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Abstract—In modern electric power systems there are thou-
sands of control devices, spanning from low-voltage distribution
networks to high-voltage transmission networks, that manage
the energy flows, ensure the secure operation and stabilize the
system. To analyze the performance and assess the impact of
controllers on the electricity grid, time-domain simulations are
most frequently used. In recent decades, all the new controllers
introduced in electric power systems are digital controllers and
their analog counterparts are gradually being replaced. Never-
theless, many of the most frequently employed controllers are
still modeled in time-domain simulations as analog (continuous)
systems, employing transfer functions or differential-algebraic
equations. This approach introduces a discrepancy between the
real response of digital controllers and the simulated one. In this
paper, we investigate the impact that correctly modeling digital
controllers has on simulation accuracy and performance.

Index Terms—digital controllers, time-domain simulations.

I. INTRODUCTION

In recent decades, power systems are pushed to become

more sustainable, reliable, and economic. This drive has led

the electricity networks to operate closer to the security limits

and increasingly rely on real-time, local or wide-area, con-

trollers to ensure the reliability and resilience of the electricity

supply. Large-scale dynamic simulations are often used to

assess the security of power systems and to provide a digital

twin for performing model-based design, tuning, or testing of

the proposed controllers. Unlike static simulations or other

mathematical assessment tools, dynamic simulations allow

the incorporation of trajectory-based control and protection

schemes into the analysis.

Due to the recent advancements and modernization of power

systems, all modern control and protection devices are digital.

Either implementing classical controls (such as a simple PI

controller) or more advanced controllers based on artificial

intelligence, optimization methods, or machine learning, there

is a need to integrate these digital controllers into the large-

scale dynamic simulations to assess the interaction between

the devices and the system or the devices themselves. Never-

theless, their discrete nature makes them hard to embed in the

continuous Differential-Algebraic Equation (DAE) simulation

models used to represent the power system dynamics.

Digital controllers modeled either through their difference

equations or even their actual control code incorporated into

the power system DAE model leads to a hybrid DAE system

that is computationally intensive. Specifically, their discrete

nature results in numerous discrete time-events (interruptions)

in the simulation process, stagnation of it, and a limitation

of the time-step size to the time between control events.

Moreover, the hybrid nature of the system makes it impossible

to use many of the classical analysis methods.

A frequently used approach is to employ a continuous equiv-

alent of the digital controller [1]. This approach alleviates the

time events and allows the use of classical analysis methods

such as variable time-step methods that significantly accelerate

the simulation performance. However, capturing the accurate

response of digital controllers, along with their Analog-to-

Digital (ADC) and Digital-to-Analog converters (DAC), in

a continuous DAE simulation is difficult. In addition, the

analog representation of digital controllers might conduct

artificial problems that might not exist in the real system due

to the Zero-Order-Hold (ZOH) time delays introduced. For

instance, deadlocks in the simulation due to the limits imposed

on controller variables – as in the case of the IEEE Anti-

Windup (AW) controller shown in [2–4] – can arise. Another

challenge is that not all digital controllers (e.g., optimization-

based, artificial intelligence, etc.) have straightforward analog,

equation-based, equivalents.

To address these challenges and provide insight to the

modelling requirements for digital controllers, this paper:

• Investigates the challenges of modeling digital controllers

in power system dynamic simulations.

• Investigates the impact of the sampling time of digital

controllers on the power system dynamic results.

• Provides a comparison and discussion on the accuracy,

modeling, and performance of digital controllers against

their continuous equivalents.

• Investigates the impact of modelling on the deadlock

situations observed in the IEEE AW PI model.

The rest of the paper is organized as follows. Section II

discusses the different modeling formulation approaches for

the controllers. Then, the numerical simulation of power

systems and the incorporation of controller models are dis-

cussed in Section III. Three case studies are showcased in

Section IV, followed by a discussion related to the accuracy

and performance of the controllers in Section V. Finally,

Section VI concludes the results and suggests future work.
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Fig. 1: Block diagram of SEXS controller

II. CONTROLLER MODELING

In this section, we describe the methods used for modeling

controllers in power system time-domain simulations.

A. Block diagrams and transfer functions

The most common representation used in power systems

literature and standards to explain the controller structure is

through block diagrams due to their simplicity and clarity, e.g.

[5, 6]. For instance, in Fig. 1 which is a simplified excitation

system model (SEXS), it is easy to identify the inputs to the

controller, the intermediate states, and their function.

Nevertheless, this simplicity has led many times to the

models being implemented differently in the various simula-

tion software and leading to discrepancies, where the system

response is largely different between the various software.

The reason is that the block diagrams rarely describe the

exact implementation of limits (e.g., anti-windup integrator

limits), selection flags, treatment of violations, etc. Several

technical reports and standards have been revised to clarify the

implementation of even simple and widespread control blocks

(e.g., the IEEE AW integrator [4, 7, 8]).

This representation is closely related to the s-domain trans-

fer functions of the various components that consist the

controller. For instance, starting from the block diagram in

Fig. 1, one can write the transfer function equations of the

SEXS controller, assuming that the limits (EMIN , EMAX )

are not reached, as:

EFD(s) =

(

1 + sTA

1 + sTB

)(

1

1 + sTE

)

e(s) (1)

where e(s) is the input and EFD(s) the output.

The block diagram and transfer function representations

assume an input-output relationship, where the outputs are

explicitly expressed in terms of the inputs. Such models follow

a causal modeling standard [9] and the vast majority of general

modeling languages for physical modeling have been based on

this block-oriented paradigm.

B. Differential-algebraic equations

To avoid some of the issues associated with causal models

and to be able to easier incorporate the controllers into

large-scale power system dynamic simulation software (see

Section III), an acausal approach can be used where models

essentially are expressed in terms of undirected DAEs. This

makes them much more reusable and composable, addressing

some of the challenges of large-scale modeling and simulation,

Digital Controller DAC System

ADC

e(k) u(k) u(t)+Ref(k) y(t)

−

y(k)

(a)

Analog Controller System
e(t) u(t)+Ref(t) y(t)

−

y(t)

(b)

Fig. 2: Interface of controllers in a (a) hybrid and (b) contin-

uous system analysis

and is the paradigm chosen in recent modeling languages, such

as Modelica [10]. For instance, (1) can be converted to:

TEĖFD(t) = VI(t)− EFD(t)

TBV̇t(t) = e(t)− Vt(t) (2)

0 = TAe(t) + (TB − TA)Vt(t)− TBVI(t)

where Vt(t) is a temporary variable.

It can be seen that the notion of input-output has been

removed from this representation.

C. Discrete domain and difference equations

The majority of the controllers today are digital and to

perform model-based control design or to assess the perfor-

mance, security, and stability of the analyzed systems, a hybrid

analysis (such as the one in Fig. 2a) needs to be performed.

The ADC samples some of the controlled system variables

(y(t)) with a sampling time Ts and feeds back to the digital

controller the discrete samples (y(k)). The discrete controller

output (u(k)) is then fed to the DAC to be converted to a

continuous signal that drives the controlled system. In most

practical applications, the DAC is usually a ZOH model.

The discrete domain representation of a controller can be

easily computed from the continuous domain transfer function

using one of the several available discretization methods,

like ZOH, First-Order-Hold, Forward/Backward Difference,

or Trapezoidal method (Tustin’s approximation). For instance,

applying the Backward Difference method to (1), provides:

EFD(z) =
zTs(z(Ts + TA)− TA)

(z(Ts + TB)− TB) (z(Ts + TE)− TE)
e(z) (3)

Consequently, to be implemented in a digital controller, the

difference equations are more useful:

EFD(k+1) =
1

(Ts + TB)(Ts + TE)
[EFD(k)(TE(Ts + 2TB)

+ TsTB)− EFD(k−1)(TBTE)

+ e(k+1)(Ts(1 + TA))− e(k)(TsTA)] (4)

computed at time t = tk = kTs and held constant over the

period t ∈ [kTs, (k + 1)Ts) (assuming a ZOH DAC). These
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equations are then usually implemented in the control-loop of

the digital controller hardware.

III. POWER SYSTEM NUMERICAL SIMULATIONS

Due to the complexity and non-linear nature of electric

power systems, time-domain numerical simulations are most

frequently used to assess their security. Thus, the physical

system is modeled with a set of index-1 DAEs [11] that notably

incorporate the network, generation, and load dynamics. The

compact form of the problem is characterized by:

F (ẋ,x,y,p) = 0 (5)

where x are the differential, y the algebraic variables, and

p the parameters of the system. The DAE system is then dis-

cretized using an integration method (e.g., trapezoidal method,

BDF, etc.) and solved over a time horizon.

The power system DAE models are hybrid in nature, with

discrete events (either discrete state or time events) impacting

the time-step selection and the DAE. More specifically, time

events take place at specific time instances (e.g., a predefined

fault) while state events depend on the simulation trajectory

and are not known beforehand (e.g., a generator reaching the

output limit) [12]. In both cases, when a discrete event takes

place, the time-step h is usually reduced to match the event

time and the impact of the discrete change on the DAEs is

reflected before continuing with the simulation.

To perform model-based control design or to assess the

security of the system under the control actions, the latter

need to be connected to the continuous-time physical system

(5). When a digital controller is concerned, the most accurate

representation is the one of Fig. 2a. In this case, the DAC

and ADC models need to be correctly modeled and the digital

controller difference equations (e.g., (4)) provide the control

law. There are two issues with this approach.

First, the digital control output is updated at each Ts (for

most power system applications ranges from few milliseconds

to several seconds). This introduces a discrete time event

at each sampling instance, which usually leads to reduced

time steps and increased simulation time. This issue has

higher impact on variable time-step methods (as the time-

step gets ”stuck”) and when the system has multiple digital

controllers (thus, thousands of discrete time events are intro-

duced). Second, the hybrid representation makes it impossible

to use classical control design methods or stability assessment

methods (e.g., eigenvalue analysis), thus requiring work with

discrete control design methods.

Alternatively, a continuous-time equivalent of the digital

controller can be used, as shown in Fig. 2b. Usually, the DAE

representation of the controller is used (e.g., (2)) that is easy

to incorporate in the power system model (5). This approach

alleviates the two issues mentioned above, as the continuous-

time equivalent can be handled as the rest of the system DAEs.

However, it also introduces new challenges.

First, to ensure that the continuous and discrete controllers

have the same response, the effect of the ZOH DAC needs

to be appropriately incorporated into the system. This is

usually done with the use of some Padé approximates whose

parameters depend on the Ts of each controller. In turn, this

results in a Delay Differential-Algebraic Equations system

(DDAE).

Second, while the time events due to the Ts of the digital

control are not an issue anymore, there is a need to detect

and treat state events related to the controller limits (e.g.,

EMIN/MAX in Fig. 1). In the real digital controller imple-

mentation, the detection, location, and treatment of limits are

easy and straightforward due to the ZOH. However, in the

continuous equivalents, there is a need to detect, locate, and

treat the limits through state events [13]. The implementation

is not straightforward and can create artificial (that would

never appear in the real digital controller) deadlocks. Several

papers have been published analyzing methodologies for the

implementation and treatment of the control limits in continu-

ous controllers, which become irrelevant in real-world digital

control implementations [2, 14].

Third, many of the modern digital controllers are not DAE-

based and cannot possibly be incorporated in (5). Receding-

horizon or one-shot optimization-based controllers, artificial

intelligence-based, Neural-Network (NN) or Deep NN con-

trollers are some of the modern digital controls incorporated

in power systems. In these cases, the use of a hybrid system

(see Fig. 2a) is mandatory.

Finally, when comparing the two approaches in Fig. 2,

we can consider i) the ability of the system to capture the

digital controller behavior (e.g., if a DAE-based equivalent

can even be formulated), ii) the accuracy of the simulated

results with the hybrid analysis (Fig. 2a) as the reference, and

iii) the computational burden. In the following section, these

considerations will be showcased through some case studies.

IV. SIMULATION RESULTS

For all the simulations, a predictor-corrector integration

method consisting of a pair of second-order Adams-Bashford

(explicit) and second-order Adams-Moulton (implicit) is uti-

lized. Also, the step size for all simulations is fixed and equal

to 1 ms unless otherwise specified. The sampling time of the

digital controllers is chosen to be an integer multiple of the

time step. Finally, a uniform quantization of 16 bits is used

for the ADC and ZOH DAC.

First, the IEEE 421.5-2016 AW PI controller is tested in

an open-loop and closed-loop setting, comparing an analog

implementation to a digital one with several different time-

sampling parameters. Then, a 3-bus system with an AVR and

a governor is simulated, with similar comparisons.

A. PI controller formulation

The IEEE 421.5-2016 AW PI controller (see Section E.5 in

[6]) formulated as a DAE model (see Section II-B), including

the limits, is given by:

If y ≥ wmax : w = wmax and ẋ = 0

If y ≤ wmax : w = wmin and ẋ = 0

Otherwise ẋ = kiu and w = y = kpu+ x (6)
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Fig. 3: Results of simulation of the digital AW PI controller

with different sampling times between 5.56 to 5.66 s

Discretizing the controller using the Forward Difference

method and a sampling time T , leads to:

If yk ≥ wmax : wk+1 = wmax and xk+1 = xk

If yk ≤ wmax : wk+1 = wmin and xk+1 = xk

Otherwise xk+1 = kiukT + xk and

wk+1 = yk+1 = kpuk+1 + xk+1 (7)

B. Open-loop PI controller

First, a simple open-loop example is shown where the input

u is varied over a 6.5 seconds horizon as (8). The input drives

the controller over the upper limit and then returns to remain

exactly on the limit. The parameters of the controllers are set

to ki = 3 and kp = 1 and the limits are set to wmin = −1.2
and wmax = 1.2.

If t < 3 : u̇(t) = 1; Else : u̇(t) = −1 (8)

Since the sampling time of the controller is equal to the

time-step size, the simulation result for the continuous and

digital controller with T = 0.001 is identical. This is because

the analog controller in (6) is discretized by the integration

method and updated at each time step h = 0.001 s. Thus, the

update of both the analog and the digital output is identical at

1 ms.

Variable y is illustrated in Fig. 3 for different sampling times

of the digital controller, and for the period between 5.56 −

5.66 s shows that a sampling time higher than the step size can

change its response. This is because the continuous controller

equations (6) are updated every time step (h = 1 ms) while the

difference equations of the digital controller (7) every time-

sampling T > h.

Fig. 3 was selected to showcase the chattering phenomenon

reported in [7]. It can be seen that the chattering is still

present in all models with variations in its amplitude due to the

sampling time. Nevertheless, looking at Fig. 4, which shows

the number of Newton iterations required for both the contin-

uous and digital controllers, the computational performance

of the digital controllers is much better. Also, the possibility

of a deadlock happening in the digital controller models is

non-existent. This is because the limits are updated with a
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Fig. 4: Number of Newton iterations for the continuous and

digital AW PI controller with different sampling times between

5.56 to 5.66 s (all digital controllers have only one iteration)
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Fig. 5: System’s output z2 for the analog and digital controllers

with different sampling times (first scenario)

ZOH approach that introduces a time-delay, as explained in

Section III.

C. Closed-loop PI controller

In this case study, the PI controller is used to drive a simple

continuous system of two differential equations:
[

ż1

ż2

]

=

[

a b

−b 0

][

z1

z2

]

+

[

−b

0

]

w (9)

All the parameters of the controller are kept the same and

kf = 0.1. In addition, the continuous system parameters are

set to a = −0.1 and b = 0.9.

First, the same variation dictated by (8) is applied. The

output z2 of the system is illustrated in Fig. 5 for analog and

digital controllers with different sampling times. For T ≤ h,

the response is identical. However, a significant difference is

observed for T > h.

In the second scenario, a step change is applied to u =
0 → 1 with kp = 2, ki = 1, kf = 1, a = −0.2, b = 0.9,

wmin = −1.1, and wmax = 1.1. The response is illustrated

in Fig. 6 and the controllers’ output in Fig. 7, respectively. It

can be seen that even in this simplified LTI ODE system, a

change in the sampling time T can provide different simulation

results. In addition, the activation and deactivation of the limits

are shifted according to the sampling time.
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Fig. 6: System’s output z2 for the analog and digital controllers

with different sampling times (second scenario)
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Fig. 7: Controller’s output w for the analog and digital

controllers with different sampling times (second scenario)

TABLE I: Performance of simulations for the analog and

digital controllers with fixed and variable time steps

Method Nb. Newton iterations Runtime (s)

Analog cont. - fixed time steps 31580 16.94

Analog cont. - variable time steps 436 0.34

Digital cont. - fixed time steps 31717 13.77

Digital cont. - variable time steps 3422 1.69

D. Three-bus system

In this case study, we employ a 3-bus network, illustrated

in Fig. 8, consisting of a synchronous generator (SG), a

photovoltaic (PV), and a load connected by two transmission

lines. The dynamics of the generator are under the control of

an AVR (IEEE DC2A) [6] and a governor (type HYGOV)

[5] with sampling time TG and TE , respectively. A typical

sampling time for the digital AVR is usually from 5-50 ms [15]

and the governor 5-250 ms [16], depending on the controller

and the system type.

SG PV
Re1 + jXe1 Re2 + jXe2

Load

BUS1 BUS2 BUS3

Fig. 8: The schematic of the 3-bus network

The simulation of a step change in PV’s active power

production from 3 to 2 MW between seconds 3 to 6 is

implemented. The system is simulated first with the analog

representation of the controllers using a fixed time-step (h = 1
ms) and a variable time-step (hmin = 1 ms and hmax = 500
ms). Then, the simulation is repeated for the hybrid system.

The results for the voltage of Bus 2, the generator speed

deviation, the governor, and the exciter output are depicted in

Figs. 9-11. The simulations with the analog controller variants

give an identical response, both for the variable time-step and

the constant time step versions. The hybrid simulation deviates

from the analog ones, with the ZOH shown more prominent

in Fig. 10. The performance comparison is briefed in Table I.

It can be seen that the performance of the analog controller

simulation with the variable time step integration is better than

the one with the digital controllers due to the bigger time steps

taken. This is one of the main reasons that analog controllers

are preferred in dynamic simulations.

V. DISCUSSION

In this section, the most important observations are summa-

rized, and associated verdicts are discussed.

A. Accuracy

Based on the results in Section IV, it can be observed

that in most cases the accuracy between simulating an analog

or a digital controller (having the digital controller as the

benchmark) is impacted severely by the sampling time. When

the sampling time is smaller than the time step (T < h)

the trajectories are identical between the two, while with a

sampling time larger than the time step (T > h) there is a

notable discrepancy. This is due to the fact that the controller

modeled as continuous with a DAE is discretized by the

integration method and updated according to the time step,

while the digital controller has a pre-defined sampling time

and is interfaced to the rest of the system with a DAC.

Furthermore, although using a variable step size method

helps with the performance of systems controlled by continu-

ous controllers, it results in slightly lower accuracy (due to the

allowance of higher time steps). However, it doesn’t affect the

digital controllers’ accuracy significantly, since the step size

is limited to the biggest difference between the sampling time

of the digital controllers.

B. Performance

In the case of using a variable step size solver (see Sec-

tion IV-D), the continuous models outperform the digital ones

since no step size reduction is imposed. When a hybrid model

is used, the time step is always limited to the biggest difference

between the digital controller sampling times (time events).

On the other hand, when the continuous controller model

is used, there is a need for detecting and locating the state

events introduced due to the controller limits. When the digital

controller model is used, this is not necessary due to the delays

introduced by the ZOH. Thus, even if higher time-steps can

be implemented with the continuous models, a zero-crossing

detection algorithm needs to be implemented.

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 04,2024 at 09:56:56 UTC from IEEE Xplore.  Restrictions apply. 



0 2 4 6 8 10 12 14 16

Time (s)

0.96

0.98

1

1.02

1.04

V
o
lt

ag
e 

o
f 

b
u
s 

2
 (

p
er

 u
n
it

)
Analog fixed time steps
Analog variable time steps
Digital fixed time steps
Digital variable time steps
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C. Modeling

To model the controllers as continuous devices requires their

equations to be accessible and differentiable. This means that

heuristic (and other non-equation-based) controllers can not

be included and numerically solved. However, in the case of

digital controllers, due to the time-delays introduced by the

ZOH and since their equations don’t appear in the solver, they

can be treated as a black box with an input and output that is

called before each time step.

Finally, it is shown that although chattering problems

still exist for the digital controller models, deadlocks cannot

happen. Therefore, in the case of deadlock problems, the

performance of the digital controller is much better in the

deadlock zone as the solver doesn’t stagnate.

VI. CONCLUSION

In this paper, different approaches for modeling the con-

troller in power systems were briefly reviewed and a compar-

ison between the analog and digital modeling of controllers

in power system dynamic simulations was provided through

case studies.

In this paper, it was shown that there are several differ-

ences related to accuracy, performance, and modeling aspects.

Overall, implementing the real digital controller is better in all

aspects, except the reduced performance caused by the limit on

the time-step size introduced by the sampling times (discrete

time-events). This problem can be alleviated by proposing and

implementing new methods that can help to embed the digital

controllers in the dynamic simulations without causing the

solvers to reduce the time-step size, which is still an open

challenge.
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