
Handling of Computationally Demanding Digital

Controllers in Power System Dynamic Simulations

Mehran Jafari∗, Gautier Bureau†, Marco Chiaramello†, Adrien Guironnet†, Patrick Panciatici†, and Petros Aristidou∗

∗Dept. of Electrical Eng., Computer Eng., & Informatics, Cyprus University of Technology, Limassol, Cyprus
†Réseau de Transport d’ Électricité (RTE), France

Corresponding email: mm.jafari@edu.cut.ac.cy

Abstract—Nowadays Smart grids utilize digital controllers to
guarantee the reliable and efficient operation of their compo-
nents. However, the numerical simulation of these types of con-
trollers is challenging due to the numerous discrete time events
introduced. The interpolation-based method (IBM) can effectively
simulate smart digital controllers alongside the differential-
algebraic equations of the system under control. Compared to the
traditional step-reduction method (SRM) that reduces the time
step for each time event during the simulation, IBM allows the
use of variable time steps and solves the system while ensuring
simulation accuracy. However, in the case of computationally
demanding controllers, the computational performance of IBM
suffers significantly. In this paper, a modified version of IBM
is introduced, which can handle computationally demanding
controllers in dynamic simulation of power systems. The perfor-
mance of the proposed method is assessed and compared to SRM
and IBM by simulating a test system with different controllers.

Index Terms—Digital controllers, time-domain simulations,
interpolation.

I. INTRODUCTION

The safe and reliable operation of smart grids is highly

dependent on the smart digital controllers that control them.

However, digital controllers are modeled using discrete sys-

tems, and their simulation alongside the continuous physical

power system model is challenging. The dynamics of such

a system are usually modeled by large-scale, hybrid, stiff,

differential-algebraic equations (DAEs) [1] while the con-

troller is modeled with difference equations [2]. Moreover,

modern digital controllers are nonequation-based (e.g. fuzzy

logic-based or Machine-Learning-based controllers), which

introduces more challenges to their simulation due to their

black-box modeling approach.

The first challenge of simulating digital controllers is the

discontinuities (events) introduced into the simulation by each

of their sample times [3]. Fig. 1 shows the discrete events

introduced to the simulation of a system by two digital

controllers. Each vertical line indicates a sampling action of

a digital controller. These events force traditional solvers to

reduce the time step taken hn to hn,1, landing at the first

event time tn,1 to ensure precision [4]. This process must

be followed for all the events through the simulation. While

integrating the system’s equation using a variable-time-step

approach, one can see that the size of the time steps is limited

to the distance between consecutive controller samplings. In

hn

tn−1 tn

hn,1 hn,3

hn,2 hn,4 hn,pn

tn,1 tn,2 tn,pn

Fig. 1: Discrete events in a simulation with two digital

controllers with different sampling rates indicated by red and

green ink. The yellow ink indicates their overlapping.

the case of many digital controllers, this leads to very slow

simulations.

Another challenge is the simulation of smart digital con-

trollers that are not defined by DAEs. Thus, the approach used

for the simulation must be able to handle black-box-modeled

controllers, such as optimization-based or machine-learning-

based controllers. In this case, methods such as the analog

treatment method that require the equations of the controller

cannot be applied [5].

Moreover, the calculation of a controller output may require

a separate simulation or be computationally intensive, which

may limit methods such as the interpolation-based method

(IBM) that rely on calling the controller many times more

compared to other methods [6]. In this paper, this challenge

is first demonstrated by analyzing the impact of a compu-

tationally demanding controller on IBM performance. Then,

two modifications to IBM are proposed for increasing its

performance while handling systems with computationally

demanding controllers. The modifications aim to reduce the

size of the system to be solved and the number of controller

calls in each time step.

The remainder of the paper is organized as follows. Sec-

tion II briefly introduces the SRM and IBM methods for

treating discrete events in a system. Then, the light version

of IBM is proposed in Section III. A case study in Section IV

is used to demonstrate the precision and performance of the

proposed method compared to SRM and IBM. Finally, the

conclusions are drawn in Section V.



II. SYSTEM MODELING AND DISCRETE EVENT HANDLING

A. System modeling

To introduce the methodologies let’s assume a continuous

system modeled with a set of DAE with initial values:

0 = F (ẏ(t),y(t), e(t))

y(0) = y0 (1)

where y(t) is the state variable vector (both differential and

algebraic), and e(t) is the controller output going to the

system.

The digital controller is modeled as a black box and can be

defined as:

ek = ζ(ek−1,y(kT )) (2)

where ζ is the function of the controller to be called with

inputs ek−1 and y(kT ) that denotes the controller output

at previous sampling action and feedback at k-th sampling

coming from the system, respectively.

After discretizing the DAEs with an integration method and

considering a time step with size equal to hn = tn − tn−1 is

taken, a Newton method [7] can be used to find the solution

of the problem at the end of the time step y(tn) = yn. The

residual function for the Newton method can be defined as:

g(y(tn), e(tn)) = 0 (3)

However, the continuous system of (3) is interrupted by

the sampling events of the digital controllers that need to be

appropriately handled.

B. Step Reduction Method (SRM)

The SRM handles the time events that come from the digital

controller sampling by reducing the time step hn to hn,1 to

land on the first controller sampling time (event) found in

the time step [3]. Then, by calculating the controller action

e(t) = ek,1, the solution yt,1 can be found at time tn,1. By

repeating this process for other controller sampling actions,

the simulation proceeds accurately.

It should be noted that SRM is the most accurate method

since it handles each discontinuity separately. However, SRM

is the slowest method since it constantly reduces the step size

to land on each event (see Fig. 1).

C. Interpolation-Based Method (IBM)

Alternatively, the IBM, proposed in [6], can be used to

solve the same problem without reducing the time step. This

is possible by using an interpolant polynomial to estimate the

feedback of the system at each sampling time tn,g during the

time step hn, without the need to reduce the time step.

For this method, the residual function solved with a Newton

method for the time step hn = tn − tn−1 is defined as:

g(yn, en,pn
) = 0 (4)

where the last controller output en,pn
within the time-step (see

Fig. 1) is required. Based on (2), each controller output en,g
within the time step can be formulated as:

en,g = ζ(en,g−1,xn,g, tn,g) (5)

where xn,g is an estimation of the feedback states yn,g using

an interpolation polynomial w
(m)
n for each Newton iteration

m as follows:

x(m)
n,g = w(m)

n (ẏ(m)
n

,yn−1,y
(m)
n , tn,g), ∀g ∈ [1, pn] (6)

By combining (1) and (5), a new state variable vector is

defined:

zn =

[

zn,1

zn,2

]

(7)

with:

zn,1 = yn (8)

zn,2 =
[

en,1 en,2 . . . en,g . . . en,pn

]T

(9)

where zn,1 is the vector of system state variables and zn,2 is

the vector of controller outputs. Consequently, the correspond-

ing residual vector is defined as:

g̃ =

[

g̃1

g̃2

]

(10)

with:

g̃1(zn) = g(yn, en,pn
) (11)

g̃2(zn) =

















en,1 − ζ(en,0,xn,1)

...

en,g − ζ(en,g−1,xn,g)

...

en,pn
− ζ(en,pn−1

,xn,pn
)

















(12)

where g̃1 is the vector of residuals of the continuous system

and g̃2 the vector of residuals formed for the digital controller

outputs.

The combined system can be solved with a Newton method

using:

J (m)
n (z(m+1)

n − z(m)
n ) = −g̃(z(m)

n ) (13)

To accelerate the simulation process, a simplified (dishonest)

Jacobian matrix J
(m)
n can be used [5]:

J (m)
n =

[

∂g̃1

∂zn,1

∂g̃1

∂zn,2

≈ 0

∂g̃2

∂zn,1

≈ 0
∂g̃2

∂zn,2

≈ Ipn

]

(14)

In this way, IBM can solve the entire system without reduc-

ing the time step, leading to an increase in performance while

maintaining almost the same level of precision as SRM [8].

Let us assume the controller call cost is a, and solving each

Newton iteration cost is b. IBM calls the controller function

ζ once per sampling per Newton iteration, therefore, the total

controller cost for IBM is equal to ccIBM = a × T × m,

while SRM calls the controller once each sampling time, so

ccSRM = a×T . If the controller call cost a is computationally

light compared to the cost of solving each Newton iteration

(a ≪ b), the total cost of the simulation is tc ∼= b. In

this case, IBM has better performance than SRM since it

takes large time steps and the solver solves the system many



times fewer than SRM. However, if the controller call cost

is large and not negligible compared to b, then cc is no

longer negligible and tc = b + cc. Now, since IBM calls the

controller m times more than SRM, then ccSRM ≪ ccIBM ,

therefore, tcIBM > tcSRM . In other words, simulating a

computationally demanding controller with IBM may lead

to slower simulation compared to SRM if the added cost

of the extra controller calls is significant compared to the

computations saved by not reducing the time step.

In addition, the size of the system to be solved increases

per sampling found in each time step for IBM. For example,

the size of the Jacobian for a system with i equations and j

controller equations each having r samples in a time step is

equal to (i + (j × r)) × (i + (j × r)) while it remains i × i

for SRM.

III. LIGHT INTERPOLATION-BASED METHOD

In this section, the light interpolation-based method (LIBM)

is proposed, suggesting two modifications to the original IBM

in order to reduce the computational cost arising from many

calls to the controllers.

A. Controller calls

The first modification restricts calling the controller evalua-

tion functions only in the first Newton iteration m. Therefore,

the controller call cost in IBM becomes ccIBM = a × T ,

similar to SRM. In other words, the second term of (12) which

is the controller function ζ remains constant for the rest of

the iterations in each time step. This reduces the number of

controller calls and the use of an interpolation polynomial by

m− 1 times per controller per sampling in a time step.

The drawback of this modification is that the Jacobian

and the controller mismatches are accurate only for the first

Newton iteration. Therefore, minor inaccuracies are expected

to occur.

B. Size of the Jacobian

The second modification aims to reduce the size of the

system to be solved by including only the last controller output

in each time step to form the Jacobian. Therefore, the Jacobian

size remains constant and equal to (a + b) × (a + b) for the

time step (assuming that the controller has at least 1 sample

in the time step taken). Therefore, less computation is needed

to solve the system in every Newton iteration.

Using the modifications suggested, the number of calls

to the controllers and the size of the system to be solved

decreases, leading to an increase in performance.

In the next section, the performance increase and the impact

of the modifications on the accuracy are demonstrated.

IV. SIMULATION RESULTS

To compare the methods introduced in the previous section,

a 3-bus network illustrated in Fig. 2 is considered. The

synchronous generator is assumed to be under the control of a

digital governor [9] and a digital exciter [10]. For the governor,

an equation-based controller with its continuous block diagram

SG PV
Re1 + jXe1 Re2 + jXe2

Load

BUS1 BUS2 BUS3

Fig. 2: The schematic of the 3-bus network

1

1+sT1

Kp

Ki
s

+
+

+

ws

wn

Pelec

−

−

Tref

Tm

+

+
Digital Analog

Tmax
m

Tmin
m

−

Fig. 3: The schematic of the governor used to control the

synchronous generator

Vter 1

1+STSM

−

V0

Kp

Ki
S

SKf

1+STf

Ge
1+STe

Vf
+ ++

−

V max
f

V min
f

AnalogDigital

Fig. 4: The schematic of the EQAVR used to control the

synchronous generator

TABLE I: Average controller calling time for EQAVR, FAVR,

and MLAVR

Controller Average call time (s)

EQAVR 2.78e-06

FAVR 1.72e-04

MLAVR 3.7e-03

shown in Fig. 3 is considered. For the exciter, however, three

different controllers are simulated as follows:

1) An equation-based AVR (EQAVR) with its continuous

block diagram presented in Fig. 4.

2) An AVR based on fuzzy logic (FAVR).

3) A machine learning-based AVR (MLAVR) trained on

the basis of the results obtained from the simulation of

EQAVR.

The average call time of the controller for each of these

controllers is listed in Table I. Each controller is used for

simulation with all three methods and the results in terms of

accuracy and performance are compared.

For all simulations, the equations are integrated using a

variable time-step predictor-corrector method consisting of a

pair of second-order Adams-Bashforth and Adams-Moulton

methods [11]. 18 bits are used for the quantization of the dig-

ital controller inputs and outputs. The minimum and maximum

time step sizes allowed are equal to 1ms and 1s, respectively.



0 5 10 15 20

Time (s)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

E
x

ci
ta

ti
o

n
 s

y
st

em
 o

u
tp

u
t

SRM
IBM
LIBM

Fig. 5: Output of the EQAVR using all three methods

0 5 10 15 20

Time (s)

1

1.5

2

2.5

3

3.5

4

E
x

ci
ta

ti
o

n
 s

y
st

em
 o

u
tp

u
t

SRM
IBM
LIBM

Fig. 6: Output of the FAVR using all three methods

0 5 10 15 20

Time (s)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

E
x

ci
ta

ti
o

n
 s

y
st

em
 o

u
tp

u
t

SRM
IBM
LIBM

Fig. 7: Output of the MLAVR using all three methods

In addition, the increasing and decreasing rates for altering

the step size are equal to 1.25 and 0.5, respectively. Finally,

20 ms and 4 ms are considered for the sampling time of the

governor and all AVRs, respectively.

A short circuit, applied to bus 2 for 100 ms, is simulated

for all three methods and all three variations of the AVR con-

troller. The controller output for EQAVR, FAVR and MLAVR,

simulated with all three methods, is illustrated in Figs. 5, 6,

and 7, respectively.

The performance results in terms of the average of 10 runs

for each simulation are listed in Table II. The first row of

TABLE II: Average runtime of the simulation of each con-

troller and method in seconds.

EQAVR FAVR MLAVR

SRM 23.90 24.80 42.91

IBM 0.48 4.00 56.93

LIBM 0.36 2.34 34.46

0 5 10 15 20

Time (s)

0

0.2

0.4

0.6

0.8

1

S
te

p
 s

iz
e 

(s
)

SRM
IBM
LIBM

Fig. 8: Step size results for the simulation of EQAVR using

all three methods

0 5 10 15 20

Time (s)

0

0.2

0.4

0.6

0.8

1

S
te

p
 s

iz
e 

(s
)

SRM
IBM
LIBM

Fig. 9: Step size results for the simulation of FAVR using all

three methods

the table shows that the runtime for MLAVR simulation using

SRM is almost twice as that of the simulation of EQAVR

and FAVR using the same method. However, this performance

drop is more significant for IBM and LIBM, since controller

calling is the heaviest computation for these methods. This can

be deduced from Figs. 8, 9, and 10 that show the step size

results for the simulation of EQAVR, FAVR, and MLAVR,

respectively, using all three methods. In other words, although

IBM still manages to take the maximum step size allowed for

most of the simulation time of MLAVR, the run time decreases

significantly due to the long time and numerous controller

calls.

The main challenge is that IBM, which is many times faster

than SRM for the simulation of EQAVR and FAVR, becomes

14 s slower than SRM for the simulation of MLAVR. However,

LIBM is still 8 s faster than SRM because of fewer controller



0 5 10 15 20

Time (s)

0

0.2

0.4

0.6

0.8

1
S

te
p

 s
iz

e 
(s

)
SRM
IBM
LIBM

Fig. 10: Step size results for the simulation of MLAVR using

all three methods

TABLE III: Number of Newton iterations for the simulation

of each controller and method.

EQAVR FAVR MLAVR

SRM 54604 55136 54504

IBM 551 585 520

LIBM 554 598 522

calls and solving smaller systems. It should be noted that this

increase in performance is not significant for other controllers,

so, in the case of normal controllers, IBM would still be the

better choice ensuring better accuracy.

The number of Newton iterations required for the simulation

of each controller using each method is shown in Table III. As

can be seen, fewer Newton iterations are needed to solve the

MLAVR system, which supports the fact that the number of

controller calls leads to a performance drop. Moreover, it can

be seen that using LIBM leads to an increase in the number of

Newton iterations since the Jacobian updates were done once

per time step.

V. CONCLUSION

In this paper, a modified version of IBM was proposed

for the simulation of computationally heavy controllers. This

method brings two modifications to the original IBM that lead

to fewer calls to the controller and a solving smaller system

for each time step.

Three controllers with different models and different calling

times were simulated, and an increase in the performance of

the simulations was shown for LIBM compared to IBM. It

was also shown that the accuracy lost due to these changes

does not have a profound impact on the controller output.

REFERENCES

[1] F. Milano, Power System Modelling and Scripting, ser. Power Systems.
Springer Berlin Heidelberg, 2010.

[2] M. Jafari, G. Bureau, M. Chiaramello, A. Guironnet, P. Panciatici, and
P. Aristidou, “Modeling of Digital Controllers in Electric Power System
Dynamic Simulations,” in 2023 IEEE Belgrade PowerTech, 2023.

[3] D. Ellison, “Efficient automatic integration of ordinary differential equa-
tions with discontinuities,” Mathematics and Computers in Simulation,
vol. 23, no. 1, pp. 12–20, 1981.

[4] F. Zhang, M. Yeddanapudi, and P. J. Mosterman, “Zero-crossing location
and detection algorithms for hybrid system simulation,” IFAC Proceed-

ings Volumes, vol. 41, no. 2, pp. 7967–7972, 2008.
[5] M. Jafari, G. Bureau, M. Chiaramello, A. Guironnet, P. Panciatici, and

P. Aristidou, “Methods for incorporating digital controllers in power
system dynamic simulations,” Electric Power Systems Research, vol.
235, p. 110827, 2024.

[6] ——, “An Interpolation-based Method for Numerical Simulation of
Digital Controllers in Power System Dynamic Studies,” TechRxiv.

Preprint, 2023. [Online]. Available: 10.36227/techrxiv.23579574
[7] P. Aristidou, S. Lebeau, and T. V. Cutsem, “Power system

dynamic simulations using a parallel two-level schur-complement
decomposition,” IEEE Transactions on Power Systems, vol. 31, no. 5,
pp. 3984–3995, Sept 2016. [Online]. Available: http://orbi.ulg.ac.be/
handle/2268/189192

[8] M. Jafari, G. Bureau, M. Chiaramello, A. Guironnet, P. Panciatici,
and P. Aristidou, “Decoupled interpolation-based method for numerical
simulation of digital controllers,” in 2024 IEEE International Systems

Conference (SysCon). IEEE, 2024, pp. 1–6.
[9] A. G. NEPLAN, “TURBINE-GOVERNOR MODELS: Standard Dy-

namic Turbine-Governor Systems in NEPLAN Power System Analysis
Tool,” Tech. Rep., 2015.

[10] ——, “EXCITER MODELS: Standard Dynamic Excitation Systems in
NEPLAN Power System Analysis Tool,” Tech. Rep., 2013.

[11] U. M. Ascher and L. R. Petzold, Computer methods for ordinary

differential equations and differential-algebraic equations. Siam, 1998,
vol. 61.

10.36227/techrxiv.23579574
http://orbi.ulg.ac.be/handle/2268/189192
http://orbi.ulg.ac.be/handle/2268/189192

	Introduction
	System Modeling and Discrete Event Handling
	System modeling
	Step Reduction Method (SRM)
	Interpolation-Based Method (IBM)

	Light interpolation-based method
	Controller calls
	Size of the Jacobian

	Simulation Results
	Conclusion
	References

