
Applied Energy 335 (2023) 120748

Available online 30 January 2023
0306-2619/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

An optimisation tool for minimising fuel consumption, costs and emissions 
from Diesel-PV-Battery hybrid microgrids 

N. Rangel a,*, H. Li a,*, P. Aristidou b 

a School of Chemical and Process Engineering, University of Leeds, LS2 9JT, United Kingdom 
b Dept. of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, 3036, Cyprus   

H I G H L I G H T S  

• Improving the performance of diesel generators gives economic and environmental benefits for hybrid microgrids planning. 
• Better interaction among diesel generators and renewable energy for rural electrification can be achieved using cost optimisation tools. 
• Including biofuel blends in a cost optimisation tool allows for assessing locally produced fuels for diesel substitution. 
• PM2.5 and NOX emissions influence the biofuel selection to be used within hybrid microgrids. 
• Cost-benefit analysis helps to determine the best microgrid system configuration, considering financial and environmental aspects.  
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A B S T R A C T   

Diesel generators (diesel gensets) are widely used within microgrid (MG) and off-grid systems for rural elec-
trification, particularly in developing countries. The sizing and selection techniques during the MG planning 
stage are a key for maximising cost-effectiveness and minimising environmental impacts. This becomes more 
important for hybrid mini-grid systems when photovoltaic (PV) electricity generation and other renewable en-
ergies are included in the system as special attention is needed to limit the genset’s output power, to keep it 
within the recommended operating range. This paper presents a cost optimisation model, centred on the gen-
eratorś performance, within diesel/PV/battery MGs, for minimising the MG’s operating costs and environmental 
impact. The model considers fuel consumption equations adapted for castor oil-diesel (COD) blends and two 
major pollutant emissions (NOx and PM2.5), which are not considered in other optimisation models. The opti-
misation was implemented for high, medium, and low electricity demand scenarios, with eight possible system 
configurations, for the Lindi Region of Tanzania as it belongs to one of the five countries with the lowest 
electricity access in sub-Saharan Africa (SSA). An economic assessment was done to compare the Levelized Cost 
of Energy (LCOE) of the system configurations. The impact of the fuel price and pollutant emission costs on the 
fuel selection was investigated using sensitivity analysis. The results confirmed that for specific electricity de-
mand each scenario requires a unique set of diesel generators and the selection is affected by the PV share and the 
battery energy storage (BES) units included. The best LCOE for the high, medium, and low electricity demand 
scenarios were 0.43£/kWh, 0.42£/kWh, and 0.45£/kWh, respectively. The sensitivity analysis revealed that the 
pollutant emission costs have a significant impact on LCOE for the different fuel choices whereas the variation of 
fuel prices has a minimal effect unless the diesel price increased by 100%.   

1. Introduction 

Expanding electricity access in rural areas of developing countries 
for achieving the Sustainable Development Goal 7 (SDG71) [1] 

represents a challenging task, as 840 million people around the world 
have no access to electricity. The majority of them, around 600 million 
people, live in sub-Saharan Africa and half of that population is 
distributed across Nigeria, DR Congo, Ethiopia, Tanzania, and Uganda. 
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To overcome this situation, the Rural Electrification Agency (REA) is 
implementing a large-scale electrification strategy, that considers MG 
deployment and standalone systems, as the least-costly option for 
providing the power required by 2030 [2]. According to the report 
presented by the Energy Sector Management Assistance Program 
(ESMAP) [3], there are about 19,163 MGs globally and most of them are 
diesel-fuelled. Of those, nearly 1,500 are located in sub-Saharan Africa. 
In the coming years, the implementation of more than 7500 MGs will 
bring a significant shift from diesel-based to solar and solar-hybrid 
systems. It has been estimated that MG deployment will have a sharp 
growth in Africa and more than 4,000 will be installed over the next 
couple of years [4]. In developing countries, MGs consist mostly of small 
diesel- and hydro-powered systems serving 200 to 2000 people. Though 
diesel generators are commonly used in MGs to electrify off-grid areas 
[5–8], a major problem remains within the planning stage of hybrid 
MGs, which is to accurately predict the performance of diesel genera-
tors, particularly during low load demand periods. Even though diesel 
generators are an important element that brings stability and reliability 
to the systems, they are commonly seen and modelled as “a black box” 
that leads to high operating costs and environmental impact due to their 
excessive fuel consumption. This paper presents a cost-optimisation 
model developed for a diesel/PV/BES hybrid MG considering the ef-
fect of castor oil-diesel blends to reduce fossil fuel consumption while 
minimising the economic and environmental impact of the system. 

Although diesel generators are widely used in off-grid electric sys-
tems their poor performance is a common issue that occurs when the 
gensets operate at low load conditions, affecting the overall system’s 
operation. As mentioned by Sinn [9], using a high-power diesel engine, 
able to meet the required power during peak demand, gives high oper-
ation and maintenance costs when operating the genset at a low load. 
The low load working mentioned was caused by inappropriate genset 
sizing and selection. Generally, the decision on genset sizing and se-
lection is made to meet the total or peak load demand considering the 
energy loss during transmission and distribution (line losses) [10], to 
guarantee reliable electricity supply at peak demand. According to Diaz 
et al. [11], the required power (size) of a diesel generator is calculated to 
cover a peak demand plus a security margin of 10 %. This technique 
gives over-sized generators that rarely operate near their nominal power 
(their optimal performance), especially during low-demand periods. 
Literature shows that some systems operate below 25 % [11] or between 
30 % and 60 % of the maximum load [12]. Other systems operate be-
tween 6 % and 33 % of the gensetś rated load capacity and their specific 
fuel consumption might be up to five times greater than the manufac-
turer’s specifications [13]. Soto [13] concluded that generator sizes with 
better load matching could reduce fuel consumption while improving 
reliability and lowering maintenance needs. Similarly, the studies done 
by Schnitzer [14] in 36 municipalities in Haiti revealed that the size of 
the generators, relative to the load demand, is a significant factor 
causing a high fuel cost. The author pointed out that it would be bene-
ficial to replace those oversized generators with smaller-scale units. 
Replacing oversized generators could also benefit hybrid systems design 
as the interaction of diesel generators with renewable energy technol-
ogies could affect the operation of the system. For example, the PV/ 
diesel system in the province of Jujuy, Argentina, presented by Diaz 
et al. [15] illustrates that when PV arrays are undersized the diesel 
generators ought to meet the demand, increasing the operating cost due 
to the increased fuel consumption. Also, the results presented by 
Yamegueu et al. [8] showed that a high share of PV in a low load system 
does decrease the optimal functioning of a genset (below 62 % of its 
rated power); therefore, they recommend a design that allows the genset 
to operate near its nominal power. A similar situation is found in African 
countries where a poor demand prediction results in having oversized 
MGs that lead to a low load operation and thus poor performance. To 
overcome that situation, Booth et al. [16] suggest that an ideal solution 
should consider the appropriate sizing of the systems during the design 
phase. For a hybrid system sizing should consider the renewable-diesel 

balance that allows for maximising the use of renewable by the selec-
tion of energy sources to supply loads separately or to meet a high de-
mand by combining all the sources at the same time [17]. The goal is to 
avoid a low load operation of the diesel generator and hence improve 
the overall system performance. 

The optimum design (sizing) of MGs have been conducted and re-
ported by [7,8,11,18]. A review made by Mellit et al. [19] presents the 
application of artificial intelligence techniques such as Neural Networks 
and Genetic Algorithms among others for sizing PV systems. Their work 
includes a section with studies for sizing hybrid PV systems for optimum 
selection of solar array panels, wind turbines, and battery configura-
tions. It also includes more than one study for finding the optimal total 
capital cost depending on the loss of power supply probability. Ac-
cording to Bernal-Agustin et al. [20], the optimum design is usually 
carried out by minimizing the Net Present Cost (NPC) or the Levelized 
Cost of Energy (LCOE) of a project using simulation and optimisation 
software tools available for hybrid systems. Their study mentions that 
the most-used optimisation software is the Hybrid Optimization Model 
for Electric Renewables (HOMER) developed by the National Renewable 
Energy Laboratory (NREL). The review made by Connolly et al. [21] of 
37 computer tools, commonly used to analyse the integration of 
renewable energy in different systems, revealed that no energy tool 
addresses all aspects of the integration. However, in their review, 
HOMER appeared as one of the most used tools for stand-alone appli-
cations. Similarly, in the review made by Sinha [22], where 19 opti-
misation software tools were analysed, it was indicated that HOMER has 
been used extensively for hybrid renewable energy system optimisation, 
regardless of the limitations noted by the authors. In Suman’s et al. 
recent work [23] for hybrid system optimisation in rural areas, HOMER 
was shown as one of the software tools efficiently used for sizing hybrid 
renewable energy systems, but the authors appeal to a modern tech-
nique in optimal sizing of renewable energy sources that implements 
evolutionary algorithms such as Particle Swarm Optimisation (PSO), 
Differential Evolution, Genetic Algorithm (GA), Simulated Annealing 
(SA), and others. Their work presented a swarm-based optimisation 
method for allowing the users to employ customised constraints and 
avoid the existing limitations from available optimisation tools. 

Despite the awareness of the importance of re-sizing diesel genera-
tors only a few authors have studied the benefits of using more than one 
diesel generator for optimum matching in genset size, power output and 
load demand. Alramlawi et al. [24] observed that installing three diesel 
generators instead of only one, in combination with a PV array without a 
battery was more efficient in the MG system of their study. In the study 
by Pelland et al. [25], fuel savings were reported by adding PV arrays, 
reducing dump loads and using smaller diesel generators. The authors 
suggested that further optimisation for genset sizing and system would 
contribute to more fuel savings that would be translated into less 
greenhouse gas (GHG) emissions. Another study that explored the 
benefits of operating two smaller engines for diesel-based standalone 
applications was presented by Kusakana [26]. The author reported fuel 
savings of around 30 % if two diesel generators are used in parallel 
instead of a single unit, as one of them operates at a high load factor and 
the second one has reduced operating time. Also, with the optimisation 
techniques used by Jesper Knudsen et al. [27], gradient search approach 
and genetic algorithm approach, potential fuel savings from 0.1 to 3 % 
could be achieved in a multiple diesel generator independent power 
producer power plant. 

Literature shows that even when using novel optimisation algorithms 
such as the Particle Swarm Optimisation-Grey Wolf Optimiser used by 
Suman et al.[23], the performance of diesel generators receives little 
attention and their fuel consumption estimation still relies on the linear 
equation presented in 1986 by Reiniger [28]: 

q(t) = a⋅P(t)+ b⋅Pr (1) 

Where, q(t) is hourly fuel consumption in l/kW; P(t)) is the power 
generated by the generator in kW; Pr is the rated/nominal power of the 
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generator in kW; a and b are the model coefficients in l/kWh. 
The equation (1) has been used ever since by different authors 

[8,29–31] as part of the “black box” modelling technique for including 
diesel generators in MG design. A similar equation appeared in the 
Techno-economic analysis presented by Rohani [32], which is the one 
implemented by HOMER. The equation allows for adjusting the “a” and 
“b” coefficients presented by Reiniger as “a” can be estimated if at least 
two fuel consumption parameters at different loads are known, and “b” 
can be computed from the no-load consumption divided by the rated 
power of the generator [33,34]. Some authors prefer quadratic equa-
tions instead, as according to Ashock [35] the fuel consumption of a 
diesel generator is well represented by a second-order polynomial if it 
operates near its rated power. Agarwal et al. [36] used a quadratic 
expression in which coefficients were determined from manufacturer’s 
specifications, the same way as reported by [35]. Pelland et al. [25] also 
selected a quadratic equation but they emphasized that the fuel analysis 
is very sensitive to the type of fit applied, especially for loads below 25 % 
rated power, producing large uncertainties in the final fuel estimation. 
The work presented by Gan et al. [37] estimated the fuel consumption 
through a third-order polynomial function, using empirical data instead 
of manufacturer’s data, but they revealed that more work should be 
done to have a better generator sizing. 

The review above shows that though there are various techniques for 
sizing, optimisation, and estimating the fuel consumption of diesel 
generators operating in hybrid systems, none of the studies has consid-
ered the scenario of using vegetable oil-diesel blends to study the per-
formance of diesel generators in MGs. There are a number of hybrid 
Microgrid studies involving biomass or biofuels but those are based on 
using solid biomass gasification technologies which are fed into a gas 
engine or a diesel engine [38–41]. The use of vegetable oil-diesel blends 
in a diesel generator is new. Therefore, developing a cost optimisation 
model from the engine’s perspective, that allows for better sizing and 
prediction of the performance of diesel generators in MGs to compare 
the use of vegetable oils (and other liquid fuels) and diesel in terms of 
operating cost and environmental impact is needed. This paper aims to 
propose a cost optimisation model incorporating fuel consumption of 
diesel generators with castor oil-diesel blend scenario and environ-
mental costs. Finally, the paper also explains why the model aims to 
limit the operating range of diesel generators to avoid their low load 
operation and improve their performance, as they do influence the 
optimal configuration of stand-alone systems as concluded by Bilal et al. 
[42]. 

From the information provided above, this paperś contribution can 
be listed as follows:  

- Highlight the importance of considering diesel generators as a key 
element in cost optimisation models, to improve their performance 
for reducing their fuel consumption and operating costs in MG.  

- Present new fuel estimation equations that enable the assessment of 
locally produced biofuels, for diesel substitution in MG for rural 
electrification.  

- Demonstrate that using diesel generators within the recommended 
limit benefits their sizing and interaction with renewable energy 
sources, which in turn benefits MG planning. 

This paper has been divided into 7 sections. Section 1 presents an 
introduction to the identified gap and proposed solution for improving 
MG planning stage and the performance of diesel generators through a 
cost optimisation problem, to reduce operating costs and pollutant 
emissions for rural electrification in SSA countries. Section 2 presents 
the proposed cost optimisation model, starting with an overview of the 
modelś characteristics, followed by the modelś objective function and 
constraints discussed in section 2.1 and section 2.2. Section 2.3 and 2.4 
present the inputs used to test the model and the relevant equations of 
the economic assessment of the optimised findings. Section 3 describes 
the scenarios created for testing the applicability of the cost model. The 

electricity demand profiles are included in section 3.1, whereas section 
3.2 and 3.3 are dedicated to the PV scenarios. Section 4 gives an 
exemplar application of the cost optimisation model given specific PV 
installed capacity, PV performance, and battery capacity for three 
electricity demand profiles. In Section 5 an economic assessment as well 
as a cost-benefit analysis of the optimised MG configurations found in 
Section 4 are included. After that, a sensitivity analysis for the MG 
selected through the cost-benefit analysis is included in Section 6. 
Finally, Section 7 presents the conclusions of this work. 

2. Configuration of the cost optimisation model 

In this section, we will present a cost optimisation model developed 
to assess the selection of diesel generators for eight microgrid system 
configurations. The selection depends on the performance of each 
generator, the pollutant emission generated and the fuel options. For the 
assessment, the model considers three Tanzanian electricity demand 
profiles. The proposed Linear Mixed Integer Problem (LMIP) cost opti-
misation model was implemented in Python with the Gurobi optimisa-
tion solver [43]. The model minimises the yearly cash flow expenses of a 
diesel/PV/BES hybrid MG by selecting the optimum size and number of 
diesel generators, and the optimum biofuel blend to reduce fuel con-
sumption and pollutant emissions. A description of the indices, sets, 
parameters, and variables of the model is included in the supplementary 
material for enhanced readability of the paper. 

2.1. Objective function 

The objective function of the proposed model is to minimize the total 
cost of investment, operation, maintenance, and replacement, for a 
specific standalone hybrid MG. The analysis is performed over the entire 
duration of the MG lifetime and is split over years, months, and hours of 
analysis. The mathematical representation is: 

min Ccap +Cop +Cr +Cmnt (2) 

where Ccap is the capital cost, Cop the operating cost, Cr the 
replacement cost, and Cmnt the maintenance cost. Each term is explained 
below after presenting the sets and indexes included in the model: 

P is the set of project analysis periods in years (25 Years), 
M is the set of months within the analysis period (12 Months), 
T is the set of operating periods (24 h), 
G is the set of candidate diesel generators considered in the model (7 

generators of different sizes), 
B is the set of candidate fuel blends (4 blends). 
The elements belonging to the sets above are represented with the 

following indexes: p for year, m for month, tfor operating period, gfor 
genset, and bldfor fuel blend. These annotations apply to the whole 
paper. 

Ccapa): this term corresponds to the initial investment, given by 

Ccap =
∑

g∈G
Cgen

g +CPV +Cinver +Cbatt (3a)  

Cgen
g = gupc

g ⋅Pgenmax
g ⋅max

(
sg,t
)
∀g (3b)  

CPV = costPV ⋅instPV (3c)  

Cinver = costinver⋅instPV (3d)  

Cbatt = costbatt⋅Capbatt (3e) 

where Cgen
g , CPV , Cinver, and Cbattare the initial investment costs of the 

selected diesel generators, PV system, inverter, and battery system, 
respectively. The upfront cost per genset in £/kW is represented by gupc

g , 
and Pgenmax

g is the genset’s maximum power indicated for continuous 
operation in kW. The binary decision variable sg,t ∈ {0,1} indicates if a 
diesel generator is selected or not. The costs of the PV and the inverter in 
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£/kW are represented by costPV and costinver. The battery cost is indicated 
in £/kWh by costbatt. The installed PV in kW is instPV, similarly Capbatt is 
the installed battery system capacity in kWh calculated using the power 
storage capacity sizing equation (4)2 adapted from the Handbook on 
Battery Energy Storage System [44], given by 

BESSCapacity[kWh] =
Power required [kW]⋅duration required [h]

depth of discharge [%]⋅battery efficiency [%]
(4) 

Copb): this term corresponds to the total operational costs derived 
from the fuel consumption and emissions of the diesel generators for one 
year of operation (pdays ∼ 365◦ ), given by   

where, for each operating hour, generator, and blend, Cfuel
bld,g,t fuel 

cost, CCO2e
bld,g,t carbon dioxide equivalent (CO2e) emission cost, and CNOx

bld,g,t 

and CPM2.5
bld,g,t are the emission costs for nitrogen oxides (NOx) and partic-

ulate matter (PM2.5), respectively. Equations (5b), fuel costs, are 
comprised of the fuel purchase price bpbld and fuel consumption ubld,g,t, 
which are calculated using equations (5c) and (5d) respectively. 

Cfuel
bld,g,t = bpbld⋅Fubld,g,t∀bld, g, t (5b)  

bpbld = dieselprice⋅
(

bld
100

)

+ castoroilprice⋅
(

1 −
bld
100

)

(5c)  

bld ∈ {100, 80, 60, 50}

where bpbld is the blend purchase price in £/litre calculated.  

Fubld,g,t =

(
abld⋅Pgen

g,t + bbld

ρbld

)

⋅kg,t,bld∀bld, g, t (5d) 

The total fuel consumption per genset in l/h is Fubld,g,t, where abld and 
bbld are the coefficients found for each fuel blend, and ρbld is the density 
of each blend in kg/l. The decision variables Pgen

g,t and kg,t,bld ∈ {0,1}
determine the genset output power and the fuel selection in every 
operating period, respectively. In (5d) the coefficients abld and bbld 

correspond to the slope and the Y-intercept of the linear regression that 
appears in Fig. 1, respectively. 

Fig. 1 shows the correlation between mass fuel consumption and 
genset power output for seven different fuels/blends. The original diesel 
fuel consumption data were collected from the specifications of 83 diesel 
generators from 5 different suppliers/manufacturers within a 6 kVA to 
100 kVA range. Some manufacturers present the fuel consumption in g/ 
kWh but the volumetric representation in l/h is commonly used. The 
reported values vary from full prime rating to 25 % genset’s prime 
rating. Most manufacturers only report the fuel flow at prime and 75 % 
or 70 % prime rating. Therefore, only the genset models having more 
than one fuel consumption specification in l/h were selected. The se-

lection includes engines of different sizes from Perkins, Deutz, Iveco, and 
Yanmar. The volumetric fuel consumption data obtained was converted 
into its mass-based form (kg/h) using the typical density value for red 
diesel at 15 ◦C [45]. The red diesel density at 15 ◦C was chosen as 
manufacturers report the fuel consumption complying with the red fuel 
specification standard BS2869 [46]. For castor oil-diesel blends, the 
density of each castor oil-diesel blend (COD) at the testing temperatures, 
as shown in Table 1, was used to convert the original diesel data to the 
corresponding fuel blend. The COD-0 is the pure red diesel but tested at 
30 ◦C so there are two red diesel densities (15 and 30 ◦C). Then linear 
regressions were conducted to find the fuel consumption equations for 
each fuel type. Fig. 1 shows the mass-based fuel consumption data with 
linear regression equations and R2 for diesel and castor oil-diesel blends, 
the mass-based fuel values are summarised in Table S6 included in the 
supplementary material. There is a gap in fuel consumption data 
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Fig. 1. Mass-based fuel consumption against generated power for selected diesel generators.  

Table 1 
Diesel and Castor oil-diesel blends density values at different temperatures.  

Fuel Density [kg/l] Fuel Temperature [◦C] 

Red Diesel3  0.86 15 
COD-0  0.830 30 
COD-20  0.849 30 
COD-40  0.894 30 
COD-50  0.897 30 
COD-60  0.880 60 
COD-80  0.900 70 

3 From manufacturer’s specifications. The density of the red diesel (0.86 kg/l) is 
higher than the density value reported for COD-0 (0.83 kg/l) due to the different 
fuel temperatures at which their densities were tested. 

Cop = pdays

(
∑

t∈T

∑

g∈G

∑

bld∈B
Cfuel

bld,g,t +
∑

t∈T

∑

g∈G

∑

bld∈B
CCO2e

bld,g,t +
∑

t∈T

∑

g∈G

∑

bld∈B
CNOx

bld,g,t +
∑

t∈T

∑

g∈G

∑

bld∈B
CPM2.5

bld,g,t

)

(5a)   

2 The equation is used for sizing the power storage capacity when renewable 
integration, peak shaving or MGs applications are considered. 
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between 65 and 80 kW but the over trends showed a good linear 
behaviour for all the fuels. 

CCO2e
bld,g,t = taxcarbon⋅bEFbld⋅Fubld,g,t∀bld, g, t (5e)  

bEFbld = EFdiesel⋅
(

bld
100

)

+EFbiofuel⋅
(

1 −
bld
100

)

bld ∈ {100, 80, 60, 50} (5f) 

where taxcarbon is the cost in £/kgCO2e for CO2e emissions and bEFbld 

is the fuel blend emission factor in kgCO2e/litre for specific fuel blends 
as calculated with (4f). EFdiesel and EFbiofuel are the diesel and biofuel 
corresponding emission factors, also in kgCO2e/litre. 

CNOx
bld,g,t = ecostNOx⋅eNOx

bld,g,t∀bld, g, t (5 g)  

eNOx
bld,g,t = sizeeng

g ⋅glfag⋅BEFNOx
g ⋅EFANOx

bld ⋅kg,t,bld∀bld, g, t (5 h) 

where ecostNOx is the NOx emissions cost in £/gNOX. eNOx
bld,g,t represents 

the NOx emissions per hour per genset, sizeeng
g is the genset’s engine 

prime power in kW, while glfag and BEFNOx
g are the load factor adjust-

ment and the NOx baseline emission factor in g/kWh, respectively, ac-
cording to the methodology for estimating pollutant emissions for non- 
road machinery [47]. The NOx emission factor adjustment EFANOx

bld is the 
coefficient found from experimental work for each biofuel blend. 

CPM2.5
bld,g,t = ecostPM2.5 ⋅ePM2.5

bld,g,t∀bld, g, t (5i)  

ePM2.5
bld,g,t = sizeeng

g ⋅glfag⋅BEFPM2.5
g ⋅EFAPM2.5

bld ⋅kg,t,bld∀bld, g, t (5j) 

where ecostPM2.5 is the PM2.5 emissions cost in £/gPM2.5. ePM2.5
bld,g,t rep-

resents the PM2.5 emissions per hour per genset, BEFPM2.5
g is the PM2.5 

baseline emission taken from [47], and EFAPM2.5
bld is the emission factor 

adjustment coefficient calculated from experimental work for each 
biofuel blend. 

Crc): this term refers to the cost of replacing the diesel generators and 
is given by 

Cr =
∑

g∈G
(0.88Cgen

g /2)⋅
∑

m∈M
replaceengine

g,m +
∑

g∈G
(0.88Cgen

g /2)⋅
∑

m∈M
replacealternator

g,m

(6a)  

replaceengine
g,m =

{1ifHgcmg,m ≥ glf g∀g,m
0otherwise

}

(6b)  

replacealternator
g,m =

{1ifHgcmg,m ≥ 20000∀g,m
0otherwise

}

(6c) 

where replaceengine
g,m and replacealternator

g,m indicate the decision of replacing 
the engine or the alternator of genset gin month m, respectively, and glf g 

represents the lifetime of each engine. 
Cmntd): this term represents the maintenance required for the gensets 

selected, 

Cmnt=bpbld=100

(
∑

g∈G
mntdaysg

(
(abld=100Pgenmax

g +bbld=100)⋅max
(
sg,t
)

ρbld=100

)

⋅Kp=1,bld

)

+servc

(
∑

g∈G
Pgenmax

g ⋅max
(
sg,t
)
⋅Kp=1,bld

)

(7a)  

mntdaysg =

{
12⋅(t/4)ifkp=1,bld=100∀g

365⋅(t/4)otherwise

}

(7b) 

where bpbld=100 is the diesel price in £/l, mntdaysg represents the 
estimated maintenance days, depending on the type of fuel used during 
the operating periods. Pgenmax

g is the prime power of the selected gensets in 
kW, as indicated by sg,t , and Kp=1,bld represents the blend selected during 
the analysis period. The annual service cost is represented by servc in 
£/kW, based on the operation and maintenance cost from the MG REopt 
LCOE Results Explorer [48]. 

2.2. Model constraints 

The constraints below were needed to account for the operational 
limitations of the energy sources (i.e., diesel generators, PV, and BES). 

The system power balance to meet the load demand at each hour of 
the day dt , considering the PV system output power PRE

t and the power 
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Fig. 2. BTE and SFC curves from a diesel generator running with castor oil-diesel (COD) blends.  
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supplied (Pbattdischar
t ) or consumed (Pbattchar

t ) by the batteries, both in kW is 
given by 
∑

g∈G
Pgen

g,t +PRE
t +Pbattdischar

t − Pbattchar
t = dt∀t (8a) 

A load demand security margin Dt is considered, where the 
maximum power from the selected gensets Pgenmax

g and the maximum 

battery discharging power Pbattmaxdischar
t can be used according to (8b). 

∑

g∈G

(
Pgenmax

g ⋅wg,t

)
+PRE

t +Pbattmaxdischar
t ≥ Dt∀g, t (8b) 

The constraints related to the selection of the diesel generators are 
given by 
∑

g∈G
sg,t ≤ U (9a)  

Pgen
g,t ≥ Pgenmin

g ⋅wg,t − genslackg,t∀g, t (9b)  

Pgen
g,t ≤ Pgenmax

g ⋅wg,t∀g, t (9c)  

sg,t ≥ wg,t − wg,t− 1∀t > 0, g (9d)  

sg,t − wg,t ≥ 0∀t, g (9e) 

where the binary decision variable sg,t ∈ {0,1} determines which 
genset is selected without exceeding the maximum number represented 
by U. Pgenmin

g refers to the lowest acceptable genset output power in kW. 
This limit was investigated because sometimes in optimisation the limit 
is set to 30 % of the gensetś prime power [24]. However, according to 
[49] the optimum genset operating range goes from 70 to 89 % of its 
rated power and [50] mentions that the highest efficiency of the diesel 
engine occurs above 60 % load. The model considers the operating limits 

determined by the specific fuel consumption (SFC) and the brake ther-
mal efficiency (BTE) results from experimental work using a 6kVA diesel 
generator. The optimal operating limits are represented by the region 
where the lowest SFC values and the highest BTE occur, above 60 % of 
the genset’s prime power, as shown in Fig. 2. The equations for the 
calculation of BTE and SFC are in the supplementary materials III 
(equations (18) and (19)). A key message from Fig. 2 is that the genset 
load factor needs to be at 60 % and above to achieve maximum BTE and 
minimum SFC. This threshold is not affected by different fuel blends. 

The constraints related to the selection of the fuel blend are given by 
∑

bld∈B
kg,t,bld ≤ 1∀g, t (10a)  

wg,t = max
(
kg,t,bld

)
∀g, t (10b) 

where (10a) and (10b) ensure that the gensets only operate with one 
type of fuel blend. 

The constraints related to the battery are given by 

Ebatt
t = Ebatt

t− 1 +

(

ηbatt⋅Pbattchar
t −

Pbattdischar
t

ηbatt

)

∀t (11a)  

Ebatt
t ≤ SoCmax⋅Capbatt∀t (11b)  

Ebatt
t ≥ SoCmin⋅Capbatt∀t (11c)  

Ebatt
0 = SoCmax⋅0.8Capbat (11d)  

Ebatt
23 = Ebatt

0 (11e)  

Pbattchar
t ≥ 0⋅chart∀t (11f)  

Pbattchar
t ≤ Pbattmax ⋅chart∀t (11g)  

Pbattdischar
t ≥ 0⋅dischart∀t (11h)  

Pbattdischar
t ≤ Pbattmax ⋅dischart∀t (11i)  

Pbattmax = Capbatt/5 (11j)  

chart + dischart ≤ 1∀t (11k) 

where Ebatt
t is the energy available from the batteries at a specific 

operating period. The battery efficiency is represented by ηbatt, SoCmax 

and SoCmin are the battery’s maximum and minimum state of charge. The 
charging and discharging battery periods are determined by the binary 
decision variables chart ∈ {0,1}, and dischart ∈ {0,1}. 

Finally, the constraints on the replacement of the diesel generators 
are given by 

Hgcmg,m ≥ Hgmg⋅
(

1 − replaceengine
g,m

)
∀g,m (12a)  

Hgcmg,m ≤ glf g⋅
(

1 − replaceengine
g,m

)
∀g,m (12b)  

Hgcmg,m ≥ Hgmg⋅
(

1 − replacealternator
g,m

)
∀g,m (12c)  

Hgcmg,m ≤ 20000⋅
(

1 − replacealternator
g,m

)
∀g,m (12d)  

Hgdg =
∑1

t∈T
wg,t∀g (12e)  

Hgmg = 30⋅Hgdg∀g (12f)  

Hgcmg,m = m⋅Hgmg∀g,m (12 g)  

Hgag = Hgcmg,m∀g,m = 12 (12 h) 

Table 2 
Input parameters for the optimisation model.  

Model Input Source 

Diesel price (£/litre)  
* 

0.88 Tanzania Diesel prices [52]. 

Castor oil price 
(£/litre) * 

0.44 Tanzania Castor Oil Prices [53]. 

Carbon tax 
(£/kgCO2e) * 

0.0075 Carbon Pricing Dashboard [54]. 

Diesel: average 
biofuel blend 
conversion factor 
(kg CO2e/litre) 

2.51233 UK Government Conversion 
Factors for greenhouse gas 
reporting [55] 

Biofuel conversion 
factor (kg CO2e/ 
litre) 

0.02529 Experimental data from Castor 
oil-diesel blends engine tests. 

PM2.5 emission cost 
(£/g) * 

0.0527 The true cost of fossil fuels: 
Externality cost assessment 
methodology [56]. NOx emission cost 

(£/g) * 
0.0089 

Genset upfront cost 
(£/kW) * 

614.72 (genset 
size < 100 kW) 
388.00 (genset 
size greater 
than 100 kW) 

Detailed Cost Models and 
Benchmarks [57]. 

Genset maintenance 
cost (£/kW) * 

19.02 MG Load and LCOE Modelling 
Results [48]. 

PV cost (£/kWp) * 1,673.74 Tariff Considerations for Micro- 
Grids in Sub-Saharan Africa  
[58]. 

Inverter cost (£/kW)  
* 

912.95 

Lead-acid battery cost 
(£/kWh) * 

60.86 State of the global MG Market 
Report 2020 [59]. 

Li-ion battery cost 
(£/kWh) * 

133.90 

Repurposed battery 
cost (£/kWh) 

66.95 Calculated from Li-ion price.  

* Prices converted to £ from their original values in USD, considering the 
average exchange rate history of 1 USD=0.76079 GBP (Dec-May 2022) [60]. 
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where Hgcmg,m, Hgmg, Hgdg, and Hgag are the monthly cumulative, 
monthly, daily, and annual operating hours of the gensets, respectively. 
The binary decision variable wg,t indicates if a genset is operating or not 
during the daily or monthly operating periods. 

2.3. Model inputs 

The model inputs for finding the optimisation results are shown in 
Table 2. It is worth mentioning that for calculating the emission costs, 
the South African Carbon Tax was used as no tax or carbon price is yet 
available in Tanzania. Also, the pollutant costs for the PM2.5 and NOx 
emissions were taken from the estimated external costs reported by 
IRENA related to the use of fossil fuels for electricity generation and 
other activities in European countries as no data was found for African 
countries. It should be noted that seven diesel generators (G1-G7) of 
different sizes (6.88, 9.76, 14.96, 22.56, 33.76, 44.0, and 143.12 kW) 
were included for the genset selection, where the smallest power 
correspond to G1. Finally, it should be mentioned that the price for the 
repurposed battery (66.95 £/kWh) was assumed to be 50 % of the 
original Li-ion price according to the second life of batteries scenario 
presented in the Li-ion batteries for mobility and stationary storage 
applications report [51]. 

2.4. Economic assessment 

The equations presented below, (13) to (17f), were used to carry out 
an economic assessment based on the life cycle cost (LCC) and the 
Levelized cost of energy (LCOE) for cost comparison among the elec-
tricity generation configurations that appear in section 4. The dis-
counting method was selected, as according to Lai and McCulloch [61] is 
an appropriate methodology for calculating LCOE when renewable 
sources are included. 

The LCC, also known as Net Present Cost (NPC) for the system within 
the analysis period Pis given by 

LCCsystem = LCCgen + LCCPV +LCCbatt (13) 

where CCgen, LCCPV, and LCCbatt are the costs associated with the 
diesel generators, the PV system, and the battery, respectively. The three 
terms of the LCCsystem are defined as follows: 

LCCgena): this term includes the costs of the energy generated by the 
gensets given by 

LCCgen = LCCgenload + LCCgenbatt (14a)  

LCCgenload =
∑

p∈P

(

YCFgen
p ⋅dfp⋅

Egenload
p

Egen
p

)

(14b)  

LCCgenbatt =
∑

p∈P

(

YCFgen
p ⋅dfp⋅

(

1 −
Egenload

p

Egen
p

))

(14c)  

df =
1

(1 + r)p (14d)  

YCFgen
p =

∑

g∈G

∑

bld∈B

(
Cgen

g,p=0 +Cfuel
bld,g,p +CCO2e

bld,g,p +CNOx
bld,g,p +CPM2.5

bld,g,p +Cr
g,p=estglf ,estalt

+Cmnt
g,p

)

(14e)  

estglf =

(
glfg

Hgag

)

⋅iif
P

(
glfg

Hgag

) ≤ i ≤ 1 (14f)  

estalt =
(

20000
Hgag

)

⋅iif
P

(
20000
Hgag

) ≤ i ≤ 1 (14 g) 

where LCCgenload and LCCgenbatt are the associated costs of the energy 
generated by the gensets to supply the load and/or charge the battery. 
YCFgen

p represents the genset’s yearly cash flow, dfis the discount factor 
that considers the real discount rate (10 %). Egenload

p is the electricity 
delivered by the gensets to the load and Egen

p is the total electricity 
delivered by the gensets, both in kWh/year. The initial and replacement 
cost of the gensets are represented by Cgen

g,p=0 and Cr
g,p=estglf ,estalt. The esti-

mated engine replacement period (estglf) and the estimated alternator 
replacement period (estalt) depend on the lifetime of each engine 
(glfg ∈ {3000,7500}) or alternator (20000 h), and their operating hours 
during the first year of the project (Hgag) as represented in (14f) and 

(14g). Cfuel
bld,g,p is the fuel consumption cost, the pollutant emission costs 

for CO2e, NOX and PM2.5 are represented by CCO2e
bld,g,p, CNOx

bld,g,p , and CPM2.5
bld,g,p. 

Cmnt
g,p is the maintenance cost from (7a). 

LCCPVb): this term includes the costs of the energy generated by the 
PV system given by 

LCCPV = LCCPVload + LCCPVbatt (15a)  

LCCPVload =
∑

p∈P

(

YCFPV
p ⋅dfp⋅

EPVload
p

EPV
p

)

(15b)  

LCCPVbatt =
∑

p∈P

(

YCFPV
p ⋅dfp⋅

(

1 −
EPVload

p

EPV
p

))

(15c)  

YCFPV
p = CPV

p=0 +Cinver
p=0 +CPVrpl

p=20 +Cinverpl
p=10,20 (15d) 

where LCCPVload and LCCPVbatt are the associated costs of the energy 
generated by the PV to supply the load or charge the battery. YCFPV

p 

represents the PV’s yearly cash flow, EPVload
p is the electricity delivered by 

the PV to the load and EPV
p is the total electricity delivered by the PV, 

both in kWh/year. CPV
p=0 and Cinver

p=0 are the initial costs of the PV and the 

corresponding inverters. Similarly, CPVrpl
p=20 and Cinverpl

p=10,20 represent their 
replacement costs. 

LCCbattc): this term includes the costs of the energy supplied by the 
batteries given by 

LCCbatt =
∑Y

p∈P
YCFbatt

p ⋅dfp (16a)  

YCFbatt
p = Cbatt

p=0 +Cbattrpl
p=battlf (16b) 

where YCFbatt
p is the battery systeḿs yearly cash flow, Cbatt

p=0 is the 

battery initial cost and Cbattrpl
p=battlf is its replacement cost. The battery 

replacement cost depends on the lifetime of a specific battery type, 

Fig. 3. Electricity flow diagram for a genset/PV/battery hybrid system.  
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which gives different battery replacement periods (battlf), in years. For a 
Lead-acid battery, battlf ∈ {6, 12, 18, 23}, for a Li-ion battery, 
battlf ∈ {10,20}, and for a Repurposed battery, battlf ∈ {5,10,15,20}. 

Finally, the LCOE of the system is given by 

LCOEsystem =
LCCsystem

∑1
p∈P

(
Esystem

p ⋅dfp

) (17a)  

Esystem
p = Eload

p +Ebatt
p (17b)  

Eload
p = Egenload

p (1 − drgen)
p
+EPVload

p

(
1 − drPV)p (17c)  

Ebatt
p = η⋅

(
Egenbatt

p (1 − drgen)
p
+EPVbatt

p

(
1 − drPV)p

)
(17d)  

Egenbatt
p = Egen

p − Egenload
p (17e)  

EPVbatt
p = EPV

p − EPVload
p (17f) 

where Esystem
p is the total electricity delivered by the system, Eload

p is the 
electricity delivered by the genset and the PV to the load, and Ebatt

p is the 
electricity delivered by the battery to the load, all of them in kWh/year. 
η is the roundtrip efficiency of the battery and dr is the degradation rate 
[61] considered for each element in the system. Fig. 3 exemplifies the 
importance of computing Esystem

p according to (17b), to prevent double 
counting the electricity delivered from the battery to the load as the 
battery is not a generating source itself. 

3. Electricity demand and PV system scenarios 

To test the performance of the model, several scenarios were created 
to present how a different electricity demand profile and the different 
installed capacity of PV systems, with and without a battery system 
affect the genset selection for installing a MG in a rural ward (Mpiga-
miti), located within the Lindi Region of Tanzania. 

3.1. Electricity demand scenarios 

The three load profiles shown in Fig. 4 represent the electricity de-
mand scenarios (high, medium, and low) generated using the Rural 
African Load Profile Tool developed by the National Renewable Energy 
Laboratory (NREL) [48]. The load profile tool provides hourly electrical 
load profiles for different household configurations and commercial 
facilities (schools, clinics, etc.) as specified by the user inputs. This work 
considered 350 households with an average household size of 6 people 
[62] for the 2096 inhabitants in Mpigamiti [63]. The electrical load from 
the commercial facilities was unchanged across the scenarios but a 
different percentage of low, medium, and high-income households was 
considered for comparison purposes. The household configuration and 
commercial inputs for each scenario and a map showing the Lindi Re-
gion (see Fig. S1 [75]) are included in the supplementary material 
section. 

Fig. 4 shows that the profiles from all three scenarios have the similar 
pattern, i.e. a large peak in the evening (around 20:00) when people 
starts to switch on electric appliances and a mild peak in the morning. 
However, the high electricity demand scenario with 70 % high income 
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Fig. 4. Electricity demand scenarios created for Mpigamiti, Tanzania.  

Table 3 
Relevant data for PV array selection (low, medium, and high installed capacity).  

Electricity Demand 
Scenario 

Average electrical load 
during daylight (kW) 

Peak electrical 
load (kW) 

Min electrical 
load (kW) 

Low PV installed 
capacity required (kW) 

Medium PV installed 
capacity required (kW) 

High PV installed 
capacity required (kW) 

High 9 27  3.35 5 7 12 
Medium 6 20  2.17 3 5 8 
Low 4 12  1.58 2 3 6  
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households demonstrated a much higher peak than the low electricity 
demand scenario because the high-income families have more electric 
appliances. 

3.2. PV system scenarios 

For the electricity demand scenarios presented above, the average 
electrical loads during daylight hours, from 7 am to 6 pm, were calcu-
lated for selecting the PV system required, able to supply 40 %, 60 %, or 
100 % of the average load. The numbers gave three PV scenarios cor-
responding to a low (40 %), medium (60 %), or high (100 %) PV 
installed capacity as summarized in Table 3. 

3.3. PV performance scenarios 

For every PV scenario, the hourly output power was calculated using 
the Photovoltaic Geographical Information System (PVGIS) interactive 
tool from the European Commission website, with the solar radiation 

data from 2016 to 2020 [64]. Once the hourly output power was 
calculated, the clustering K-Means algorithm from scikit-learn [65] was 
applied, following the methodology presented in [66], to obtain the 
representative operating day from each PV system. The representative 
operating day gives a reasonable estimate of the possible PV system 
power generation considering the solar radiation fluctuation for the 
whole year. Fig. 5 shows the clustering for a 2 kW PV system, the blurred 
lines correspond to the raw daily hourly power output during the five 
years, and the dashed lines show the three clusters created after 
grouping the data according to their hourly output values. 

The PV cluster diagram is useful to present the possible PV power 
output scenarios, considering a low, medium and high PV performance 
as defined by the representative day found with the K-means algorithm. 
The representative days can be used for scenario analysis to determine 
how the PV system performance may alter the diesel generator operating 
conditions. In this work the PV power output was assumed as regular 
(most likely) for demonstration purposes. The power generation by 
source and the total power generation diagrams of the hybrid systems 
(PV, genset, and battery) for each electricity demand profile have been 
added in the supplementary material to show how the PV power (and 
the other power sources) relate to the electricity demand profile. 

It is worth noting that there are uncertainties linked to the load and 
the PV generation configuration in the model. Possible uncertainties 
include: 

• assumption of the electrical load from the commercial facilities un-
changed across the scenarios which may not be true  

• number of households  
• fractions of high, medium and low-income households, and the 

number of commercial facilities.  
• assumed installed PV capacity, accuracy of the solar radiation data 

and the PVGIS tool. 

The input uncertainty (since PV generation and Load consumption 
are considered inputs to the optimisation model) can be characterised 
with probability functions. The parameters and type of the probability 
functions can be derived using historical data of the installation location 
or nearby installations with similar load types and PV characteristics. 
This approach converts some of the optimisation model constraints into 

Fig. 5. Output power and representative operating day clusters for a 2 kW PV system over five years.  

Table 4 
Examples of optimisation results with fixed PV capacity and performance (reg-
ular PV performance and a high PV installed capacity) at High, Medium, and 
Low load scenarios.  

System configuration Electricity demand scenario  

High 
(HED) 

Medium 
(MED) 

Low 
(LED) 

SC1-Genset** G1 + G2 + G3 
SC2-Genset and PV G1 + G2 + G3 
SC3-Genset and Battery (Lead-acid) G3 G2 G1 
SC4-Genset and Battery (Li-ion) G3 G3 G1 
SC5-Genset and Battery (repurposed) G4 G3 G2 
SC6-Genset, PV, and Battery (Lead- 

acid) 
G3 G2 G1 

SC7-Genset, PV, and Battery (Li-ion) G3 G3 G1 
SC8-Genset, PV, and Battery 

(repurposed) 
G1 + G2 G3 G2  

** G1: 6.88 kW, G2: 9.76 kW, G3: 14.96 kW. A complete list of the gensets used 
in the optimisation model is provided in the supplementary material (see 
Table S4 [76]). 
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chance constraints. The problem can then be solved as Stochastic MILP 
or a Robust MILP using many different approaches [67–69]. However, in 
this work, the expected values of the PV generation and load con-
sumption are used to simplify the solution and focus on the genset se-
lection and characteristics. 

4. Exemplar application of the tool for optimised hybrid MG 
configurations at various electricity demands 

The proposed tool can be used for the optimal selection of gensets in 
various system configurations, i.e. which genset or gensets should be 
selected for a given system configuration (pure genset or hybrids with 
different PV capacity and performance levels and a variety of battery 
capacities). For demonstration purposes, an example case was set with 
fixed PV capacity and performance (regular PV performance and a high 
PV installed capacity) and a battery installed capacity able to supply the 
night demand (peak shaving from 6 to 11 pm). The proposed tool was 
used for optimised Genset selection for eight system configurations (SC) 
considered for the high, medium, and low electricity demand (HED, 
MED, and LED) scenarios, as shown in Table 4. Here, all three demand 
scenarios (HED, MED and LED) were included and logically ordered. 
There is no randomness for the scenario appearance. The computational 
effort required to find the optimum solution was between 2370 and 
1,087,385 simplex iterations depending on the system configuration 

that was optimised. The optimisation problem has 3376 continuous 
variables and 1064 integer (binary) variables. 

Generation profiles from different system configurations would vary 
depending on the power generation mix and electricity demand. The full 
analysis of the generation profiles would require 24 figures, which is not 
the focus of this paper. However, an example of the optimised power 
generation profile of a hybrid system SC8-Genset, PV, and Battery 
(repurposed) for a medium electricity demand is shown in Fig. 6. Fig. 6A 
shows the optimised power contribution of each generating source as 
well as the power required to charge the batteries. The load demand and 
total power generation (Fig. 6B) indicates that the optimisation process 
was successfully carried out as it shows a perfect match between the 
power generation curve and the total load curve (electricity demand 
plus battery charging power). This combined power generation allows 
fuel savings during the periods when the genset is not working. More-
over, the optimised interaction of the power sources enables to keep the 
diesel generator operating at the recommended conditions by charging 
the batteries during the low electricity demand periods or during the 
periods where the PV system contributes to supply the electricity 
demand. 

Other examples of the power generation profiles for SC6, SC7 and 
SC8 at HED, MED and LED are presented in Figs. S2-S9 of the supple-
mentary materials. These examples show how the power generation 
profiles vary according to the electricity demand, the PV system and the 

Fig. 6. Load demand and power generation by source (A.) and Load demand and total power generation (B.) diagrams for SC8-Genset, PV, and Battery (repurposed) 
with medium electricity demand profile. 
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installed battery. According to the model constraints, the battery dis-
charges during the night peak to reduce the power generation from 
diesel generators for reducing fuel consumption and pollutant emis-
sions. The different shape of the power generation profiles is best 
appreciated in the load demand and total power generation diagrams, 
where the total power generation curve well matches the total load 
curve (electricity demand plus battery charging power), indicating that 
the optimisation process was successfully carried out in all the 
configurations. 

The optimisation results indicate that three diesel generators (G1, 
G2, and G3) should be installed in the scenarios without a battery to 
allow the optimum performance of the diesel generators preventing 
excessive fuel consumption and higher pollutant emissions. On the other 
hand, if a battery system is included, only one diesel generator is 
required for the rest of the hybrid configurations, with the exception 
found in the HED scenario when using a repurposed battery. The 
generator size selection across the scenarios varied from G1 to G4 as the 
choice depends on the electricity demand and the battery characteris-
tics, such as its charging-discharging periods. It was noted that despite 
the low castor oil price (0.44 £/litre), which is 50 % lower than that of 
diesel (0.88 £/litre), the fuel selected by the model was diesel (COD-0) in 
the three scenarios for all the system configurations. A very important 
factor that determines the fuel type selection is the pollutant emission 
cost. The mathematical expressions supporting the fuel type selection 
based on the C02e and PM2.5 emissions are given by (5e) and (5j), these 
equations include the fuel blend emission factor (bEFbld) in kgCO2e/litre 

and the PM2.5 emission factor adjustment coefficient (EFAPM2.5
bld ) respec-

tively. The bEFbld considers the CO2e emissions of a fuel blend according 
to (5f), which uses the values shown in table 2 (2.51233 for diesel and 
0.02529 for biofuels). The EFAPM2.5

bld coefficient indicates the PM2.5 
emissions of a fuel blend relative to the diesel emissions. Through 
experimental work it was found that the PM2.5 emissions increase as the 
castor oil content increases in the fuel blend. A table with the EFAPM2.5

bld of 
each fuel type has been included in the supplementary material section 
for better understanding of the fuel selection done by the model. By 
looking at the emissions factors mentioned above, it is expected that the 
model selects the fuel with the least emission factor, i.e., the emission 
cost plays an important role in the fuel selection process. Therefore, the 
fuel selection is based on the fuel price, the emission factors and the 
emission costs. The model would always select the fuel that represents 
the minimum overall cost after considering those values for each fuel 
type. Particular cases are included in the sensitivity analysis section to 
show how the fuel selection can be impacted by varying the fuel price or 
the emissions cost. 

Fig. 7 shows the fuel consumption and CO2e emissions from different 
system configurations. A linear correlation between fuel consumption 
and CO2e emissions has been observed which is aligned with the logic 
and the fact that CO2 emissions are determined by the carbon content in 
the fuel. So for engines running with a fixed fuel at above medium load 
factor, which means similar thermal efficiency and is the case in Fig. 7, 
CO2 emissions are as a function of fuel consumption. Non-CO2 

Fig. 7. Fuel consumption and CO2e emissions per year for different MG configurations with different electricity demand profiles.  

Fig. 8. PM2.5 and NOx emissions per year for different MG configurations with different load profiles.  
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emissions, N2O and CH4, are minimal in the medium to high load 
combustion of diesel engines so CO2 is the dominant contributor to CO2e 
emissions. 

Fig. 7 shows that the highest yearly fuel consumption was the SC1- 
Genset (HED: 31,504.40 l/y, MED: 23,166.60 l/y, and LED: 
16,698.80 l/y). As expected, using hybrid configurations (Genset/PV/ 
battery) reduces the fuel consumption for the three scenarios as less 
energy is required from the diesel generators. It is shown that using SC7- 
Genset, PV, and Battery (Li-ion) could achieve the lowest fuel con-
sumption, up to 20 % reduction in the HED scenario. In the MED sce-
nario, the lowest fuel consumption could be achieved by SC7 and SC8, 
up to 23.5 % reduction. In the LED scenario, the SC8-Genset, PV, and 
Battery (repurposed), has the lowest fuel consumption with up to 24 % 
reduction. Similar fuel savings were reported in [70], where the total 
diesel consumption was reduced by about 21 % by replacing a stand-
alone diesel generating system with a hybrid PV/Diesel/Battery system. 
Also, Atmaja et al. [71] reported potential fuel savings between 30 % 
and 40 % by replacing a 60kVA diesel generator with a smaller one 
(42kVA) supported by a PV and battery system. The reason that SC7 and 
SC8 have the lowest fuel consumption is attributed to the combination of 
PV and lithium-ion battery. In comparison with SC6, where lead acid 
battery was used, lithium battery (the repurposed battery is the used 
lithium battery from transport) in SC7 and SC8 has a greater energy 

storage capacity than lead acid batteries and is able to provide more 
electricity and thus reduce fuel consumption. Compared to SC4 and SC5 
which only have lithium batteries without PV, electricity from PVs in 
SC7 and SC8 resulted in more reductions in fuel consumption. 

Correspondingly to the fuel consumption, the highest CO2e emissions 
(HED: 79,149.40 kg/y, MED: 58,202.00 kg/y, and LED: 41,952.80 kg/y) 
were also found in the SC1-Genset. Therefore, the emissions could be 
reduced by 20 %, 23.5 %, and 24 % in the HED, MED and LED scenarios, 
respectively. These emissions reduction findings are comparable to the 
carbon dioxide emissions reduction of about 21 % reported by Lau et al. 
[70] after implementing a hybrid PV/Diesel /Battery system. 

The results in Fig. 7 show the importance of combination of renew-
able electricity generation (PV) and energy storage (batteries) in 
reducing fuel consumption in the hybrid microgrid systems. The larger 
the capacity of the energy storage, the lower the fuel consumption and 
emissions. 

Similarly, the highest pollutant emission values for PM2.5 
(HED:214.71 kg/y, MED: 164.83 kg/y, LED: 135.32 kg/y) and NOx 
(HED: 1,502.95 kg/y, MED: 1,153.82 kg/y, LED: 947.21 kg/y) were 
found in the SC1-Genset. Fig. 8 shows the PM2.5 and NOx emission 
values found for the different configurations. The figures indicate that 
both pollutants can be reduced up to 47 % in the LED scenario with the 
SC6-Genset, PV, and Battery (Lead-acid) or the SC7-Genset (Li-ion). A 

Fig. 9. Life Cycle Cost over 25 years for different MG configurations with varying load profiles.  

Fig. 10. Levelized Cost of Energy over 25 years for different MG configurations with different electricity demand profiles.  
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37 % reduction is possible in the MED scenario using the SC7-Genset, 
PV, and Battery (Li-ion) or the SC8-Genset, PV, and Battery (repur-
posed). In the HED scenario, these pollutant emissions can be reduced by 
32 % with the SC7-Genset, PV, and Battery (Li-ion). 

It should be noted that the higher reduction in pollutant emissions 
for PM2.5 and NOx compared to the CO2e reduction is attributed to the 
size of the diesel generators that play an essential role in (5h) and (5j) for 
the emission calculations. This means that the size of any generator 
considered within the hybrid systems (G1, G2, G3 or G1 + G2) will give 
lower PM2.5 and NOx emissions than those from the SC1-Genset with a 
higher installed capacity (G1 + G2 + G3). The size effect is not reflected 
on the CO2e emissions as they are calculated from the fuel consumption 
computed in (5d) in terms of the Genset’s operating power rather than 
on the actual generator’s size. 

5. Economic assessment 

An economic evaluation among the optimised MG configurations 
from the previous section was conducted to determine which system can 

present more benefits considering financial and environmental impli-
cations. Fig. 9 shows the overall cost comparison for a Life Cycle Cost 
(LCC) over a 25-year horizon. The numbers indicate that the highest LCC 
corresponds to the SC2-Genset and PV in all the electricity demand 
scenarios (HED: £549,457.78, MED: £427,943.46, and LED: 
£323,644.75). These high costs are attributed to the high fuel 
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Fig. 11. Pollutant emissions and LCOE comparison for selected HED scenario 
hybrid system configurations. SC7 has the lowest emissions while SC5 has the 
lowest LCOE. 

Fig. 12. Pollutant emissions and LCOE comparison for selected MED scenario 
hybrid system configurations. SC7 has the lowest emissions while SC4 and SC8 
have the lowest LCOE. 
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Fig. 13. Pollutant emissions and LCOE comparison for selected LED scenario 
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emissions. SC8 has the lowest CO2e emissions. SC5 and SC8 have the 
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Table 5 
Pollutant emissions and LCOE baseline values (the lowest of each category) 
considered for the cost-benefit analysis presented in Figs. 11, 12, and 13.  

Scenario CO2e 
Emissions 
Baseline (kg/y) 

PM2.5 

Emissions 
Baseline (kg/y) 

NOx Emissions 
Baseline (kg/ 
y) 

LCOE- 
25 years 
Baseline 
(£/kWh) 

HED  62,994.90  145.25  1,016.73  0.47 
MED  44,535.30  103.75  726.23  0.48 
LED  31,794.30  71.57  500.98  0.52  

Table 6 
LCOE Sensitivity analysis input values with a brief description.  

Modified 
Parameter 

Low 
Cost 

High 
Cost  

Diesel Price (£/l)  
* 

0.441  1.765 It was considered a 50 % reduction (low 
cost) and a two-times increase (high 
cost) from the current price (0.88 £/l). 

Carbon Tax 
(£/kgCO2e) * 

0  0.1497 It was considered a zero-carbon tax (low 
cost) and a 20 times increase (high cost) 
in the current South African carbon tax 
(9.84 US/tCO2e), which equals the 
highest existing carbon tax in the world 
(Uruguay:137.30 US/tCO2e) [54]. The 
baseline cost was 0.0075 £/kgCO2e, as 
reported in Table 2. 

PM2.5 Emissions 
(£/gPM2.5) * 

0  0.1519 It was considered a zero PM2.5 emission 
cost (low cost) and the high cost of 
199,630 USD/tonne [56]. The baseline 
cost was 0.0527 £/g, as reported in  
Table 2. 

NOx Emissions 
(£/gNOx) * 

0  0.0243 It was considered a zero NOx emission 
cost (low cost) and the high cost of 
31,941 USD/tonne [56]. The baseline 
cost was 0.0089 £/g, as reported in  
Table 2.  

* Prices converted to £ from their original values in USD, considering the 
average exchange rate history of 1 USD=0.76079 GBP (Dec-May 2022) [60]. 

N. Rangel et al.                                                                                                                                                                                                                                  



Applied Energy 335 (2023) 120748

14

consumption plus the initial investment on PV arrays that do not help to 
reduce the diesel generators’ operating hours during the night peak as 
PVs are not generating electricity in the night and there are no energy 
storage systems (batteries). The LCC is comprised of initial purchase 
costs, maintenance and part replacement costs and fuel costs. The cost of 
fuel during the assessed period (25 years) is a dominant factor for the 
LCC so results in Fig. 9 have the similar pattern as Fig. 7. 

Overall, it can be seen that adding batteries to the MG systems has a 
significant impact on LCC values for all electricity demand scenarios. 
This is because adding batteries reduced the number of generators 
needed, i.e. three generators were selected in SC1 and SC2 whereas only 
one generator was selected for the rest of configurations. Therefore, it is 
recommended that including energy storage systems to microgrids is 
important for reducing the LCC values. The lowest LCC was found in the 
SC8-Genset, PV, and Battery (repurposed) for the three scenarios (HED: 
£ 457,929.81, MED: £328,786.48, and LED: 230,541.23). Those values 
corresponded to 16.7 %, 23 %, and 28.8 % reductions in LCC, 

respectively, compared to the reference configuration (SC2-Genset and 
PV). A slightly higher LCC for SC7 is due to higher costs of new lithium 
batteries compared to repurposed lithium batteries in SC8 (£133.9/kWh 
for new and £66.95/kWh for repurposed). In the high electricity demand 
scenario, SC5 is also competitive due to that the fuel consumption in 
Fig. 7 for SC5 and SC8 is similar, which confirms that the fuel con-
sumption is a dominant factor for LCC. Inclusion of PVs in SC6-8 did not 
vary the LCC significantly, indicating that the additional cost from the 
installation of PVs would not increase the overall costs. 

As presented above, the LCC determined the cheapest configuration 
over the useful life of different system configurations, but it didńt reflect 
a fair comparison in terms of per unit of electricity generation for the 
diverse technologies included. Therefore, a second comparison, over the 
same 25-year horizon, based on the overall cost and the total electricity 
produced by each SC was done using the Levelized Cost of Energy. 
Fig. 10 shows the LCOE of each SC within the three electricity demand 
scenarios. The best value for the HED scenario (0.47 £/kWh) was found 
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Fig. 14. LCOE (£/kWh) sensitivity analysis for two system configurations in the HED scenario: A. SC1-Genset and B. SC7-Genset, PV, and Battery (Li-ion).  
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in the SC5-Genset and the Battery (repurposed). The MED scenario 
showed the best value (0.48 £/kWh) in in two configurations, the SC4 
and the SC8. For the LED scenario, the best value (0.52 £/kWh) appeared 
in the two configurations with the repurposed battery system (SC5 and 
SC8). 

These LCOE results showed a similar trend as that reported for an off- 
grid mobile base station in Tanzania [72] where a hybrid Genset/PV/ 
battery configuration gives the lowest LCOE of 0.433 USD/kWh (0.33 
£/kWh) when compared against a Genset configuration with LCOE of 
0.945 USD/kWh (0.72 £/kWh). Similarly, the results from a case study 
in three rural villages in Ethiopia [73] showed that the LCOE of 1.673 
USD/kWh (1.27 £/kWh) from a Genset configuration is less favourable 
than the 0.84, 0.90, and 1.00 USD/kWh (0.64, 0.68, 0.76 £/kWh) LCOE 
values reported for the hybrid systems considered in that study. Also, 
similar LCOE results were found in the techno-economic analysis done 
by Amupolo et al [74], the values reported by the authors were 0.386 
USD/kWh and 0.388 USD/kWh which are about 0.32 £/kWh. Those 
were the best LCOE values found and correspond to the hybrid systems 

comprising solar PV, a diesel generator and a battery system for elec-
trification schemes in Namibia. Despite the similarity found in the LCOE 
trend from this work and the studies cited above, it cannot be ignored 
that the LCOE values in this work are slightly different. The difference in 
the results can be attributed to the pollutant emissions costs considered 
in this optimisation, which are neglected in the other studies. The dif-
ference is also attributed to the lower electricity load demand consid-
ered by the other authors, which is only about half of the load profile 
considered for the LED scenario presented in this work. 

Given that more than one configuration appeared to have the lowest 
LCOE, a cost-benefit assessment was needed to fully understand what 
hybrid configuration might bring more benefits (financial and envi-
ronmental). The cost-benefit analysis was done by comparing the lowest 
pollution system in terms of CO2e, NOx, and PM2.5 emissions versus the 
systems with the lowest LCOE highlighted in Fig. 10. The results are 
shown in Fig. 11, Fig. 12, and Fig. 13, in a form of normalised values, 
normalised to the baseline or the lowest value for each category (CO2e, 
PM2.5, NOx, and LCOE respectively). The baseline values for each 
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category are summarised in Table 5. 
The results for the HED scenario (see Fig. 11) showed that by 

selecting SC7, which has the lowest pollutant emissions (CO2e, NOx, and 
PM2.5), the LCOE would be 4 % higher than the LCOE baseline (SC5). If, 
on the other hand, the SC5 with the lowest LCOE is selected, then the 
CO2e, PM2.5, and NOx emissions would be 9 % and 4 % higher, 
respectively, when compared to the system with the lowest pollutant 
emissions (SC7). Therefore, based on the possible increase in pollutant 
emissions and LCOE values, option SC7 might be a convenient choice for 
the HED scenario if the environmental benefit is prioritised. 

The results for the MED scenario (see Fig. 12) showed that when the 
environmental benefit is prioritised, SC7 should be selected. The SC7 
configuration only represents a 2 % increase in the LCOE value 
compared to the lowest LCOE found in SC4 and SC8. However, even if 
the financial benefit is prioritised, SC8 would be an acceptable choice as 
it only represents a 1 % increase in CO2e emissions, whereas NOx and 
PM2.5 remained unchanged from the best environmental option (SC7). 

Finally, in the LED scenario, the results showed that four configu-
rations should be considered in the cost-benefit analysis (see Fig. 13). 
The numbers suggest that if the financial benefit is prioritised, then SC5 
or SC8 should be selected. At the same time, if the environmental benefit 
is prioritised (with the focus on CO2e abatement), then SC8 is still the 
best option as it generates 6 % and 12 % less CO2e, compared to SC7 and 

SC6, respectively. However, it should be noted that the PM2.5 and NOx 
emissions from SC8 are 4 % higher than their respective baseline 
emissions found in SC6 and SC7. 

6. Sensitivity analysis 

A sensitivity analysis on the LCOE was carried out by the optimisa-
tion model using modified diesel prices and pollutant emission costs 
(carbon tax, PM2.5, and NOx). The castor oil price was kept constant as it 
was inferred from the optimisation results that increasing its price would 
lead to the same fuel selection (COD-0), as presented in section 4. 
Table 6 shows the low and high values used in the sensitivity analysis. 

The sensitivity analysis was performed for the hybrid configurations 
with the lowest CO2e emissions (HED: SC7, MED: SC7, and LED: SC8) 
and for the corresponding SC1-Genset configuration per electricity de-
mand scenario. The selected configurations for the sensitivity analysis 
are the most representative systems within each scenario that allow a 
straightforward LCOE comparison between the conventional and the 
hybrid MG systems optimised in this work. 

Fig. 14 shows the sensitivity analysis results for the HED scenario. In 
the SC1 analysis (see Fig. 14 A.), it was found that when only one 
parameter was modified at a time (diesel price, Carbon tax, PM2.5 
emission cost or NOx emission cost), the scenario with zero-PM2.5 cost 
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produced lower LCOE at 0.51 £/kWh. In contrast, the scenario with high 
NOx cost gave a higher LCOE value of 0.99 £/kWh. However, when two 
pollutant emission parameters were set to zero (PM2.5 and NOx emission 
costs), the real lowest LCOE (0.32 £/kWh) was found. This value 
remained unchanged when the three pollutants’ costs were set to zero. 
When those costs were set to their highest value, the worst LCOE was 
found (1.37 £/kWh). It should be noted that when the carbon tax was set 
to zero, almost no variation was observed in the LCOE. In the SC7 
analysis (see Fig. 14 B.), a similar trend was found, but the best LCOE 
was 0.27 £/kWh, and the highest was 0.86 £/kWh. In both SC, diesel was 
the preferred fuel selected by the model. It was found that only for the 
high diesel price and for all the cases where the PM2.5 emission cost was 
set to zero, the fuel blend with 50 % castor oil (COD-50) was selected. It 
was also found that only with the high carbon tax cost, the fuel with 
40 % castor oil was selected (COD-40). 

Fig. 15 shows the sensitivity analysis results for the MED scenario. In 
the SC1 analysis (see Fig. 15A.), a favourable LCOE of 0.57 £/kWh 
appeared with the zero- PM2.5 emission cost and a less favourable LCOE 
of 1.11 £/kWh appeared with the high NOx cost when only one 
parameter was varied at a time. The best LCOE (0.38 £/kWh) and the 
worst LCOE (1.53 £/kWh) were found when the three pollutants were 
set to zero and their highest values, respectively. The results for SC7 (see 
Fig. 15B.) show that the best LCOE went down to 0.27 £/kWh whereas 
the highest LCOE was 0.86 £/kWh. Similarly to the HED scenario 
analysis, it was found that COD-50 was selected for all the cases with 
zero cost of PM2.5 emissions and high diesel price options; and COD-40 
was selected when the high carbon tax cost was assessed. 

The sensitivity analysis results for the LED scenario are shown in 
Fig. 16. In the SC1 results (see Fig. 16A.), a favourable LCOE of 0.65 
£/kWh appeared with the zero PM2.5 emission cost, and a less favourable 
LCOE (1.26 £/kWh) appeared with the high NOx cost when only one 
parameter was varied at a time. The best LCOE (0.43 £/kWh) and the 
worst LCOE (1.74 £/kWh) were found when the three pollutants were 
set to zero and their highest value, respectively. It should be noted that 
again, only a small variation was observed in the LCOE when the carbon 
tax was set to zero. The results for the SC8 (see Fig. 16B.) show that the 
best LCOE was 0.28 £/kWh, and the worst LCOE was 0.92 £/kWh. 
Finally, as in the previous scenarios, it was found that COD-50 was 
selected by the model for all the cases where the PM2.5 cost was set to 
zero and for the option with the high diesel price. Also, as expected, 
COD-40 was selected with the high carbon tax cost. 

7. Conclusions 

This work presented a cost optimisation model created to improve 
the performance of diesel generators to be installed within hybrid MGs 
with different electricity demand scenarios (HED, MED, and LED) in the 
sub-Saharan African context for eight possible system configurations. 
The model considered 60 % of diesel generators’ prime power as one of 
the operating limit constraints for avoiding oversized generators and 
reducing the low load operating conditions, reducing their environ-
mental impact and LCOE. The model included a new set of equations for 
a better fuel consumption estimation considering the effect of castor oil- 
diesel blends as no work, to the authors’ knowledge, has assessed the 
effect of these blends in a cost optimisation problem for hybrid MGs 
design. The model also incorporated PM2.5 and NOx emissions for 
assessing the impact of the emission costs on the fuel blend selection and 
the LCOE values. 

From the cost optimisation results, it was concluded that for the MED 
and LED scenarios, if no battery was included in the design, more than 
one Genset was required to avoid oversized diesel generators. The latter 
was also true for the HED scenario; however, more than one diesel 
generator would also be needed in the SC8-Genset, PV, and Battery 
(repurposed). 

The economic analysis revealed that the configurations with the best 
LCOE (HED: SC5, MED: SC8, and LED: SC5 and SC8) do not always 

match the configurations with the major environmental benefit from 
CO2e reduction (HED: SC7(20 %), MED: SC7 (23.5 %), and LED: SC8 
(24 %)). The sensitivity analysis determined that PM2.5 and NOX emis-
sion costs have a major impact on the LCOE and that the fuel selection is 
highly impacted by the PM2.5 costs. Therefore, the findings of this work 
highlighted the importance of considering the effect of pollutant emis-
sion costs in optimisation models, especially if biofuel blends are to be 
used in hybrid systems. 

Including these pollutant emission costs, and more fuel choices al-
lows for a better assessment of diesel generators’ performance, which 
could benefit the design of MGs. Furthermore, in the coming years, solar 
and solar-hybrid micro and MG systems will play an essential role in 
expanding electricity access in rural areas, and diesel generators are the 
basic components of such systems. Therefore, reducing diesel genera-
tors’ operating costs and improving their performance will contribute to 
better hybrid systems development. 
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