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Abstract—Volt-Var Optimization (VVO) plays a critical role
in Active Distribution Networks (ADNs) by ensuring voltage
stability and minimizing power losses, particularly with the
increasing integration of distributed photovoltaic (PV) systems.
In this paper, we propose a decentralized control framework
using Multi-Agent Reinforcement Learning (MARL), enabling
PV inverters to independently control their reactive power to
minimize power losses while maintaining voltage within safe
operational limits. To mitigate unsafe actions, such as voltage
violations and line overloading, a pre-trained Deep Neural
Network (DNN) is integrated as a safety layer. The DNN projects
unsafe MARL-generated actions into a feasible space, ensuring
operational safety. Our approach is evaluated on a modified 33-
bus medium-voltage test network across three scenarios: (1) a
base case with no control, (2) MARL without a safety layer,
and (3) MARL with a safety layer. The results demonstrate that
MARL with the safety layer achieves the greatest reduction in
power losses while ensuring voltage stability across all buses. This
study underscores the potential of combining MARL with safety
mechanisms to enhance the reliability and efficiency of ADNs.

Index Terms—Volt-Var Optimization (VVO), Active Distri-
bution Networks (ADNs), Multi-Agent Reinforcement Learning
(MARL), PV Inverter Control, Voltage Stability Safety Layer,
MADDPG

I. INTRODUCTION

The transition to decentralized renewable energy has trans-
formed traditional power distribution networks into Active
Distribution Networks (ADNs) [1]. Distributed Energy Re-
sources (DERs) such as PV systems, Wind Turbines (WT),
and Energy Storage Systems (ESS) introduce variability and
uncertainty, complicating voltage regulation, reactive power
management, and overall stability [2]. Among these chal-
lenges, voltage regulation is critical for reliable and efficient
ADN operation. Volt/VAR Control (VVC) and Volt/VAR Opti-
mization (VVO) help maintain voltage limits, minimize power
losses, and enhance network efficiency [3]. However, rising
DER penetration increases complexity, necessitating adaptive,
intelligent control solutions. Data-driven control schemes have
become essential, providing scalable, real-time solutions to
modern ADN challenges [4].

Data-driven methods leverage operational data with Ma-
chine Learning (ML), Deep Learning (DL), and Reinforcement
Learning (RL) to develop dynamic control policies [5]. Unlike
traditional model-based methods, they bypass detailed phys-
ical models, making them ideal for high-DER environments
with complex dynamics. These approaches enable real-time

decision-making, effectively managing renewable energy vari-
ability and fluctuating loads. RL and DL have been applied
to various ADN challenges, including demand response [6],
energy management [7], and congestion management [8].

VVO has gained attention for reducing power losses and
maintaining voltage stability. A data-driven VVO method in
[9] employs ML-based local controllers for real-time voltage
adjustments. MARL-based VVO in [10] uses MASAC for au-
tonomous voltage regulation with centralized training and dis-
tributed execution. Dual-timescale regulation in [11] integrates
day-ahead optimization with real-time PV inverter control via
Multi-Agent Soft Actor-Critic (MASAC), while [12] presents a
decentralized approach combining offline supervised learning
and Deep Deterministic Policy Gradient (DDPG) for adap-
tive DER management. However, these methods lack safety
guarantees, as agents can take unsafe actions, compromising
network stability.

To mitigate these risks, recent studies have integrated safety
layers into control frameworks. [13] proposes constrained pol-
icy optimization within an off-policy RL framework to ensure
actions comply with safety limits. [14] introduces a projection-
based safety mechanism using a supervisor-projector-enhanced
SAC algorithm to adjust unsafe actions in real time. A hybrid
approach in [15] employs a Supervisor-Projector-Enhanced
Soft Actor-Critic (S3AC) method with Gaussian Process Re-
gression (GPR) to predict and ensure action safety. However,
these studies often rely on centralized frameworks or exten-
sive inter-agent communication, limiting scalability. Moreover,
most evaluations are short-term (single-day), lacking long-term
performance analysis and comprehensive consideration of line
loading and sustained power loss minimization.

To address these gaps, this paper proposes a decentral-
ized control framework for VVO in ADNs using MARL,
enhanced with a robust pretrained safety layer. The frame-
work enables PV inverters to operate independently, using
local measurements to collaboratively minimize power losses,
maintain voltage stability, and prevent line overloading. A
pretrained Projection Deep Neural Network (DNN) serves as
the safety layer, adjusting unsafe actions before execution to
ensure operational constraints are met. Unlike previous studies
that rely on online safety constraints or centralized safety
mechanisms, our approach leverages an offline-trained DNN
that efficiently projects unsafe actions into a feasible space
with minimal computational overhead. This eliminates the



need for real-time constraint enforcement, making the method
more scalable and suitable for large-scale ADNs. Furthermore,
our framework is evaluated over extended testing periods,
providing deeper insights into its long-term reliability and
effectiveness in maintaining network stability and minimizing
losses. The contributions of this paper are as follows:

• A decentralized MARL-based VVO framework with a
pretrained projection DNN ensuring voltage and line
loading constraints.

• The pretrained DNN improves computational efficiency
by reducing the need for real-time safety corrections
during MARL execution.

• Evaluated over extended time horizons, demonstrating
long-term reliability in reducing power losses and main-
taining network stability.

The remainder of the paper is structured as follows. Section
II describes the VVO model in ADNs. The proposed MARL
algorithms are detailed in Section III. Section IV presents the
numerical results, which are based on real validated data. The
paper concludes with Section V.

II. VOLT/VAR OPTIMIZATION (VVO)

VVO enhances modern ADNs by coordinating network-
wide adjustments to minimize power losses, maintain voltage
stability, and improve efficiency. Unlike VVC, which reacts
locally to voltage deviations, VVO employs advanced opti-
mization to balance real-time and long-term objectives across
multiple devices, such as PV inverters. Data-driven methods
like MARL enable decentralized, adaptive control in VVO but
pose challenges in ensuring safe control actions under dynamic
conditions. To mitigate this, a DNN-based safety layer adjusts
unsafe MARL actions in real-time. The following subsections
detail the MARL model and the role of the DNN safety layer.

A. Multi-Agent Reinforcement Learning (MARL)

MARL, an extension of RL, enables multiple agents to
learn policies while interacting with their environment and
considering other agents’ actions. It is well-suited for ADNs,
where DERs like PV inverters operate in decentralized set-
tings. Through iterative interactions, MARL optimizes power
loss and voltage regulation under uncertainty.

This study employs Multi-Agent Deep Deterministic Policy
Gradient (MADDPG), a state-of-the-art MARL algorithm for
continuous action spaces. MADDPG enhances DDPG for
multi-agent settings, utilizing centralized training with decen-
tralized execution. It was selected over alternatives for its
reduced overestimation bias, improved stability, and better
sample efficiency, making it ideal for reactive power control
in ADNs [16]. The key components of the MARL model are
as follows.

• States: Each agent (representing a PV inverter) observes
local voltage magnitudes, active and reactive power de-
mands, and local generation. The global state, used
during training, aggregates information from all agents
to provide a comprehensive system view.

• Actions: The agents’ actions correspond to the reactive
power outputs of PV inverters. These actions are bounded
by physical constraints of the inverters and are adjusted
to minimize losses while maintaining voltage stability.

• Rewards: The reward function is carefully designed to
encourage behaviors that achieve the system objectives.
That is, minimizing power losses while penalizing voltage
violations and line overloading.

MADDPG employs an actor-critic framework with sepa-
rate actor and critic networks for policy learning and value
estimation. It enhances stability through policy delays and
clipped double Q-learning, which mitigates overestimation
bias using two critic networks. Experience replay further
improves sample efficiency by storing and reusing past expe-
riences. These features enable robust policy learning in multi-
agent environments with high DER penetration and stochastic
demand. When integrated with the DNN safety layer, this
framework effectively balances performance optimization and
operational safety in ADNs.

B. DNN-based Safety Layer

The pretrained DNN safety layer ensures adherence to
operational constraints in ADNs by acting as a projection
mechanism that maps unsafe MARL actions into a feasi-
ble action space, enforcing voltage and line loading limits.
Trained offline on historical or simulated datasets of grid
states and corresponding safe actions, it generalizes across
diverse scenarios to provide reliable real-time corrections. The
DNN receives a combined input vector of the current grid
state, including bus voltages, active/reactive power demands,
and RL-generated actions. Through its multilayer architecture,
it produces adjusted actions that meet safety requirements,
maintaining voltages within 0.95–1.05 pu and preventing line
overload.

The projection DNN architecture consists of three fully
connected layers:

• Input Layer: Processes a combined state-action vector
(e.g., 150 dimensions in the studied scenario).

• Hidden Layers: Two layers, each with 128 neurons, acti-
vated by ReLU functions to capture complex relationships
between states and safe actions.

• Output Layer: Produces the adjusted reactive power ac-
tions for the PV inverters, ensuring compliance with
safety constraints.

The DNN is trained using a supervised learning approach,
minimizing the mean squared error (MSE) between its pre-
dicted actions and optimal actions derived from offline Opti-
mal Power Flow (OPF) solutions. This pretraining allows the
DNN to serve as a reliable safety mechanism during run-time,
adjusting unsafe RL actions to ensure that the network remains
within safe operational boundaries. By integrating this safety
layer, the system effectively balances performance optimiza-
tion with operational reliability, addressing key challenges in
real-time ADN control.



Algorithm 1: Pretraining the Projection DNN for Safe VVO
Input: Historical ADN data, optimal control actions (safe reactive power
adjustments), neural network hyperparameters.
Output: Projection DNN for correcting unsafe reactive power actions.
Load historical ADN dataset containing state-action pairs (S,A).
Normalize the dataset using a standard scaler to improve training stability.
Initialize Projection DNN with input layer (state-action features), hidden
layers, and output layer (corrected actions).
for each training epoch do

Shuffle dataset and divide it into mini-batches.
for each mini-batch do

Extract input features (state-action pairs) and corresponding labels
(optimal safe actions).
Forward propagate through DNN to compute predicted safe actions.
Compute loss using MSE between predicted and true safe actions.
Backpropagate gradients and update weights using Adam optimizer.

end for
Evaluate model performance on validation set.
Apply early stopping if validation loss does not improve.

end for
Save trained DNN model and standard scaler for real-time deployment.

III. PROPOSED MODEL

The proposed approach integrates a MARL framework with
a pretrained Projection DNN to ensure safe and efficient VVO
in ADNs. In the pretraining phase (Algorithm 1), data is
collected from extensive power flow simulations under varying
load conditions, PV generation levels, and control actions.
This generates a dataset of state-action pairs, where states
include bus voltages, power injections, and network topology,
while actions correspond to reactive power adjustments by PV
inverters. Optimal reactive power settings are computed via
OPF for each state to provide labeled data.

The DNN safety layer is trained to map state-action pairs
to safe reactive power values using an MSE loss function.
Inputs are normalized and implemented within the PyTorch
framework. The model architecture includes an input layer
for state variables and RL actions, two hidden layers with
ReLU activations, and an output layer predicting adjusted
reactive power settings. After validation on unseen test cases,
the trained DNN is deployed as a fixed safety mechanism,
intervening only to replace unsafe actions during MARL
execution.

During MARL operation (Algorithm 2), PV inverters func-
tion as independent agents, selecting reactive power actions
based on local observations. These actions are evaluated
through power flow analysis, and the Projection DNN adjusts
them if violations occur. The MARL framework employs the
MADDPG algorithm implemented using Pytorch to minimize
power loss and maintain voltage stability, leveraging an expe-
rience replay buffer for sample efficiency. The effectiveness of
this approach is demonstrated in the next section by comparing
it with a baseline scenario (no control) and MARL without the
safety layer, highlighting its superior safety and efficiency in
ADNs.

IV. NUMERICAL ANALYSIS

A. Dataset and train setup

This study uses a modified IEEE 33-bus distribution net-
work, incorporating six PV systems installed at various buses.
The load profiles are derived from Portuguese electricity

Algorithm 2: MARL with Pretrained DNN Safety Layer for VVO
Input: ADN state, PV inverter specifications, pretrained Projection DNN,
and MARL agent parameters.
Output: Optimized reactive power ensuring voltage stability and power
loss minimization.
Initialize MARL agents with actor-critic networks and replay buffer.
Load pretrained Projection DNN and scaler for action adjustments.
for each episode do

Reset the environment to obtain the initial state St.
for each timestep in the episode do

Agents observe local state Oti and select actions Ati by their policy.
Take action Ati and run power flow using the power flow solver.
if actions result in unsafe conditions do

Pass the state-action pair to the pretrained Projection DNN.
Replace unsafe actions with safe actions provided by the DNN.
Take the safe actions and simulate power flow.

end if
Observe the next state St+1 and calculate the reward Rti .
Store the transition (St, At, Rt, St+1) in the replay buffer.
sample from the replay buffer to update the actor-critic networks.

end for
Record cumulative rewards (minimizing power loss with voltage devi-

ation and line overloading penalties).
end for
Return trained policy networks for PV inverters.

TABLE I
HYPERPARAMETERS USED FOR MARL TRAINING

Hyperparameter Value
Learning Rate 0.001
Discount Factor (γ) 0.99
Batch Size 32
Replay Buffer Size 5× 103

Target Network τ = 0.1
Gradient Clipping ϵ = 1.0
Training Episodes 400

consumption data in real time collected over a 3-year period
[17]. PV generation profiles are derived from real-time solar
power data provided by Elia Group, a Belgian transmission
system operator [18]. To facilitate high-resolution control,
both load and PV data are interpolated at a resolution of
3 minutes, aligned with the real-time control period of the
grid. The training process consists of two primary components:
(1) MARL training for VVO and (2) pretrained DNN safety
layer training for action correction. The range of action of
reactive power for each agent is set to [−0.8, 0.8] per unit,
ensuring feasible control within operational constraints. The
hyperparameters for both training processes are presented
in Tables I and II. These values were selected based on
previous studies, empirical tuning and stability considerations
to balance learning efficiency, convergence speed, and policy
robustness in the MARL and DNN training processes. All
simulations are conducted on a Windows 10 PC equipped with
a 2.80 GHz Intel i7-7700 CPU and 16 GB of RAM.

TABLE II
HYPERPARAMETERS USED FOR DNN TRAINING

Hyperparameter Value
Input Dimension 150 (144 state + 6 action)
Output Dimension 6 (Adjusted actions)
Hidden Layers 2 layers (128 neurons each)
Learning Rate 0.001
Batch Size 32
Epochs 50



0
0
:0

0
0
1
:0

0
0
2
:0

0
0
3
:0

0
0
4
:0

0
0
5
:0

0
0
6
:0

0
0
7
:0

0
0

8
:0

0
0

9
:0

0
1

0
:0

0
1

1
:0

0
1

2
:0

0
1

3
:0

0
1

4
:0

0
1

5
:0

0
1

6
:0

0
1

7
:0

0
1

8
:0

0
1

9
:0

0
2

0
:0

0
2

1
:0

0
2
2
:0

0
2
3
:0

0
2
3
:5

7

0.9

0.95

1

1.05

1.1

V
o
lt

a
g
e 

(p
u

)

Time

(a) Base Case

0
0
:0

0
0
1
:0

0
0
2
:0

0
0
3
:0

0
0
4
:0

0
0
5
:0

0
0
6
:0

0
0
7
:0

0
0
8
:0

0
0
9
:0

0
1
0
:0

0
1
1
:0

0
1
2
:0

0
1
3
:0

0
1
4
:0

0
1
5
:0

0
1
6
:0

0
1
7
:0

0
1
8
:0

0
1
9
:0

0
2
0
:0

0
2
1
:0

0
2
2
:0

0
2
3
:0

0
2
3
:5

7

0.9

0.95

1

1.05

1.1

Time

V
o
lt

a
g

e 
(p

u
)
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Fig. 1. Voltage profile of all buses in a random day (day 730)

B. Results

In this section, the proposed MARL strategy is implemented
in the active distribution network to evaluate its performance
in optimizing voltage profiles and minimizing power losses.
Figure 1 illustrates the voltage profiles under two scenarios: (a)
the base case without control actions and (b) the application
of MARL-based VVO on a random day (day 730). In the
base case (Figure 1a), significant voltage deviations occur
between 18:00 and 21:00, with voltage levels falling outside
the acceptable range of 0.95 pu to 1.05 pu. Furthermore, Table
III shows a power loss of 6.68%, highlighting inefficiencies in
network operation without reactive power control. In contrast,
the MARL algorithm (Figure 1b) completely mitigates voltage
deviations, maintaining stable voltages throughout the day.
Moreover, power loss is reduced to 3.85%, demonstrating
the effectiveness of the algorithm in both voltage regulation
and loss minimization. Since the MARL strategy successfully
stabilized the network without voltage violations, the DNN
safety layer was not activated in this scenario.

To further evaluate the effectiveness of the proposed ap-
proach, the implementation is carried out on another day (day

TABLE III
PERFORMANCE OF THE PROPOSED APPROACH ON DAY 730

Day 730 Base Case MARL
Total VD 293 0

Min Voltage (pu) 0.944 0.966
Max Voltage (pu) 1 1.028

Power Loss 6.68% 3.85%
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Fig. 2. Voltage profile of all buses in a random day (day 736)

TABLE IV
PERFORMANCE OF THE PROPOSED APPROACH ON DAY 736

Day 736 Base case MARL MARL-DNN
Total VD 416 295 0

Min voltage (pu) 0.939 0.942 0.952
Max voltage (pu) 1.068 1.022 1.022

Power loss 7.13% 4.92% 3.68%

736), where the system exhibits greater instability compared
to the previous case. Figure 2 presents the results for this
scenario. Figure 2a shows the base case without any control
actions. Compared to day 730, the system experiences more
severe voltage deviations, with voltages frequently falling
outside the acceptable range, indicating increased instability in
the network. In Figure 2b, the MARL-based VVO is deployed.
Although MARL was effective in stabilizing the network on



TABLE V
PERFORMANCE OF THE PROPOSED APPROACH ON A MONTH

Days 730 to 760 Base case MARL MARL-DNN
VD percentage 3.89% 1.45% 0%

Min voltage (pu) 0.936 0.938 0.952
Max voltage (pu) 1.068 1.026 1.026
Mean Power loss 5.98% 3.95% 3.38%

day 730, in this more challenging scenario, MARL alone fails
to maintain voltages within the normal range, resulting in
noticeable voltage deviations across several time steps and
buses.

However, Figure 2c demonstrates the effectiveness of
MARL combined with the DNN safety layer. The safety layer
successfully corrects unsafe actions taken by the RL agents,
ensuring that voltages across all buses and time steps remain
within the safe operational range of 0.95 pu to 1.05 pu. In
addition to voltage stability, Table IV highlights the impact of
the safety layer on the reduction of power loss. The MARL
with the safety layer achieves the greatest reduction in power
losses, decreasing them from 7.13% in the base case to 3.68%,
outperforming both the standalone MARL approach and the
uncontrolled scenario. This demonstrates the dual benefit of
the proposed safe MARL strategy in maintaining voltage
stability and improving network efficiency.

To further evaluate the robustness of the proposed control
strategies over an extended period, simulations were conducted
for a month, covering days 730 to 760. Table V summarizes the
results. The base case exhibited voltage violations in 3.89% of
the total time steps across all buses. The application of MARL
without the safety layer reduced the violations to 1.45%,
while the integration of the DNN safety layer completely
eliminated the voltage deviations, achieving no violations. In
terms of power loss, the base case experienced an average
loss of 5.98%, which was reduced to 3.95% with MARL
and further decreased to 3.38% when the DNN safety layer
was applied. These results highlight the effectiveness of the
proposed MARL framework with the DNN safety layer in
enhancing voltage stability and minimizing power losses over
longer timescales.

V. CONCLUSION

This paper presented a decentralized Volt/VAR Optimization
(VVO) strategy for Active Distribution Networks (ADNs)
using Multi-Agent Reinforcement Learning (MARL) com-
bined with a Deep Neural Network (DNN) safety layer.
The proposed approach enables PV inverters to individually
manage reactive power, aiming to minimize power losses while
ensuring voltage stability and line loading within operational
limits. The MARL framework was enhanced by a pretrained
Projection DNN, which corrected unsafe actions in real-time,
ensuring system reliability under highly volatile conditions.

The simulation results demonstrated that while MARL
alone effectively reduced power losses and mitigated voltage
deviations in moderately unstable conditions, it struggled
to guarantee voltage safety in more challenging scenarios.
The integration of the DNN safety layer addressed this gap,

completely eliminating voltage violations and achieving the
most significant reduction in power losses. The approach was
validated over various timescales, including a month-long
assessment, confirming its robustness and adaptability.
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