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Abstract—The continuously increasing integration of electric
vehicles (EVs) introduced significant challenges to modern power
systems, while at the same time offering big opportunities for
more optimal and effective operation. This study presents an
operational day-ahead scheduling optimization framework to
mitigate the negative impacts of EV charging while maximizing
flexibility services in active distribution networks. The presented
framework employs a non-linear optimal power flow model that
ensures compliance with network constraints and accommodates
EV user preferences. The proposed methodology is validated
through realistic test case scenarios to illustrate its operational
feasibility. The results reveal that in suburban areas, flexibility
during working hours is limited, while flexibility during return-
home hours is significantly higher. In general, the increasing
adoption of electric vehicles offers substantial potential for
effectively managing distribution networks.

Index Terms—Electric Vehicle, Flexibility, Optimal Operation,
Optimization, Optimal Power Flow, Active Distribution Grids.

NOMENCLATURE

Indices
k,m  Index of buses.
d Index of loads.
ev Index of EVs.
der Index of distributed energy resources.
t Index of time period.

s Index of flexibility activation scenario.
1 /1 Index of upward / downward flexibility.
slack Index of fixed reference slack bus.
tra Index of transformer.
mnj Index of injection.

Sets
QB Set of buses

Q4 Set of loads where Qf indicates set of loads
connected to bus k.

0r Set of lines connecting buses.

Qev Set of EVs where 2" indicates set
of EVs connected to bus k.

Qder  Set of PVs where Qg” indicates set
of PVs connected to bus k.

QT Set of time intervals.

Q% Set of scenarios with:

s = 0 for full downward EV flexibility activation,
s =1 for full upward EV flexibility activation.

This project has received funding from the EU’s Horizon Europe Frame-
work Programme (HORIZON) under the GA n. 101120278 - DENSE.

Symbols
| o] Denotes the amplitude of a complex number.
e / o Upper/Lower bound of a quantity.
Denotes the estimate value of the quantity.

o>

Parameters
P, Q, S Active, reactive, apparent power.
Cs Penalty coefficient of flexibility.
AT Time interval.
faer(p)  Function of power factor angle of der
in terms of active power p.
Ffasfev Power factor angle of d and ewv.
kew Next trip distance (km) of ev.
New Avarage consumption per km of ev.
Yim Network admittance matrix.
Gim Real part of the admittance matrix.
B Imaginary part of the admittance matrix.
€ Small value ~ 10 -e — 5.
th Critical start time for charging of ev.
tdep Departure time of ev.
;’}f? Minimum stored energy of ev which varies over time.
Variables
Vs ko t Voltage of bus k.
0s km,+ Voltage phase angle difference between
busses k£ and m.
Is km, Current flow from bus k to bus m.
Ps"i leeft Upward/downward flexibility power of ev.
Pg, Charging power of ev.
Eey Available battery energy capacity of ev.

I. INTRODUCTION

The increasing integration of Renewable Energy Sources
(RES) and the extensive use of Electric Vehicles (EVs) are
introducing new levels of uncertainty and variability to modern
power systems. These developments impose significant chal-
lenges to the system operators in maintaining power balance
in real time and dealing with the fluctuating nature of RES
production and the unpredictable charging patterns of EVs
[1]. As a result, flexibility and operational scheduling in power
systems require innovative approaches to address temporal and
spatial power flow imbalances [2].

Flexibility in the context of EV refers to their ability to
adapt to varying operational points to optimize energy use and
support the power grid. EV flexibility provides various services
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Fig. 1. Flexibility capacities, power capabilities and SoC limits considering an example of charging process

such as frequency regulation, congestion management, and
voltage support. Studies reveal that EVs are parked and
available to provide grid services for 90% of the time, making
them a highly reliable resource for grid support [3], [4]. In fact,
[1] validates that the residential sector is able to provide more
flexibility than the public and workplace sectors. Furthermore,
flexibility mechanisms at the Transmission System Operator
(TSO) and the Distribution System Operator (DSO) interface
are pivotal to leveraging distributed energy resources while
addressing grid constraints [5].

EV’s operation scheduling has been widely exploited in
recent literature to mitigate various issues that existing power
grids encounter. In particular, a hierarchical multi-period op-
timization model to minimize the charge cost was proposed
in [6]. Similarly, the authors in [7] developed a unit com-
mitment approach based on a centralized stochastic security
optimization model to schedule the daily charge of EVs,
aiming to minimize operational costs and reduce renewable
energy curtailments. In [8], a multi-objective operation plan-
ning framework was presented, with the aim of achieving
operational efficiency (reducing load peaks and fluctuations)
and technical stability (minimizing voltage deviations). In the
same way, an objective to minimize the variation of the load
relative to a predefined load target (to achieve load levelling)
is used in [9]. Furthermore, [10] proposed a multi-objective
optimization methodology to minimize voltage variation at the
fundamental frequency and total harmonic distortion using a
harmonic load flow. Although these approaches optimize a
specific objective and improve the operation of the EV, they
do not consider the flexibility that EVs can provide to the
network. Consequently, suboptimal or near-optimal solutions
that could enhance flexibility services are overlooked.

At the same time, in [11] the authors proposed an AC
Optimal Power Flow (OPF)-based methodology to generate
DER PQ capability charts. Moreover, a fast mapping method
is suggested in [12], to graphically determine the operation
region of DER feasibility. However, these methodologies do

not incorporate a model for EV storage systems, limiting
their applicability in EV operational structures. Lastly, in
[13] an attempt was made to combine operational strategies
with flexibility. Although, this approach focused on real-time
operations, relying solely on current conditions and ignoring
network constraints.

The contribution of this paper is twofold. First, it provides
valuable insights into the flexibility operation of EVs, high-
lighting their potential to support active distribution networks.
Second, it introduces a novel operational day-ahead schedul-
ing optimization framework that combines optimal operation
scheduling with the maximization of EV flexibility services.
This framework is designed to mitigate the negative impacts
of EV charging while ensuring compliance with network
constraints and accommodating user preferences.

The remainder of the paper is structured as follows: In
Section II, the flexibility operation of electric vehicles is de-
scribed. In Section III, the proposed OPF model is developed.
Section IV presents the case study modeling framework for
EVs, PVs, and basic load. In Section V the simulation results
are discussed. Finally, conclusions are drawn in Section VI.

II. FLEXIBILITY IN EV CHARGING

Flexibility assessments in power systems are often based
on the power capacity within the PQ plane. However, electric
vehicles offer a more dynamic form of flexibility based on their
State of Charge (SoC) [1]. Consequently, system operators
must handle an additional parameter: energy availability, both
upward and downward. This is critical as the preferences
of the EV owners should be respected while utilizing all
available flexibility. This time-dependent parameter, initially
provided during day-ahead planning, is dynamically altered by
the operator’s actions in real-time. The analytic description of
flexibility as described in this section is qualitatively presented
in Fig. 1.

Beyond operation methodologies and algorithms, the imple-
mentation of flexibility services is also based on technical and
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economic aspects. Communication protocols and infrastructure
must be deployed for the provision of flexibility services
through the effective management and observation of EVs.
At the same time, connection agreements must be established
between EV users and DSOs through an aggregator. Such
contracts grant DSOs control over the EV charging procedure,
which can hinder EV mobility needs, potentially meeting
lower and higher user acceptance limits [2]. Fig. 2 presents
the DSO-aggregator-EV user communication and power flow
structure.

A. Minimum EV State of Charge Curve

The minimum SoC' curve shown in Fig. 1 represents the
scenario in which charging is postponed until time tZ, — the
last time possible to achieve the minimum energy density
before departure when the EV charges at maximum power. In
terms of flexibility, this curve is important to ensure that user
preferences are not violated. This is expressed mathematically
in (1), where the difference between the departure time and
the calculated charging time (7°") corresponds to the start of
the charging process as shown in the right curve of Fig. 1.
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tL _ tdeP _ ev,dep % (1)
ev ev P
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B. Upward Flexibility

Upward flexibility is defined as the ability of an EV to in-
crease its charging power during a specific time period, which
is highly dependent on its energy availability. As presented
in Fig. 1, during the periods when the EV is connected and
the charging power is less than the maximum, there was some
upward flexibility available (purple arrows). However, since
there was an upper bound of the SoC (red dashed line), the
flexibility power was also limited by the maximum allowed
SoC. The minimum power between those two corresponds to
the available upward flexibility:
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C. Downward Flexibility

In this work, a unidirectional (charging) scheme is consid-
ered due to the limitations of EV converters to operate in
bidirectional power flow and the degradation effect of dis-
charging in the battery system. Therefore, downward flexibility
is defined as the ability of an EV to reduce the predetermined
charging power (black arrows). Similarly to upward flexibility,
downward flexibility is also limited by the minimum allowable
EV SoC curve (solid purple line and dashed red line):
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III. OPF MODELING FRAMEWORK

Pjv = mzn(PCh

ev,t?

The proposed framework aims to maximize the flexibility
services available from EVs. The constraints ensure power
balance, compliance with network limits, operation of the
DERs, user preferences, and flexibility capabilities of the EV
for both full activation of upward or downward flexibility.

A. Objective
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where Cj; is chosen based on the preferences of flexibility
over time. Otherwise, it can be a constant value.

B. Constraints

1) Power Balance: Depending on the maximum up-
ward/downward flexibility to ensure safe operation, two power
flow balance constraints must be met at each period. Equations
(5)-(6), based on the predicted generation of DER, denote
active and reactive power by considering a cos¢(p) reactive
power controller for the DERs. Then, (7)-(8) define the active
and reactive power of the EV, also considering the flexibility
provision of the EVs while maintaining a constant power
factor for EVs. Finally, the power flow balance equations are
presented in egs. (9)-(12). The following constraints are added
foreach s € 05, k€ QF and ¢t € QL.
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2) Network Limits: The branch currents, transformer load-
ing, voltage operational limits and slack bus assumptions for
each s € Q° and t € QT take on the form:

Uk < |vs k| < TR, VEe QP (13)
‘Us,slack,tl =1, es,slack,t =0 (14)
s xmt] < Tim, Vkm e QF  (15)
\/(Ps,tra,t)2 + (Qs,tra,t)2 S St'ra (16)

3) Electric Vehicle Storage: The charging schedule must
meet the preferences of the EV user while keeping the
charging power within the limits of the hardware capabilities.
The following constraints are added for each ev € Q¢ and
te Q.

Eev,t = Eev,tfl + Pec't};L,t AT 17
Eey < Eeyt < Eey (18)
Eecv,dep 2 Eev + Kev * New (19)
Pey < Peyy < Pey (20)

4) Electric Vehicle Flexibility: Flexibility constraints are
used to ensure operation within the technical and user prefer-
ences limits during flexibility activations (see Sections II-B
and II-C). The following constraints are added for each
ev € Q¢ and t € QT

Py et SPfﬁt, for s=0 (21)
Eepi—1+ (Psevt + P;ﬁt) AT < Ee,, fors=0 (22)
Pyeoy < Poy — Py, fors=1 (23)
Eevi—1+ (P, — Pacvy) AT > BN for s =1 (24)

IV. CASE STUDY MODELING FRAMEWORK
A. EV Modeling and Data

1) Driving Pattern: Understanding driving patterns is cru-
cial to determine both the availability and charging require-
ments of electric vehicle owners. This information can be
acquired through an input directly from the EV wuser or
using historical data collected from the EV, based on which
this information can be predicted [14]. Both strategies are
implemented through an aggregator agent. In this work depar-
ture/arrival time and distance were collected through a survey
aimed at car owners who rely on private vehicles for their
daily commutes in Cyprus [15]. Fig. 3 shows the probability
distribution function (PDF) for departure and arrival times and
the distance histogram based on the survey for weekdays.

2) Electric Vehicle Type: The type of EV is essential to
convert driving patterns into corresponding charging profiles,
requiring knowledge of the average energy consumption and
battery capacity of vehicles. Since this information is not
readily available for the LV networks under study, average
sales data at the European level have been used to assign EV
types to each customer, using a probabilistic mass function
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Fig. 3. Results of survey on driving behaviour of car owners in Cyprus [15]

[16]. The 10 most popular EVs in Europe for 2024 [17],
together with their technical characteristics were considered
in this study [18].

3) EV Charging Characteristics: The IEC 62196-1 stan-
dard outlines four different charging modes from slow AC
charging (3.7 kW) to fast DC charging (up to 240 kW) [19].
Based on data provided by the DSO, in Cyprus suburban areas
80% of residential buildings are detached houses equipped
with a three-phase power system; therefore, 11 kW charging
systems are used for those customers. The remaining (20%)
are considered to have a one-phase power system and for those
3.7 kW (one-phase) charging system are considered. In this
study, 20% of the customers are considered to use EVs.

B. Basic Household Load Profiles

To formulate the total household load profile, the basic
household load profile is combined with the individual EV
load profile. The average basic load consumption of 68 resi-
dential houses, as provided by the Cyprus DSO, is used to
represent the basic load profile. For this case study, May
was selected as the month that exhibits the highest difference
between the peak generation of DER and the peak load
consumption. Consequently, the average load profile for May
was used. Moreover, in spring, the Cyprus system has the
lowest inertia, thus requiring large amounts of flexibility.

C. PV Generation Profile

Statistical data used to randomly distribute the installed PV
power on the rooftop in each residential building based on
the probability mass function, as given by Cyprus DSO. The
maximum power of the one-phase and three-phase is 4.16 kWp
and 10.4 kWp respectively, based on the limits set by the DSO.
Due to the geographic proximity of the households, we assume
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that the PV generation profile is the same (shown in Fig. 4) but
scaled according to the installed PV capacity. The operation of
PVs is according to VDE4105 [20], where DER shall actively
control the power factor as a function of the active power
output following a piecewise linear active power-power factor
characteristic, as depicted in Fig. 5.

D. Distribution Network System Model

The proposed methodology is validated on a realistic sym-
metric LV distribution network based on data provided from
the Cyprus DSO. The DN is considered to be located in a
suburban area of Cyprus. The network comprises a substation
equipped with an 11/0.4 kV, 315 kVA delta-wye (A-Y)
transformer. Three radial feeders extend from the substation,
with a total of 61 nodes as depicted in Fig. 6. Each feeder
serves approximately 30-50 residential customers.

V. RESULTS AND DISCUSSIONS

The optimization problem was solved using the IPOPT
solver, which is well-suited for large-scale nonlinear program-
ming. The implementation was carried out using a MacBook
Pro equipped with an M4 Pro Max chip, featuring a 12-core
CPU and 36 GB of unified memory. The solver successfully
converged to a feasible solution in all scenarios tested, and
the average computational time for solving the day-ahead
scheduling problem was approximately 13 minutes.

A. Flexibility

In Fig. 7, the active power flexibility in each period for
all electric vehicles available in the low-voltage network is
presented. As explained above, discharging was prohibited; the
minus term in the figures was used to represent the postponed
charging (decrease of the charging power). It was obvious
that the upward flexibility was much more than the downward
flexibility since the discharging function was disabled.
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As shown in Figs. 8 and 9, the voltage and transformer oper-
ation range during maximum upward and downward flexibility
activation demonstrates the potential for flexibility utilization
of EVs in active distribution grids. In peak load demand
hours (around 18:00) there was a maximum voltage deviation
around 0.02 p.u. between maximum downward and upward
flexibility activation. The upward flexibility during 18:00-
05:00 can increase the transformer loading until it reaches the
limits, validating the high-power capabilities of EV chargers.

Each distribution network faces different problems based on
their location, type of customers, and design structure. The
network under study was a suburban network with mainly
residential three-phase power supply customers. Those kinds
of networks face problems during high generation time periods
because of the high reverse power flow and during the early
evening when residents return to home, and a sharp increase in
the load profile is observed. Although flexibility was impacted
by the cost parameter C, ., it was also affected by the
connectivity of electric vehicles.

Taking into consideration the above, the results show that
during the first stress period (around 12:00-14:00), where
overvoltages can occur in DN, the voltage operation range after
a maximum activation of the upward and downward flexibility
did not present any significant variations. Therefore, flexibility
activation cannot provide an important improvement in the
voltage profile. In addition, during the second stress period
(around 18:00-21:00), when operators observed undervoltage
and overload problems, flexibility capabilities was at peak due
to high connectivity. Hence, the combination of the ability
to schedule the charging process and, at the same time, to
utilize the flexibility was a strong tool in the hands of the
operators to safely operate the distribution grid in steady-state
and emergency situations.
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B. Charging Power

The aggregate charging power of the electric vehicle is
presented in Fig. 10. It was obvious that although most
chargers have a maximum power of 11kW, the charging
power of all electric vehicles does not exceed 21 kW, since
the charging process was performed uniformly over time to
maximize flexibility.

C. Real-time flexibility activations

As described in the Introduction, the active power flexibility
that the system operator can manage in real-time strongly
depends on user preferences and DSO actions. For example,
if DSO decides to take some upward action in a certain
period, then SoC' will be affected; this change will reduce
the upward flexibility and, at the same time, increase the
downward flexibility for the next periods. This adjustment
must be made to keep the battery level within the limits; hence,
a real-time methodology is needed.

VI. CONCLUSIONS

This paper proposes an optimization framework for optimal
day-ahead scheduling of EV charging. The main scope is to
maximize the flexibility while maintaining the network opera-
tion within the limits. The developed optimization framework
followed a non-linear OPF structure. The findings indicate that
increasing EV adoption is likely to have a good potential for
LV network management. However, in peak PV generation
periods, there was much lower flexibility available, which may
not be enough to avoid overvoltages in suburban networks.

Future work will focus on applying solving approximations
to significantly reduce computational costs while maintaining
the accuracy of the solution. Additionally, efforts will be
directed towards developing a comprehensive algorithm capa-
ble of real-time operation. Finally, the operational scheduling
algorithm will be enhanced with a more generic framework
that will also control DERs and flexible loads.
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