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Abstract—All modern electric power systems employ digital
controllers to ensure their secure and optimized operation. The
time-domain simulation of such systems requires the solution of a
set of hybrid (both continuous and discrete variables) differential-
algebraic equations. This is not an easy task, since the discon-
tinuities introduced by the digital controllers lead to constant
time-step reductions and an increased computational burden.
A method that is able to effectively perform such simulations
with no time step reduction is the interpolation-based method
(IBM). In this paper, we extend the IBM into the decoupled
interpolation-based method to increase the computational perfor-
mance while maintaining the same high simulation accuracy. The
performance and accuracy of the proposed methods is employed
on several small and medium system models.

Index Terms—digital controllers, time-domain simulations,
interpolation, decoupled simulation.

I. INTRODUCTION

Digital controllers have become an important part of each

modern dynamical system. Their purpose is to drive the sys-

tems to operate more reliably, economically, and sustainably.

Time-domain simulations provide insights into the system

security and reliability, which are very important indicators

when assessing or planning the system operation.

Differential-algebraic equations (DAE) are frequently used

to model physical systems, such as electrical power sys-

tems [1, 2]. Digital controllers in these systems are usually

modeled as discrete models with difference equations to obtain

the most accurate, close to reality, system response. However,

this leads to the introduction of a discontinuity per each

sampling action of digital controllers, therefore, making large-

scale time-domain simulation of such systems a challenging

task [3].

Overall, discontinuities or events can be categorized into

state events and time events [4]. Events with their time of

occurrence depending on state variables of the system are

called state events while the events that happen in preknown

points of time are time events. A specific component of

the system reaching its critical temperature point can be an

example of state event that its occurrence time is unknown

in advance. However, digital controller sampling and actions

are typical examples of time event, which their sampling times

known a priori based to the controller sampling rate.

The most accurate method for treating any type of discon-

tinuity in the time-domain simulation is the step reduction

method (SRM). In this way, the time step is reduced to

land exactly on the event [3], the changes enforced by the

discontinuity are applied, and the simulation restarts. However,

SRM forces a heavy computation burden on the solver due to

the constant step size reduction, which leads to increased simu-

lation time for systems with many digital controllers. In time-

critical applications (such as dynamic security assessment),

these delays can put the system at risk.

To tackle this problem, simplified simulation methods can

be used to handle the discrete events. One such method,

proposed in [5], assumes that the event occurs exactly at

the end of the time step. Consequently, there is no need for

time step size reduction. Although this method speeds up the

simulation, the accuracy is sacrificed.

The interpolation-based method (IBM) [6], recently pro-

posed by the authors, is able to simulate DAE systems

alongside digital controllers modeled by difference equations

without reducing the time step. As a result, the accuracy is

maintained similar to SRM while its performance is close to

the simplified simulation method. In this paper, we extend

the IBM, proposing the decoupled interpolation-based method

(DIBM) that solves the system DAEs separately from the dig-

ital controller equations to further accelerate the computation

performance. Decoupling the controlled system equations from

the controller equations and solving them separately results in

a more frequent updating of the state variables and controller

outputs, leading to faster convergence.

The rest of the paper is organized as follows. Section II

briefly introduces the SRM and IBM methods for treating

discrete events in a system. Then, the DIBM is proposed

in Section III. Three case studies are utilized in Section IV

to showcase the accuracy and performance of the proposed

method, followed by the conclusions drawn in Section VI.

II. SRM AND IBM METHODOLOGIES

In this section, the two different methods SRM and IBM

used for handling the time events of digital controllers are

briefly introduced.

First, we assume a physical dynamical system controlled by

a digital controller, as shown in Fig. 1. The continuous system
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Fig. 1: A continuous system controlled by a digital controller

is modeled with Differential Algebraic Equations (DAEs) and

can be formulated as follows:

0 = F (ẏ(t),y(t), e(t))

y(0) = y0, e(0) = e0 (1)

where y(t) is the vector of continuous state variables of the

system and e(t) the output of the controller to the system

which can be calculated based on the input u(t) and the

feedback from the system y(kT ). The Analog-to-digital (A/D)

converter samples the continuous states of the system every

sample period T and the monitored states y(kT ) are input to

the digital controller.

The digital controller is usually modeled with difference

equations formulated as follows:

ek = ζ(ek−1,y(kT )) (2)

where ek is the output of the digital controller at time

t ∈ [kT, (k + 1)T ], ζ denotes the controller function that

depends on the historical output of the controller ek−1 and the

quantized state variables monitored by the controller y(kT ) at

each sampling time kT . Finally, the Digital-to-Analog (D/A)

converter transforms the control signal ek to be used in the

system as e(t).
During the time-domain simulation of the DAE system (1),

y(tn) is the system solution at the n-th time step with its size

hn equal to hn = tn − tn−1. The step size would usually

be kept as large as possible, limited only by the numerical

integration errors, to increase the simulation performance

while maintaining high accuracy. However, time events are

introduced by the digital controller sampling and action period,

every T seconds, which are different from the time-step

instances tn. Furthermore, when multiple digital controllers

with different sampling periods are acting in the same system,

multiple discontinuities are inserted in the system simulation at

irregular time intervals. Thus, proper methods are necessary to

treat these discontinuities during the time-domain simulation.

A. Step reduction method (SRM)

Figure 2 shows the simulation of the system (1), where hn is

the time step that would be taken if the system were continuous

without time events. However, due to the digital controller, the

first time event within the time step hn is at time tn,1. Thus,

the SRM adjusts the step to the reduced time step h∗

n to land

exactly on the first discontinuity [4]. This process is repeated

for each consecutive time event.

After the time step adjustment, the controller output e(k) at

tn,1 is calculated using (2), then it is converted to a continuous

signal e(tn,1), and used with the continuous system (1) to

hn

tn−1 tn

tn,1 tn,pn

h
∗

n

Fig. 2: Schematic of treating a discontinuity using SRM. The

black vertical lines denote the simulation time steps, while the

blue ones show the digital controller sampling time.
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Fig. 3: Time event representation of three digital controllers

with sampling times equal to 0.1 (red), 0.12 (green), 0.13 s

(blue) for a 5 seconds simulation

find the solution y(tn,1). It should be noted that the controller

output is kept constant between the samples through a Zero-

Order-Hold (ZOH) approach.

SRM is the most accurate and widely used method, with

its trajectory being the closest to the real operation of a

digital controller. Each discontinuity is handled individually.

However, since the step size is limited to the distance between

every two time events, imposed by the digital controller

sampling period, SRM constrains the time-step size and is

computationally heavy. This can lead to very slow simulations

in the case of a system with many digital controllers. For

instance, the time events that stem from the operation of three

digital controllers with various sampling times are illustrated

in Fig. 3. Each bar represents one sample, and three colors

of red, green, and blue are used to show the samplings of the

different controllers. Other colors (if seen) indicate samples

of two or more controllers overlapping. One can see that the

time steps can be severely limited even for this very reduced

number of digital controllers [6].

B. Interpolation-based method

Contrary to SRM, the IBM was proposed by the authors in

[6] that computes the controller output ek without the need

to reduce the simulation time step. This is made possible

by interpolating the system monitored variables y(t) at each

controller sampling time within a time-step hn to obtain

y(kT ) which is then used for the calculation of the controller

output (see (2)). The controller output for all the sampling

actions k within time-step hn are incorporated into the state



variable vector of the system to be computed along the system

state variables in each Newton iteration [6].

To describe it better, let’s define the vector of the system’s

state variables at the n-th time-step by:

z1
n = yn (3)

and the vector of all the controllers’ outputs within the time-

step hn by:

z2
n =

[

en,1 en,2 . . . en,g . . . en,pn

]T

(4)

where g denotes the index of the controller’s output and pn
is the total number of controller samples within the time-step

n. Combining the two, the new state variable vector can be

formulated as follows:

zn =

[

z1
n

z2
n

]

(5)

In order to effectively solve for the new redefined state

variable vector, we need to form also a new redefined residual

function vector that consists of both residuals of the system’s

equations and controller’s. This can be formulated as follows:

g̃ =

[

g̃1

g̃2

]

(6)

with:

g̃1(zn) = g(yn, en,pn
) (7)

g̃2(zn) =











en,1 − ζ(en,0,xn,1)

...

en,g − ζ(en,g−1,xn,g)

...

en,pn
− ζ(en,pn−1

,xn,pn
)











(8)

where g and g̃1 denote the residual function of the system

equations, and g̃2 shows the residuals of controller outputs.

x
(m)
n,g refers to the interpolated values of the system state

variables at tn,g as formulated below:

x(m)
n,g = w(m)

n (tn,g), ∀g ∈ [1, pn] (9)

where w
(m)
n (tn,g) is the interpolation function and m denotes

the index of Newton iteration.

Now, the new residual vector and the new state variable

vector can be imported into the Newton solver to obtain the

solution. The m-th Newton iteration to be solved is:

J (m)
n (z(m+1)

n − z(m)
n ) = −g̃(z(m)

n ) (10)

where J
(m)
n is the Jacobian matrix for both the system and

controller equations, given by:

J (m)
n =

[

A B

C D

]

=

[
∂g̃1

∂zn,1

∂g̃1

∂zn,2

∂g̃2

∂zn,1

∂g̃2

∂zn,2

]

(11)

The Jacobian matrix can be simplified without sacrificing

accuracy by ignoring the impact of the system on the controller
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Fig. 4: A simple scheme showing DIBM

and vice versa (B and C), and assuming a unit vector for the

impact of the controller on itself (D):

J (m)
n ≈

[
∂g̃1

∂zn,1

0

0 Ipn

]

(12)

Thus, leading to a dishonest Newton solution of (10).

III. DECOUPLED INTERPOLATION-BASED METHOD

In this section, the decoupled interpolation-based method

(DIBM), as an extension of IBM, is described. The main idea

is to solve the system and controller equations in two separate

Newton loops and use the results of each one to update the

inputs to the next iteration. This can be seen as an iterative

decomposition method applied within the Newton iterations.

First, the system equations are solved, and the new solution

is utilized to compute the new controller outputs. Then, the

new controller outputs are used to start the next iteration and

solve the new solution to the system. This process continues

until both systems converge. A simplified scheme describing

DIBM is illustrated in Fig. 4.

To better describe DIBM, let’s again consider the state

variables and controller outputs formulated as (3) and (4),

respectively. In addition, the residuals are formulated as (7)

and (8) for the system and controller equations, respectively. In

the first stage, (3) and (7) result in the state variables and their

associated mismatches used to solve the systems equations in

the m-th Newton iteration as formulated in the following:

A(m)
n (z

(m+1)
n,1 − z

(m)
n,1 ) = −g̃1(z

(m)
n,1 ) (13)

The state variables computed in the first stage trigger

the second stage, where they are used for the interpolation

function in (9) to obtain the interpolated state variables for

each sampling time. Then, (4) and (8) result in a new set

of controller outputs and associated mismatches, respectively.



Finally, the following Newton formula results in the corrected

controller outputs for the next iteration:

D(m)
n (z

(m+1)
n,2 − z

(m)
n,2 ) = −g̃2(z

(m)
n,2 ) (14)

This process repeats until the combined state variables vector

zn converges.

IV. SIMULATION RESULTS

In this section, three test cases are used to showcase the

advantages of the DIBM approach:

A. A general system consisting in a two-state continuous

ODE system controlled by a digital integral controller.

B. A single-machine infinite-bus (SMIB) system containing

a synchronous generator connected to an infinite bus

under control by two digital controllers: a governor and

an exciter.

C. The well-known Kundur test system which has 4 syn-

chronous generators and eight digital controllers in total

(two for each generator, in a similar way than test case

B).

All test cases are also solved using SRM and IBM to provide

an opportunity to compare the methods in terms of accuracy

and performance. Finally, it is noteworthy that all the models

and methods are developed in MATLAB [7] and all methods

solve the same set of DAE equations for each test case.

A. Continuous system with an integral controller

For the first test system, a two-state continuous ODE system

controlled by an integral controller is considered as follows:

[

ẏ1

ẏ2

]

︸ ︷︷ ︸

ẏ

=

[

a b

−b 0

]

︸ ︷︷ ︸

A

[

y1

y2

]

︸ ︷︷ ︸

y

+

[

−b

0

]

︸ ︷︷ ︸

B

e(t) (15)

and the integral controller with the gain KI = 0.07 and

sampling period T = 0.1 s is defined as follows:

ek = ek−1 +KIT (u(kT )− y2(kT )) (16)

The trajectories for the system’s second output simulated

for 50 s are depicted in Figs. 5 and 6 for a stable and unstable

case (different a and b values) using all three methods (SRM,

IBM, and DIBM). As can be seen, the accuracy of all three

methods are the same for this case study.

Furthermore, the performance of all three methods is show-

cased in Table I in terms of the total number of Newton

iterations for all time steps. It can be seen that the IBM-based

methods are computationally faster than the SRM due to the

time-step reduction. Comparing IBM with DIBM, the unstable

case simulation shows no difference, while the simulation for

the stable case is slightly faster.
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Fig. 5: Output results for the stable system controlled by an

integral controller
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Fig. 6: Output results for the unstable system controlled by an

integral controller

TABLE I: Performance result of the first case study simula-

tions in terms of number of Newton iterations using SRM,

IBM, and DIBM

System state SRM IBM DIBM

Stable 4106 1071 1061

Unstable 3999 1758 1758

re xe

G

Fig. 7: Schematic of the single-machine infinite-bus system
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Fig. 8: Block diagram of the digital governor
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Fig. 10: Generator voltage output of SMIB system

TABLE II: Performance result of the second case study

simulations in terms of number of Newton iterations and run

time using SRM, IBM, and DIBM

Method Nb. Newton iterations Average of 5 run times (s)

SRM 4801 4.40

IBM 643 0.95

DIBM 624 0.88

B. SMIB test system

This test system consists in a synchronous generator con-

nected to an infinite bus using a transmission line, as shown

in Fig. 7. The generator is controlled by a digital governor [8]

with a sampling period TG = 0.2 s and a digital exciter [9]

with a sampling period TG = 0.4 s. The block diagrams are

shown in Figs. 8 and 9, respectively.

A short circuit at t = 1 s is applied to the infinite bus for

200 ms. The generator voltage, the governor output and the

exciter output are shown in Figs. 10, 11, and 12. Again, the

same level of accuracy can be observed for all three methods.

The performance comparison is shown in Table II, listing

the total number of Newton iterations and the execution time.

The reported time is the average of 5 runs of the simulation

to make sure of the validity of numbers. Again, SRM shows

clearly the least performance while DIBM is slightly faster

than IBM. The reason is that the controller outputs are

calculated in each iteration with the updated state variables,

which leads to faster convergence for some time steps.

C. Kundur test system

For the last case study, the well-known Kundur system

[10], shown in Fig. 13, is considered. This electrical network
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Fig. 11: Governor output of SMIB system
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Fig. 12: Exciter output of SMIB system
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Fig. 13: Schematic of the Kundur test system

includes four synchronous generators, each under control by

one digital governor and one digital exciter, and two loads that

are connected with transmission lines of various lengths. The

generator and controller models are identical to the previous

case study B. The sampling periods are equal to 210, 220,

230, and 240 ms for the governors, and 41, 42, 43, and 44 ms

for the exciters, respectively.

A load reduction of 250 MW in L7 is simulated at t = 1 s

and then restored at t = 12 s. The simulation results for the

voltage of buses 1, 4, and 9, the governor outputs, and the

exciter outputs are illustrated in Figs. 14, 15, and 16.

Once more, the trajectories show the same accuracy between

all three methods. However, the performance results listed in

Table III demonstrate that the number of iterations for DIBM

is slightly less than IBM and consequently the execution time

for DIBM is smaller.
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Fig. 16: Exciter outputs of Kundur system
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Fig. 14: Voltage of bus 1, 4, and 9 of Kundur system
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Fig. 15: Governor outputs of Kundur system

TABLE III: Performance result of the third case study simu-

lations in terms of number of Newton iterations and run time

using SRM, IBM, and DIBM

Method Nb. Newton iterations Average of 5 run times (s)

SRM 11927 42.48

IBM 604 2.54

DIBM 598 2.38

V. DISCUSSION

In IBM, the controller actions are computed based on

the previous Newton solution, while the controller outputs

in DIBM are computed based on the intermediate (updated)

solution which leads to a small decrease in the number of

Newton iterations during the simulation. DIBM is also easier

to implement since the size of sub-matrix A used for the first

Newton solver is always constant and only the size of the

identity matrix used for the second Newton solver varies in

each time step while the Jacobian matrix for IBM containing

both A and D needs to be formed unified and its size varies in

each time step depending on the number of controller actions.

However, the impact of the controller on the system and vice

versa (sub-matrices B and C) cannot be considered in DIBM.

VI. CONCLUSION

In this paper, a novel method called the decou-

pled interpolation-based method which is based on the

interpolation-based method was proposed. Similar to IBM,

DIBM is capable of handling discrete events imposed on the

simulation by the digital controller without reducing the step

size. This method decouples the equations of the system from

the digital controller and solves them separately.

Three test cases were used to showcase the accuracy and

performance of DIBM against IBM, and SRM as the reference

trajectory. The results show similar accuracy of DIBM com-

pared to SRM and IBM while having the best performance

in terms of the number of Newton iterations and simulation

execution time.

For future work, the proposed methods will be incorporated

into open-source simulation software to enable the use of

large-scale test systems to better compare the methods. Also,

the impact of other simplifications related to sub-matrices B

and C on the method will be investigated.
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