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Abstract—The behaviour of modern power systems is more
and more dictated by smart digital controllers responsible for
ensuring the security, optimal operation, and stability of the
systems. For the development, testing, and validation of these
controllers, it is necessary to model and simulate different
scenarios in power system dynamic analysis. However, digital
controllers introduce discontinuities during the dynamic simu-
lation that force the solver to reduce the time step taken to
land on the discontinuity and restart the simulation. Therefore,
the simulation of systems containing many digital controllers
becomes very time-consuming. The Interpolation-based method
(IBM) provides a fast but accurate approach for the dynamic
simulation of power systems with multiple digital controllers
without the need to reduce the time steps. This paper presents
a fixed-step implementation of IBM in Modelica that allows to
embed this method in the Modelica controller model without
the need to modify the solver algorithm. The performance of the
method is showcased on a single-machine infinite-bus test system.

Index Terms—interpolation-based method, discrete events,
time-domain simulations, digital controllers, Modelica.

I. INTRODUCTION

Digital controllers can be found in every corner of modern
power systems today, ensuring the efficient and reliable op-
eration of the system. While power systems in time-domain
simulations are modeled using large-scale, stiff, differential-
algebraic equations (DAEs) [1], digital controllers are mod-
eled using difference equations, defined only at the discrete
sampling times, [2]. This transforms the system to be solved
into a hybrid (continuous and discrete) model and introduces
many challenges for its time-domain simulation [3].

Discontinuities making a system hybrid can be categorized
into state events and time events [4]. State events occurrence
depends on the state variables of the system. For example, a
transformer may change the tap due to the voltage reaching
a level. The time of tap changing cannot be predicted before
starting the simulation. On the other hand, the time of the
time events is known beforehand. Digital controllers introduce
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Fig. 1. Time steps size for a system with two digital controllers

a time event per sampling action, having a discrete nature.
Regardless of the discontinuity type, each discrete event must
be handled to ensure accuracy.

The most accurate approach to treat the time events of
digital controllers is to reduce the simulation step size to
“land” on the event, then apply the changes defined by
the controller, and restart the simulation [2]. This method,
known as the Step-Reduction Method (SRM), leads to slow
simulations for systems with many digital controllers since the
step size is limited between the controllers’ samples. Fig 1
shows the time steps taken for a system to be solved with and
without the presence of digital controllers based on the SRM
method. The black arrows are the time steps if there are no
digital controllers, and the red and blue arrows are forced by
the sampling periods of two digital controllers.

To accelerate the simulation process, a simplified method
can be used that shifts the events found in the time step to
the end of it [5]. In this way, the need for reducing the time
step to land on the events is relieved, allowing a large time
step to be taken. Although the accuracy will be compromised,
and there is the possibility of the simulation cycling between
states, the performance increases.

Alternatively, IBM can be used for the simulation of sys-
tems with digital controllers, which leads to an increase in
performance similar to the simplified simulation method while
keeping the same accuracy as SRM [6]. The reason is that IBM



doesn’t reduce the time steps and continues with the black
arrows, including the impact of the controllers on the system
by correcting their output in each Newton iteration. However,
IBM implementation is more complex than SRM.

Modelica provides a powerful open-access tool for modeling
and simulating the dynamics of systems described with DAEs.
It is an object-oriented, equation-based programming language
that permits causal modeling, accounting for ease of use
and reuse of components [3]. Similar to other simulation
tools available, Modelica also uses the SRM while facing
discontinuities [7]. Although SRM may be fast enough for
many applications if there are a few discontinuities, it becomes
significantly slow when there are too many, e.g. systems with
multiple digital controllers. Therefore, implementing IBM in
Modelica can benefit the user by providing better performance
while maintaining all the comforts of Modelica language.

In this paper, a fixed-step IBM implementation using Mod-
elica is proposed for the dynamic simulation of systems
containing digital controllers. The method is devised in a way
that all the changes required are implemented in the controller
block without a need to modify the solver. Therefore, the
remaining of the system remains the same as before and
the user only needs to replace the controller with its IBM
equivalent.

The rest of the paper is organized as follows. Section II
briefly introduces the basics of IBM for treating discrete
events. Then, the challenges of implementing IBM in Modelica
and the proposed controller modeling are discussed in Sec-
tion III. Two case studies in Section IV are used to demonstrate
the accuracy and performance of the proposed controller
modeling in comparison to regular modeling. Finally, the
conclusions are drawn in Section V.

II. INTERPOLATION-BASED METHOD

A power system dynamic system can be modeled as an Ini-
tial Value Problem of Differential-Algebraic Equations (IVP-
DAE):

0 = F (ẏ(t),y(t), e(t))

y(0) = y0

(1)

where y(t) is the state variable vector (both differential and
algebraic), and e(t) controllers outputs vector are subjects of
the simulation.

Let’s also assume the digital controller is modeled with
difference equations [8]:

ek = ζ(ek−1,y(kT )) (2)

where ζ is the function of the controller. ek−1 and y(kT ) are
the inputs to the controller denoting the controller output at the
previous sampling action and the feedback from the dynamical
system at k-th sampling, respectively.

To solve the system, an integration method is employed to
discretize the IVP-DAE at the n-th time step (with a step
hn = tn − tn−1) and a Newton method is used to solve
the dicretized equations [9]. By employing the SRM method
(i.e., the time-steps are reduced to coincide with the discrete
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Fig. 2. The variables and sampling actions of the controllers within a time
step

controller events), the controllers’ outputs are considered con-
stant between the sampling times (zero-order-hold approach).
However, as mentioned above, this approach makes the time
steps very small and the simulation computationally intensive.

IBM allows simulating the system (1) without the need
of reducing the time steps. This is achieved by defining the
controller outputs at each sampling time as new variables and
including them in the Newton formula, as detailed in [10]. The
new state variables vector is defined as follows:

zn =

[
zn,1
zn,2

]
(3)

with:
zn,1 = yn (4)

zn,2 =
[
en,1 en,2 . . . en,g . . . en,pn

]T
(5)

where zn,1 is the vector of system state variables at the n-th
time step and zn,2 is the vector of the controller outputs at
each sampling time within the same time step.

Fig. 2 shows the controller sampling times tn,g and con-
troller outputs zn,2 = en,g within a time step where pn denotes
the last sampling of the controller within the time step hn.
To solve for the new extended variables vector, the mismatch
vector is also extended to include the controller response at
each sampling time:

g̃ =

[
g̃1
g̃2

]
(6)

where the dynamic system mismatch is:

g̃1(zn) = g(yn, en,pn
) (7)

and for the controllers, it can be formulated as:

g̃2(zn) =


en,1 − ζ(en,0,yn,1)

...
en,g − ζ(en,g−1,yn,g)

...
en,pn

− ζ(en,pn−1
,yn,pn

)

 (8)

To form g̃2, the system’s state variable at the sampling
time yn,g is required without reducing the time-step. Thus,
an interpolation formula is employed between the solutions at
n− 1 and n:

y(m)
n,g = w(m)

n (tn,g), ∀g ∈ [1, pn] (9)

where m denotes the Newton iteration and w denotes the
employed interpolation function.
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Fig. 3. A continuous system under control by a digital integral controller
modeled in Modelica

Finally, the combined system is solved using a Newton
method:

J (m)
n (z(m+1)

n − z(m)
n ) = −g̃(z(m)

n ) (10)

with the extended Jacobian matrix:

J (m)
n =

[
∂g̃1

∂zn,1

∂g̃1

∂zn,2
∂g̃2

∂zn,1

∂g̃2

∂zn,2

]
(11)

This approach allows simulating the system with large time
steps that are not constrained by the digital controller sampling
times.

III. MODELICA IMPLEMENTATION OF IBM

In this section, a fixed-step implementation of this method
in Modelica is proposed. Modelica simulation environments
usually decouple the models with the simulation algorithms
and libraries to enhance modularity. Therefore, implementing
the IBM to accelerate the simulation performance requires to
either modify the solver and create a link to communicate
the discrete controller parameters to the solver structures
and methods or to implement the IBM within the controller
Modelica block in a solver-agnostic manner. The latter has
been chosen for this work, allowing to switch between solvers
and simulation environments seamlessly.

To describe the method, let’s consider a continuous system
under control by an integral controller, as illustrated in Fig. 3.
The goal is to replace both the sampler and the controller
(integrator in here) with a single block which implements the
IBM version of the controller.

A. Interpolation

The first challenge to tackle is the interpolation formula
implementation. As an example, let’s assume a first-order
interpolator as follows:

y(m)
n,g = w(m)

n (tn,g) = hn,g ẏn−1 + yn−1 (12)

where hn,g = tn,g− tn−1 is the step of the g-th sample within
the time step hn from the beginning of the time step.

The feedback from the system ẏn−1 and its derivative yn−1

are required for the interpolation function. The IBM version
of the integral controller controlling the continuous system of
Fig. 3 is illustrated in Fig. 4. It should be noted that only
the controller is replaced, while the remaining system and
simulation environment is the same.
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Fig. 4. A continuous system under control by the IBM version of digital
integral controller modeled in Modelica

B. Time stepping

The time step size can be chosen by the user by modifying
the parameter of a Clock function. This function halts the
solver to provide the opportunity of running the IBM code
inside the IBM controller at each time step. It should be noted
that there is no need for the user to select a time step size that
is an integer multiplication of the controller sampling rate to
make sure the time step lands on the samplings. Employing a
zero-order-hold approach, the output of the controllers remains
constant between the samplings.

It should be noted that the time events forced on the solver
are different from the time events imposed by the digital
controller. For example, simulating a digital controller with
sampling time T = 10 ms using SRM will impose time events
every 10 ms. On the other hand, with the IBM controller,
the only time event happen at the time step. In other words,
the IBM version of the controller is handled as a continuous
model, and no time events are created in between the time
steps because of the controller’s dicrete nature.

C. IBM-Modelica implementation

Based on the technicalities discussed previously, the IBM
version of the integral controller can be modeled as the
following listing:

1 Clock c1=Clock(1,20);
2 algorithm
3 when Clock(c1,"ImplicitTrapezoid") then
4 i:=0;
5 prett:=pre(tt);
6 ttfloor:=floor(tt/T);
7 prettfloor:=floor(prett/T);
8 ttfloordiff:=ttfloor - prettfloor;
9 while i < ttfloordiff loop

10 i:=i + 1;
11 w:=(prettfloor*T+i*T-prett)*pre(z1)+pre(z2)+((

prettfloor*T+i*T-prett)ˆ2/(tt-prett)ˆ2)*(z2-pre(
z2)-(tt-prett)*pre(z1));

12 e:=e + Ki*T*(zf - w);
13 earray[1,i]:=e;
14 if i==ttfloordiff then
15 earray[1,maxstep]:=earray[1,i];
16 end if;
17 end while;
18 equation
19 y=earray[1,maxstep];

Listing 1. The IBM-Modelica implementation of the digital integral controller

The first and third lines of the code impose the time events at
fixed time steps to provide the opportunity to run the algorithm
containing the IBM approach. The variable tt holds the value



of time tn at each time step. Therefore, the fifth line defines
the previous time step tn−1. Lines 6 to 8 have the duty of
counting the number of controller samples in the time step to
set the number of times the loop has to repeat. Depending on
the fixed time step size, there may be a different number of
controller actions in each time step.

Line 11 accounts for a second-order interpolation function
of the feedback from the dynamical system at the sampling
points of the controller where z1 and z2 address the derivative
of the feedback and the feedback itself, respectively. As can
be noted from the code, the size of hn,g is considered variable
which depends on the number of samplings that fall into the
time step. Line 12 has the integral controller equation and
the next line saves the calculated controller output in an array
which represents zn,2 mentioned in the previous section.

It should be noted that the size of the array earray defined
by the parameter maxstep for saving the controller outputs
is larger than it needs to be since it relieves the user from
modifying it every time based on the sampling rate of the
controller and fixed time step. Therefore, lines 14 to 16 have
the task of saving the last controller output in the last cell of
the array to be fed to the output of the controller block using
line 19. In this approach, the user can actually use any solver
with any settings and the code itself forces the time events to
the solver at the times required and runs the IBM algorithm.

IV. CASE STUDIES

In this section, two test cases are used to showcase the
accuracy and performance of IBM implementation in Modelica
versus the regular Modelica modeling of the digital controller1:

1) An integral controller controlling a state space system
with two ordinary differential equations (ODE).

2) A single-machine infinite-bus (SMIB) system under con-
trol by digital excitation and digital governor systems.

All models are simulated using Modelica language in Dy-
mola [11].

A. Integral controller

For the first test system, a continuous state-space system
represented by the following set of ODEs is considered:[

ẏ1
ẏ2

]
︸︷︷︸

ẏ

=

[
a b
−b 0

]
︸ ︷︷ ︸

A

[
y1
y2

]
︸︷︷︸

y

+

[
−b
0

]
︸ ︷︷ ︸

B

e(t) (13)

where an integral controller is used to put the system under
control:

ek = ek−1 +KIT (u(kT )− y2(kT )) (14)

where it has the gain of KI = 0.07 and sampling time of
T = 0.01 s. The schematic of the test system is sketched in
Fig. 3. The Modelica-IBM equivalent of the system can be
modeled as shown in Fig. 4. The results of the simulation of
both systems for the second output of the continuous state-
space system using the RK2 solver are shown in Fig. 5.

1github.com/SPS-L/OSMSES2024
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Fig. 5. Simulation results for regular Modelica modeling and IBM-Modelica
modeling of y2 using the RK2 solver

TABLE I
TEST SYSTEM 1: PERFORMANCE RESULTS USING THE RK2 SOLVER

Model CPU Runtime (s)
Modelica 0.022

IBM-Modelica 0.007

TABLE II
TEST SYSTEM 1: PERFORMANCE RESULTS USING THE DASSL SOLVER

Model CPU Runtime (s)
Modelica 0.16

IBM-Modelica 0.005

The CPU runtime for the simulation of both controller
models using the RK2 solver is listed in Table. I. The fixed
time-step for IBM-Modelica simulation is considered 0.05 s.
The fixed time step size for the regular Modelica controller
model is limited to 0.01 s, which is equal to the controller
sampling rate. It can be seen that IBM-Modelica is 3 times
faster than regular Modelica modeling.

The same simulation is performed again, this time with
the variable step solver Dassl with the default settings. The
accuracy is the same as before as can be deducted from Fig. 6.
The performance results are listed in Table. II. As can be seen,
solving the regular Modelica system with the Dassl solver is
significantly slower compared to RK2. The reason is that the
solver is constantly trying to reduce the time steps to land
on the time events of the controller while it wasn’t the case
for the RK2 solver since the fixed time steps were chosen to
land perfectly on the controller samplings. However, the same
solver has great performance results for the IBM-Modelica
model.

B. SMIB

For the second test system, a fourth-order synchronous
generator connected to an infinite bus is considered as illus-
trated in Fig. 7. The open-source library OpenIPSL developed
using Modelica language for power system dynamic studies
is utilized to construct the test system [12]. The generator is
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Fig. 6. Simulation results for regular Modelica modeling and IBM-Modelica
modeling of y2 using the Dassl solver
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Fig. 7. The schematics of the SMIB test system modeled in Modelica
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Fig. 8. The schematics of the SMIB test system with IBM controllers modeled
in Modelica

under control by a digital AVR and a digital governor [2],
both having a sampling rate equal to 1 ms. The same system
with IBM modeling is shown in Fig. 8. It should be noted
that the output of the digital AVR first goes to an exciter
(continuous device), modeled by a first-order block, and then
to the generator.

The simulation is performed using the Dassl solver and
the generator voltage, AVR output, and governor output are
depicted in Figs. 9, 10, and 11, respectively. As shown, the
dynamic response is identical for both models.

The number of controller samples falling within each time
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Fig. 9. Generator voltage output results for both models

0 10 20 30

0

1

2

3

4

A
V

R
 O

ut
pu

t

Time (s)

Modelica IBM-Modelica

Fig. 10. AVR output results for both models

step during the simulation is shown in Fig. 12. This empha-
sizes the fact that the user doesn’t need to satisfy any condition
for choosing the time step size.

The performance results of the simulation of the SMIB
system are summarized in Table. III. As can be seen, the IBM-
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Fig. 11. Governor output results for both models
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TABLE III
TEST SYSTEM 2: PERFORMANCE RESULTS USING THE DASSL SOLVER

Model Step size (s) CPU Runtime (s)
Modelica 0.001 0.39

IBM-Modelica 0.0125 0.151

Modelica system is solved almost 3 times faster.

V. CONCLUSION

In this paper, an IBM-based Modelica implementation is
proposed for the fast and accurate simulation of systems with
digital controllers. Two case studies were used to showcase
the accuracy and the performance of the method compared
to regular Modelica modeling. It was shown that the IBM-
Modelica method has similar accuracy to the regular Modelica
molding while the performance increases.

For future work, we will focus on the simulation of large-
scale systems with more controllers. Also, we will try to

make the method a variable-step method so the flexibility and
performance of the method can be further improved.
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