 1000 time-series contains between 500 and 2000 points.

3) Overview of Obtained Time-Series: An overview of the
1000 obtained time-domain simulations is provided in Fig. 6,
where v is the voltage magnitude at bus 1 (PCC), ω is the TN
equivalent’s frequency, and ip and iq represent the active and
reactive current across the TN/DN-transformer. Note that the
current is positive if flowing from the TN into the DN.

The variance present in the time-series is indicated in
Fig. 7. It contains boxplots of the maximum absolute fre-
quency deviation |∆f |max, the maximum absolute ROCOF
|df |max, as well as the absolute maximum active and reactive
current deviations, |∆ip|max and |∆iq|max, for each load step
|∆Pl|. Except for the ROCOF, which generally shows small
deviations from its average, the variance in frequency and
current deviations increases significantly for larger load steps.
The asymmetric behavior for under- and overfrequency events
mainly stems from the asymmetric protection settings required
by the considered grid code [15].

IV. POINT FORECASTS

This sections discusses several point forecast ML algorithms
and introduces multiple quantification scores to compare
the algorithms. Moreover, the feature selection and hyper-
parameter tuning techniques for each algorithm are presented.

Open loop configuration Closed loop configuration

Machine Learning
Algorithm
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p

∆it−n
q

∆îtp

∆îtq

Machine Learning
Algorithm

∆vt−n

∆ωt−n

∆îtp

∆îtq

Fig. 8. Different configurations: open loop (left) is used during training and
closed loop (right) during validation and testing. Note that n > 0 must hold
for the current features.

A. Methods

Different ML methods are implemented and tuned to iden-
tify the best algorithms for the problem under consideration:
Linear regression (Linreg), regularized linear regression (El-
net), support vector regression (SVR), gradient boosting trees
(GBTs), and neural networks (NNs). Since preliminary testing
has revealed extensive training times and poor performance
for the SVR and since the authors are not aware of a quantile
counterpart, it is not discussed further.

The selected target variables for each algorithm are the
active and reactive currents (ip and iq) over the TN/DN-
transformer. The currents are chosen instead of power to
ensure a separation of features and targets. The currents could
be formulated in the stationary grid reference frame, the (xy)-
frame. But, in such a scenario the resulting DN equivalent is
prone to changing voltage angles at the TN level.

The potential input features for each method include the
voltage magnitude at the TN/DN-interface vt−n and the TN
frequency ωt−n. The superscript t− n indicates a n-times
shifted version of the input, i.e. historical values of the signal.
For each algorithm, shifts of n ∈ [0, 10] are considered. Note
that n = 0 indicates that the input feature is measured at the
same point in time as the target is predicted. Although the
power step change at TN level is available during power sys-
tem stability studies, it is omitted to enhance the performance
when placing the DN equivalent in a different TN.

Instead of using the actual magnitude of each quantity,
deviations from steady-state, indicated by ∆-notation, are
computed to increase the robustness against changing initial
conditions at TN level. In addition, the data are scaled by
standardization, i.e. centering around zero and scaling to unit
variance, for training, validation and testing. Nonetheless, all
data are transformed back before performance quantification.

Preliminary studies indicate a drastic increase in the perfor-
mance of all ML techniques when adding former predictions
as input features for the new prediction. Thus, n former
predictions ît−np and ît−nq are also considered as features. Note
that for these it holds: n ∈ [1, 10].

Since former current values are used as input features,
training, validating and testing of the algorithms are performed
using different configurations. During training, current predic-
tions are not available such that actual time-shifted currents
are given as input features. This is referred to as open-
loop configuration. During validation and testing, the former
predictions of the currents are available and fed back to the
algorithm as input features for the next predictions. This is
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referred to as closed-loop configuration. Both configurations
are illustrated in Fig. 8.

The chosen algorithms assume that the targets do not affect
the input features. But in real power systems, that is not the
case, i.e. the current drawn at the TN/DN interface affects the
voltage and frequency at the TN level. While this effect is
limited for strong grids, it is potentially significant for weak
TNs and future work should focus on integrating the link
between targets and input features in the modeling process.

In the following, the fine-tuning of each algorithm is pre-
sented. For this purpose, 120 time-series are used for training
and 80 series are included in the validation set. All subsets
contain data for all disturbances. The ML techniques are
implemented in Python using scikit-learn [24] and keras [25].
Feature selection is performed with the default model pa-
rameters in the first stage, while grid searches determine
the best hyper-parameters in the second stage. Generally, the
procedures in [26–29] are followed. Note that if required,
performance on ip is prioritized because the obtained models
are meant to be applied in frequency stability studies. Table II
lists the chosen features and hyper-parameters per algorithm.

1) Linear Regression: Linreg is used as the benchmark
model and is the simplest of the implemented algorithms. The
target variable ŷ is computed by a linear combination of the
features x with:

ŷ =

m∑

i=1

βixi, (2)

where m is the number of features and β are the model
coefficients that are obtained by minimizing the following
least-squares objective:

Jlin = min
β
||y −Xβ||2, (3)

where y is the true value.
Linreg does not have any hyper-parameters and only the

features need to be selected. If more than one former feature
(n > 1) is used, the closed loop performance on the validation
set is poor. Thus, six features are chosen: ∆vt, ∆vt−1, ∆ωt,
∆ωt−1, ∆it−1

p and ∆it−1
q , where ∆ indicates that deviation

from steady-state are used. The algorithm is implemented in
scikit-learn using the LinearRegression function [27].

2) Elastic-Net Regression: Elnet regression applies the
same linear combinations as Linreg. Nonetheless, two regular-
ization terms are added to the cost function of the minimization
problem. It combines Lasso and Ridge regression (i.e., L1
and L2 regularization) and is capable of handling correlated
features. The cost function is:

Jel = min
β

1

2ns
‖Xβ − β‖22 + αρ‖β‖1 +

α(1− ρ)

2
‖β‖22 (4)

where α controls the effect and ρ the balance between both
regularization types. ns is the number of samples. The al-
gorithm is implemented in scikit-learn using the ElasticNet
function [27].

After selecting the features, a grid search is performed to
select the best hyper-parameters. Both, α and ρ are considered
at this stage, and the ranges are narrowed through several

TABLE II
CHOSEN FEATURES AND HYPER-PARAMETERS FOR EACH MODEL.

Algorithm na Hyper-parameters

linreg [0, 1]
elnet [0, 10] α = 0.1, ρip = 0.12, ρiq = 0.24
gbt ip [0, 1] 300 estimators, min samples leaf: 11,

max depth: 5, max features : auto
gbt iq [0, 1] 225 estimators, min samples leaf: 6,

max depth: 5, max features : auto
NNt [0, 5] adam, dropout: 0.01, batch size: 300, 40 epochs
NNb [0, 5] adam, dropout: 0.01, batch size: 200, 40 epochs

a For all algorithms the features are the voltages ∆vt−n, frequencies ∆ωt−n and
former predictions ∆ît−n

p , and ∆ît−n
q . Note that for the two former predictions

the following must hold n > 1.

iterations. In general, best scores are achieved for α ≤ 0.1,
indicating that linreg describes the data better than regularized
regression.

3) Gradient Boosting Tree: GBT regression is an ensemble
method. As such, it combines several weak learners to increase
the robustness compared to a single estimator. In boosting,
the base predictors are built sequentially and the bias of the
combined estimator is reduced.

Similar to other boosting methods, GBT is built in a greedy
fashion, and each newly added tree is fitted to minimize a sum
of losses given by the previous ensemble. The loss function
can be arbitrarily chosen, but for the presented work the mean
squared error is selected. The reader is referred to [27] for
details and the mathematical formulation. The implemented
algorithm is the GradientBoostingRegressor method.

While all potential features are considered during feature se-
lection, only some parameters of the algorithm are considered
during hyper-parameter tuning [30]. The number of estimators
controls the amount of boosting stages to perform. It forms a
trade-off with the learning rate that shrinks the contribution of
each tree. In this work, the number of estimators is adapted,
while the learning rate is kept at 0.1. Regarding the tree param-
eters, the maximum depth of each tree, the minimum number
of observations per leaf node and the number of features to
consider when looking for the best split are included in a grid
search. The best model parameters differ for the two targets.

4) Neural Networks: Neural networks are well known ML
algorithms inspired by the architecture of human brains. They
can approximate any non-linear function via a weighted linear
combination of nodes (neurons) that are organized in layers
[25, 26]. In this study, block and trapezoidal architectures,
referred to as NNb and NNt, are examined. Note that a
sequence of batch normalization and dropout layers follows
every hidden layer. While the hidden layers are implemented
using Dense layers in keras, the dropout and normalization
are implemented with the BatchNormalization and Dropout
layers. Preliminary studies demonstrate better performance
when one NN predicts both currents simultaneously compared
to two NNs predicting one target each. During hyper-parameter
tuning, relu, linear, sigmoid and tanh activation functions are
analyzed. At the same time, the dropout percentage, batch size
and training epochs are optimized using a grid search.
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TABLE III
TRAINING DURATION FOR THE DIFFERENT ALGORITHMS.

Algorithm linreg elnet gbt NNt NNb
Duration in s 0.297 128.9 937.7 1080.5 1571.3

NNb

x ∈ R22 l1 ∈ R66 l2 ∈ R66 y ∈ R2

NNt

x ∈ R22 l1 ∈ R22 l2 ∈ R66 l3 ∈ R22 y ∈ R2

Fig. 9. Architectures of the neural networks with best performance during
hyper-parameter tuning. The dimensions of the input x, the i-th hidden layer
l and outputs y are stated below each layer.

Considering that two architectures result in similarly good
validation scores, both of them are included in the upcoming
testing stage. The resulting architectures are displayed in
Fig. 9, indicating the relations of features to nodes. In the
figure, each neuron of the input layer represents the t−n fea-
tures of one quantity, e.g. ∆vt to ∆vt−n. Furthermore, the
first hidden layer of the NNb architecture consists of three-
fold the number of features, while the first hidden layer of the
NNt has the same number of neurons as it has inputs.

B. Evaluation Metrics
This section presents the evaluation metrics. The R2-score,

the root mean square error (RMSE) and the mean absolute
percentage error (MAPE) are included. While these scores are
commonly applied for regression problems, they do not assess
if the algorithm behaves as a persistence model and basically
produces a time shifted version of the former prediction to
compute the next target [31]. Thus, to evaluate the predictive
power of the models, time-differenced data is analyzed.

1) R2-Score: The R2-score, or coefficient of determina-
tion R2, is a key evaluation metrics for regression problems.
It represents the proportion of variance in the targets that
is explainable by the independent variables in the model.
Thereby, it provides a measure of how well unseen data are
likely to be predicted by the model. While the best score is
1, no lower bound exists. When it is zero, the model outputs
the mean value of the test set. The score is defined as:

R2(y, ŷ) = 1−
∑ns

i=1(yi − ŷi)2

∑ns

i=1(yi − yi)2
, y =

1

ns

ns∑

i=1

yi (5)

where ns is the number of samples. ŷi and yi are the predicted
and real value of i-th data point.

2) Root Mean Square Error (RMSE): The RMSE is a
frequently used measure that penalizes large errors:

RMSE(y, ŷ) =

√√√√ 1

ns

ns∑

i=1

(yi − ŷi)2
. (6)

The lower the RMSE the better the performance, while zero
indicates a perfect fit.

3) Mean Absolute Percentage Error: The MAPE accounts
for the absolute difference between predicted and real data:

MAPE(y, ŷ) =
1

ns

ns∑

i=1

∣∣∣∣
yi − ŷi
yi

∣∣∣∣ . (7)

A low MAPE indicates better performance, while the lower
bound is zero. Because the MAPE normalizes the error, it is
capable of comparing predictions of different magnitudes.

4) Time-difference Plots and Score: Following the sugges-
tions in [31], time-difference plots are generated to assess how
well the models predict the difference in the target between one
time step and the next, rather than the data directly. For each
data-point the change in the target is computed by subtracting
the target of the former time step from the current one with
∆yt = yt − yt−1. The same is repeated for the predictions
∆ŷt = ŷt− ŷt−1. Representing them in scatter plots illustrates
the predictive power of the models. Ideally, the observation and
prediction differences are equal for each time step, meaning
that all points (∆yt,∆ŷt) lie on a straight line.

C. Comparing the Algorithms

For the final comparison, all models are trained on 800 train-
ing time-series, including the former training and validation
sets used for fine-tuning the algorithms. The remaining 200
time-series are used for testing the performance in closed-loop
fashion. Table III provides an overview of the training times
for all the time-series in the training set. Note that the training
is performed on a 64-bit Windows server with an Intel Xeon
Gold 6154 CPU at 3 GHz and one CPU was used. While
linear and elnet regression are trained quickly, GBT and NNt
take significantly longer, while NNb is the slowest algorithm.

Fig. 10 shows exemplary time-domain performances for
some series of the test set. While the overall shape of the
response is generally retrieved for both currents, mismatches
occur during the transients. Additionally, deviations seem to
occur in the steady-state behavior of the elnet and NNb model
for the second case. However, the load step and hence the
control reaction, in this case, is small. Mismatches of similar
magnitude are observed for other test cases with higher control
reactions but invisible in the graphs. For the provided samples,
GBT and NNt seem to provide the best prediction for ip and
only exhibit significant mismatches for iq transients.

Fig. 11 summarizes the closed-loop performance on the
entire training and test sets. Note that the performance on the
test set is mainly relevant since it shows how the different
models perform on unseen data. While for the train and test
scores the entire time-series, from t = 2 s to t = 12 s, is
evaluated, for the dyn versions, only the points in the initial
two seconds (t = 2 s to t = 4 s) are assessed. Thus, the dyn
scores indicate the accuracy during the initial transients after
the disturbance. Clearly, GBT exhibits the best performance
with respect to the R2-score, RMSE, and MAPE. Surprisingly,
the benchmark Linreg behaves second best for predictions of
ip, while the NN’s MAPEs for ip are particularly high and
close to elnet, which generally is the poorest model. For iq ,
the RMSE and MAPE metrics deviate significantly less, while
the R2-score deviates more than for ip.
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Fig. 10. Time domain performance of all algorithms for three different time-
series of the test set. The corresponding power step ∆Pl used to cause the
frequency event is provided in each plot. Note the different scaling of the
ordinates.

Different conclusions arise considering the scatter plots and
R2-scores of the time-differenced data in Fig. 12. While no
algorithm performs well for iq , NNb performs best for ip
followed by GBT, NNt, and Elnet regression. Linreg performs
poorly for both currents.

To conclude, GBT provides the best point forecast. Despite
the acceptable performance of the NNs on the time-differenced
data, linreg outperforms them on the other scores. Considering
the application, retrieving the current shape, even with a cer-
tain offset, might be more relevant than minimizing the point-
wise error without considering the evolution over time steps.
Thus, time-difference metrics are potentially more important
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Fig. 11. Training and testing scores per ML algorithm for ip in the left
column and iq in the right column. While the R2 score and the mape are
dimensionless, the rmse is in p.u.

Fig. 12. R2 score of the time differenced data for ip on the left and iq on
the right.

than good RMSE and MAPE scores.

V. QUANTILE DYNAMIC EQUIVALENTS

In this section, the GBT and NN techniques are imple-
mented in a quantile fashion, allowing to predict an interval
of the most probable current rather than one point for each
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time step. First, the required adaptions are presented. Then,
evaluation metrics for quantile forecasting are introduced. An
evaluation of the techniques concludes the section.

A. Quantile Forecasting

The training process for quantile forecasting consists of
minimizing the pinball loss function Jq , creating separate
forecasts for each quantile:

Jq =
1

ns

ns∑

i=1

{
(yi − ŷq, i)q if yn ≤ ŷq,i,
(yi − ŷq, i)(1− q) if yn < ŷq,i,

(8)

where q is the target quantile and ŷq,i is the prediction for
quantile q of the i-th sample. Hence, to achieve a probabilistic
forecast with nominal confidence Q, two quantile forecasts
with q = ±Q/2 are required. The loss function is asym-
metric such that for any quantile higher (lower) than 50%
underestimating the target is penalized more (less) than for
overestimation. Note that the 50% quantile corresponds to the
previously discussed point forecasts. In this study, quantile
versions of the GBT, NNt and NNb are implemented. While
quantile linear regression also exists, it was not further studied
because of implementation issues in sklearn. The same features
and hyper-parameters as for the point forecasts are applied.
The same training and test split as before is employed, i.e.
800 time-series for training and 200 time-series for testing.

B. Quantile Evaluation Metrics

The reliability (REL) reflects the percentage of targets that
are captured within the prediction interval (PI). The average
coverage error (ACE) indicates whether the reliability is in
line with the PI nominal confidence. The width of the band,
also called sharpness, is assessed by the average interval score
(AIS). The aforementioned metrics are defined as [10]:

REL(BQ) =
1

ns

ns∑

i=1

1ŷi
50−Q/2

≤yi≤ŷi50+Q/2
, (9)

ACE(BQ) = 100% (REL(BQ)−Q) , (10)

AIS(BQ) =
1

ns

ns∑

i=1

ŷi50+Q/2 − ŷi50−Q/2, (11)

where BQ is the PI with confidence Q, yi is the target of
sample i, and ŷi50±Q/2 are the quantile predictions defining
the lower and upper bounds of the PI. In this context, good
quantile forecasts lead to an ACE close to zero and a low AIS,
i.e., a good sharpness.

C. Evaluating the Quantile Current Forecasts

Fig. 13 shows the resulting quantile forecasts for each
algorithm for an exemplary load step of 200 kW and different
PIs. The mean response equals the point forecast from the
previous section, while the median response corresponds to
the 50%-quantile using the pinball loss function.

The showcased quantile forecasts are relatively smooth for
the two NNs, while those obtained with GBT exhibit fast-
changing behavior. The performance on iq appears similar
for all techniques. All fail to predict the uncertainty around
the initial transient. Distinct differences between GBT and the
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Fig. 13. Time-domain performance of the quantile forecasts, GBT on the top,
NNt in the middle and NNb on the bottom. A 200 kW increase in load is
applied.

NNs occur for ip. The width of the NNs PIs seems comparable
and linearly dependent on the nominal confidence provided in
the legend. However, for the GBT method, the 99 % and 98 %
confidence result in an extensive band, while the other bands
appear significantly tighter than the NNs.

Similar findings are indicated in Table IV that lists the ACE
and AIS for all algorithms and the two targets. Per definition,
the width of the uncertainty band, the AIS score, increases
with growing confidence interval. There is, nevertheless, a
sudden increase in AIS from 95% to 98% confidence interval
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TABLE IV
TEST SCORES OF THE DIFFERENT QUANTILE FORECASTS.

Confidence 60% 80% 90% 95% 98% 99%

Scores for ip

ACE gbt -10.6 -16.1 -15.0 -14.2 -10.7 -8.0
in % NNt 38.7 18.9 9.6 4.8 1.5 1.0

NNb -3.2 19.1 9.7 4.8 1.9 1.0
AIS in gbt 0.6 1.3 2.7 4.7 40.3 51.7
10−3 p.u. NNt 5.7 8.1 10.9 12.1 15.3 20.3

NNb 4.4 9.7 10.3 13.1 17.0 20.8
Scores for iq

ACE gbt -19.8 -23.5 -19.7 -14.6 -7.9 -5.3
in % NNt 20.2 17.7 7.5 3.6 0.8 0.2

NNb 16.3 16.1 6.7 2.8 0.4 -0.4
AIS in gbt 0.1 0.2 0.5 0.8 1.2 1.4
10−3 p.u. NNt 0.6 1.1 1.3 1.8 2.1 2.3

NNb 0.7 1.2 1.8 1.9 2.3 2.4

produced by the GBT for the estimation of ip. The ACE scores
suggest that the GBT generally underestimates the PI nominal
confidence, in contrast to the NNs which tend to produce wider
quantile bands. This effect diminishes when considering higher
confidence intervals.

In conclusion, determining the best quantile forecasting
approach depends on the application and desired properties.
Concretely, a trade-off between reliability and sharpness shall
be found, which also depends on the confidence interval of
interest. Concerning the two NNs, NNt outperforms NNb
slightly due to smaller AIS. If narrow bands are required, GBT
is the better choice for confidence levels up to 95%. However,
this comes at the cost of lower reliability.

VI. ADDITIONAL ASSESSMENTS

This section presents two additional case studies that are
performed with the trained equivalents. In the first case, the
ML techniques are tested on a dataset generated with a weak
instead of a strong TN. The second assessment evaluates
how well the quantile forecasts match the variance in current
trajectories obtained through the MC simulations.

A. Placement in a Weaker Transmission System
So far, the tuned DN equivalents have been tested on time-

series obtained with the same TN equivalent used for gener-
ating the training series. However, in real TNs, the operating
conditions, including inertia levels, might change. Thus, in
this section, the trained point and quantile DN equivalents are
tested on 200 time-series generated with a weaker TN.

First, the data generation and adaptions to the model de-
scribed in Section III-C1 are introduced. Then, the point and
quantile forecasts results are showcased and discussed.

1) Data Generation for the Weak TN: The same model and
method as in Section III are applied to obtain time-series for a
weak TN. The grid strength and inertia constant are adapted.
While the system inertia is reduced from 6 s to 1.5 s, the short-
circuit power is halved from 150 MVA to 75 MVA.

Even though the same ten load steps ranging within ∆Pl =
±225 kW are applied, they result in significantly higher fre-
quency deviations. While for the strong grid, the maximum
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Fig. 14. Time-domain performance of the point forecast on the weak TN
equivalent time-series. The load increase to 225 kW results in frequency
deviations around −1.22 Hz.
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Fig. 15. Comparison of the training scores for the (a) strong and (b) weak
TN equivalent.

observed deviation was up to 1 Hz, for the weaker TN, the
frequency deviations exceed 1.2 Hz. Thus, the following study
subjects the trained ML algorithms to new conditions.

2) Evaluation of the Point Forecasts: The top time-domain
plot in Fig. 14 displays an exemplary time-series for a large un-
derfrequency event in the weak TN. The trained estimators are
subject to unseen conditions, as the corresponding frequency
deviations exceed 1 Hz. Despite the untrained conditions, all
of the algorithms capture the general shape of both currents.
Nonetheless, significant deviations occur during the transient
phase. While GBT and Linreg seem to work best for ip, Linreg
and NNb exhibit minor deviations from the target for iq .

Fig. 15 displays the scores for each algorithm applied
to the strong and the weak TN data set, and supports the
previous findings. For the weak TN, Linreg and GBT have
the best scores for predicting ip, while GBT exhibits the
worst performance on iq . Linreg and Elnet scores are not
significantly affected by the changing TN conditions, while all
other algorithms exhibit degrading performance for the weak
TN. The most significant increase in errors is observed for the
NNs’ prediction of ip and the GBT’s estimation of iq .
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TABLE V
TEST SCORES OF THE DIFFERENT QUANTILE FORECASTS WHEN TESTED

ON THE WEAK TN EQUIVALENT.

Confidence 60% 80% 90% 95% 98% 99%

Scores for ip

ACE gbt -15.2 -22.4 -19.2 -29.5 -18.1 -14.9
in % NNt 34.2 14.6 8.5 4.1 1.5 0.9

NNb 21.1 18.0 7.7 4.1 1.7 0.7
AIS in gbt 0.9 2.2 4.4 5.3 46.0 57.0
10−3 p.u. NNt 5.8 8.5 11.8 13.1 16.8 24.6

NNb 4 10.7 10.5 13.8 17.7 22.2
Scores for iq

ACE gbt -29.6 -38.3 -35.1 -29.4 -27.1 -25.6
in % NNt 12.8 12.1 5.1 2.1 -0.7 -1.1

NNb 24.4 12.5 3.6 0.04 -0.8 -1.6
AIS in gbt 0.2 0.7 1.3 1.6 2.4 2.5
10−3 p.u. NNt 0.8 1.7 1.7 2.8 2.8 3.7

NNb 0.9 1.7 2.6 2.7 3.0 3.3

In conclusion, the tuned DN equivalents all forecast the
general shape of the currents for the adapted TN conditions.
However, Linreg appears to be the most robust.

3) Evaluation of the Quantile Forecasts: The quantile fore-
casts for the same 225 kW load increase as before is depicted
in Fig. 16. Again, the GBT prediction intervals are quite
narrow for confidences up to 95%. While the shape of ip seems
to be retrieved acceptably, significant errors remain for iq . The
performance on iq is better for the two NNs. Similar to the
strong TN case, the PIs seem to widen linearly around the
mean with increasing confidence.

Table V supports these findings. While the GBT exhibits
high AIS for high confidence intervals, it tends to predict too
narrow bands, i.e. the ACE is negative. For high confidence
intervals, both NNs exhibit lower AIS scores than GBT.
Compared to the strong grid case the quantile bands are
significantly wider, indicating that the algorithms detect the
larger variety in possible current responses.

In conclusion, all ML techniques can cope with the drastic
change in TN parameters to predict ip with an increase in
the bandwidths, i.e. higher AIS scores, while maintaining an
adequate reliability, i.e., similar or even lower ACE scores
in absolute value. Furthermore, the tuned equivalents are
expected to provide a more conservative estimation of the
potential current trajectories in TN studies. Nonetheless, these
considerations should be proven by performing TN studies
with the tuned quantile equivalents and comparing the obtained
frequency and voltage trajectories to those obtained during MC
simulations.

B. Comparing the Quantile Equivalents to MC Simulations
Up to this point, the quantile forecasts are assessed on

specific time-series of the set of MC simulations. However,
the scores and previous assessments do not reflect how well
the quantile forecasts match the variance in current trajectories
obtained through the MC simulations. Thus, in this qualitative
assessment, the current quantile bands for one load step are
compared to the MC simulation results obtained for the same
step in power demand.
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Fig. 16. Time-domain performance of the point and quantile forecasts on
the weak TN equivalent time-series. The load increase to 225 kW results in
frequency deviations around −1.22 Hz.

1) Method: One random time-series from the test set is
chosen for a specific load step, and the quantile forecasts are
performed. The resulting bands for different confidence levels
are plotted with the individual current trajectories obtained
through MC simulations of the same load step. Note that
the MC trajectories reflect all DN parameterizations, i.e., the
training and testing sets.

2) Results: Fig. 17 displays the resulting current bands for
the GBT and NNt and the MC trajectories for a step increase
of 100 kW in load power at the TN level. The NNb is omitted
as its performance is similar to the NNt.

All quantile bands for ip of the GBT and NNt overlap
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Fig. 17. Time-domain performance of the quantile GBT (top) and NNt
(bottom) compared against the set of all MC simulations for a step increase
in load power of ∆Pl = 100 kW.

with the MC trajectories. However, the NNt better predicts the
underlying uncertainty because the bands for high confidence
intervals are narrow. In contrast, the GBT prediction intervals
with a confidence of 98% or 99% fail to predict the current
shape. Similarly, the NN provides a better estimate of the
uncertainty in iq . Nonetheless, the prediction interval for iq
does not overlap with all MC trajectories during the initial
transients. Note that these findings might differ for other
step changes and for choosing another random time-series for
producing the quantile forecast since it is based on one of the
MC simulations.

Despite its simplicity, the assessment highlights the potential
of the proposed method for large-scale frequency stability
studies. For the selected time-series, the NN can predict the
uncertainty present in the currents at the TN/DN interface.
Thus, the obtained current bands can increase the robustness
of large-scale TN frequency stability studies, but quantitative
assessment is required to support the hypotheses.

VII. CONCLUSION

This paper proposes a new approach to represent the uncer-
tainty originating from the DN level in large-scale TN studies.
Quantile forecasts are suggested to obtain the range of possible
current responses at the TN/DN-interface given voltage and
frequency measurements at the point of common coupling.

In doing so, the confidence and robustness of large-scale TN
stability studies can potentially be improved.

For the training of several ML techniques, a rich dataset
generated with MC simulations of a DN is employed. The
DN contains the latest models for distributed generation and
active thermal loads in low inertia system studies. 1000 time-
series are produced for ten different frequency disturbances.

In general, even the benchmark ML algorithm, linear re-
gression, predicts the current at the TN/DN interface with
acceptable accuracy. GBT provides the most accurate point
forecast for active and reactive current predictions, while the
NNs provide the most appropriate quantile forecasts for high
confidence intervals. Case studies on a weaker TN indicate that
the active current predictions are robust against changing TN
conditions, while most algorithms exhibit significantly poorer
performance for reactive currents. In general, the prediction in-
tervals widen, indicating that the algorithms correctly account
for the increased variety in possible current responses.

A qualitative comparison indicates that the quantile ac-
tive current bands obtained with the NNs overlap well with
the current trajectories obtained through MC simulations.
Nonetheless, a quantitative assessment is required to support
these findings.

Future work should consider additional disturbances, e.g.,
short circuits at TN level, in the training dataset to combat the
poorer performance in the reactive current. Another extension
of the presented work is to consider different pre-disturbance
loadings of the DN. In addition, the tuned equivalents should
be reintegrated into TN level studies to assess if the resulting
frequency band equals the one from MC simulations. Two
potential ways are appealing: The quantile NNs can be in-
tegrated into pyRamses by using matrix multiplications with
the weights determined by the corresponding ML algorithms.
On the other hand, pyRamses offers a python interface and
permits interrupting time-domain simulations at a fixed rate.
During each of these interruptions, the original ML algorithms
in python could update the current predictions of the DN that
would be kept constant until the next interruption.
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