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Abstract—The integration of uncontrolled electric vehicles
(EVs) in residential areas introduces new dynamics to the load
profile, necessitating a redefinition of the requirements for the
distribution network infrastructure. This paper proposes a com-
prehensive EV modeling and simulation methodology to analyze
the impact of uncontrolled EV charging on three-phase low-
voltage distribution networks. The distribution system modeling
utilizes realistic data, including survey responses, smart meter
readings, and statistical datasets collected over several years. This
approach is crucial to identifying potential issues in network
components and evaluating whether power quality remains
within acceptable limits under various EV and photovoltaic
(PV) penetration scenarios. The analysis reveals that transformer
loading is the most critical parameter affected by EV integration.
On the contrary, increasing the PV penetration has a negligible
impact on the network’s minimum voltage and maximum voltage
unbalance factor during uncontrolled EV charging.

Index Terms—electric vehicles, unbalanced operation, Monte-
Carlo

I. INTRODUCTION

Climate change is a growing concern for scientists looking
for ways to reduce carbon dioxide emissions. The electri-
fication of transportation is a major step towards achieving
this goal. In Cyprus, conventional transportation contributes
29% of emissions [1]. Electric Vehicles (EVs) emit little to
no carbon dioxide, especially when combined with renewable
energy sources. However, the extensive penetration of EVs
in residential areas leads to increased power demand and,
therefore, infrastructure upgrades [2]. In 2023, global EV sales
reached about 40 million units [3], increasing exponentially.

Uncontrollable charging load patterns affect basic load
demand and alter traditional load profiles. Although for a
small-scale EV integration, the Distribution Network (DN) is
not particularly stressed, a large number of EVs could lead
to significant undervoltages, overloading of transformers and
distribution lines [4] or even high unbalances [5]. Therefore,
this imposes the need to develop models and implement studies
that examine the limits of modern distribution networks to
estimate the hosting capacity of uncontrollable EVs.

The uncertainty regarding the location of the EVs, the
varying nominal power and type of their chargers, the time
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of charging initiation, and the charging duration are crucial
factors when conducting such studies. For realistic results,
it is essential to model EVs accurately by incorporating all
relevant parameters that influence the EV loading profile.
The type of network considered (urban, rural, or suburban)
shows significant variations for both EV and DN modeling and
cannot be considered together. This study focuses on suburban
areas, which are characterized by detached and semi-detached
households, typically with individual energy systems and the
growing adoption of electric vehicles. While urban and rural
networks present their own challenges, the decision to focus
on suburban distribution networks was made to allow for a
more detailed and targeted analysis.

In the literature, several models and methods have been
studied to perform such studies. The authors of [6] proposed
a comprehensive probabilistic Monte Carlo (MC) analysis of
PHEV without correlating the characteristics and location of
the power network with the type of EV and the characteristics
of the charging infrastructure. A single basic load profile for all
consumers and uniform EV charging characteristics are con-
sidered in [7], without considering driving patterns, charging
types, etc. In [8], a uniform charging request is considered,
assuming a symmetric power system. Therefore, the assump-
tions and omissions in previous models and methodologies
may affect the accuracy, reliability, and realism of the findings.

This study presents a MC-based methodology designed
to evaluate the impact of EVs on unbalanced suburban LV
networks with significant RES penetration. The contributions
of the paper are threefold:

• Provide a complete framework to model EV integration.
• The proposed framework integrates PV generation into

the impact analysis, offering a comprehensive examina-
tion of its impact on the investigated key metrics.

• It delivers specific insights tailored to the DNs in the
suburban areas of Cyprus, leveraging the real-world data
provided by the DSO.

The remainder of the paper is structured as follows. In
Section II, the modeling framework for EVs, PVs, and basic
load are described as well as the MC-based analysis method. In
Section III, a brief explanation of the case study is given. Then,
in Section IV the simulation results are discussed. Finally,
conclusions are drawn in Section V.979-8-3315-2503-3/25/$31.00 ©2025 IEEE
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II. MODELING AND ANALYSIS FRAMEWORK

To evaluate the impact of EV charging profiles on DNs,
it is essential to derive individual and aggregate EV load
profiles for various operating conditions and time periods.
The derivation of individual EV load profiles requires data on
the EV’s battery capacity (kWh), average power consumption
(kWh/km), charger maximum capacity (kW), and the owner’s
driving behavior (e.g., daily kilometers traveled, departure and
arrival times). To assess the overall impact of multiple EVs
on the DN, their spatial distribution must be determined, with
charging profiles added to the baseline household load. Given
the challenges of predicting the techno-economic factors influ-
encing EV adoption, this study assumes uniform probability
for EV placement across all households.

Data on driving behavior were collected through a survey
conducted in Cyprus to evaluate daily travel habits (see
Section II-A). EV characteristics such as battery capacity and
power consumption were derived from European EV sales
(see Section II-B). Furthermore, the IEC 62196-1 standards,
combined with information from the Cyprus DSO on residen-
tial building power supply types (single-phase or three-phase),
were used to estimate the charging infrastructure for each
household (see Section II-C). Rooftop PV generation capaci-
ties, based on Cyprus DSO installation data, were assigned to
the feeders to incorporate PV contributions (see Section II-F).

A. Driving Pattern

Driving patterns are essential to predict both the charging
duration and the charging capacity required by EV owners.
This information was gathered through a survey that targeted
car owners who rely on private vehicles for their daily com-
mutes. Although survey data was collected from owners of
conventional vehicles, it is assumed that driving behavior will
remain unchanged when these vehicles are replaced with EVs.

The survey primarily collected the following information:
1) departure times from home and return times for both
weekdays and weekends; 2) distances traveled by participants
on weekdays and weekends; and 3) Demographic details about
the car owner, such as their location and residential setting,
which influence the available power supply type (single-phase
or three-phase). An evaluation using the Akaike Information
Criterion (AIC) identified Student’s t distribution as the most
suitable model for the arrival and departure time data.

Fig. 1(a) shows the probability distribution function (PDF)
for departure and arrival times based on the survey. The highest
probability of leaving home is around 07:45 (which was
expected due to standard working hours and school programs).
The highest probability of returning from work is around
17:30. Fig. 1(b) presents the histogram for the driving distance
of people who use their private car on weekdays.

B. Electric Vehicle Type

The type of EV is essential to convert driving patterns into
corresponding charging profiles, requiring knowledge of the
average energy consumption and battery capacity of vehicles.
Since this information is not readily available for the LV
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Fig. 1. Survey results on the driving behavior of car owners in Cyprus [2]

TABLE I
ENERGY CONSUMPTION AND BATTERY CAPACITY OF THE 10 MOST

POPULAR EV MODELS IN EUROPE FOR 2024.

Model Energy Consumption Range Sales
(kWh/100km) (km) (%)

Tesla Model Y 16.4 350 23.7
Tesla Model 3 13.7 420 20.7
MG 4 17.1 360 9.8
VW ID.3 16.4 360 9.6
Audi Q4 e-Tron 18.3 420 7.7
VW ID.4 17.3 445 7.0
VOLVO EX30 17.8 360 6.4
Skoda Enyaq 17.1 450 5.6
BMW iX1 17.0 380 5.1
Renault Megane 15.8 380 4.5

Average consumption: 16.7

networks under study, average sales data at the European
level have been used to assign EV types probabilistically to
each customer, using a probabilistic mass function [9]. Table I
provides the ten most sold EVs in Europe for 2024 [10], along
with their technical characteristics relevant to this study [11].

C. EV Charging Characteristics

The IEC 62196-1 standard outlines four different charging
modes, from slow AC charging (3.7kW) to quick DC charging
(240kW) [12]. Based on data provided by the DSO, in Cyprus
suburban areas, 80% of residential buildings are detached
houses equipped with a 3-phase power system; therefore,
11kW charging systems are used. The remaining (20%) are
considered to have a 3.7 kW (one-phase) charging system.
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Fig. 2. Statistical distribution of rooftop PV installation capacities for one-
phase and three-phase connections

D. Individual EV Load Profile Calculation

Calculating individual EV charging profiles begins by de-
termining the state of charge (SoC) of each vehicle following
its daily trip. Subsequently, the charging time (Tch) of each
EV is calculated using (1), which depends on the vehicle’s
battery level at the time of arrival (SOC), the total energy
capacity of the EV (Ecap), and the charging rate (ξcha). The
specific characteristics of the charging station utilized for each
vehicle are outlined in Section II-C.

Tcha =
(1− SOC) · Ecap

ξcha
(1)

Since this study aims to find the worst-case scenario limits
for EV integration, a ”dumb” charging strategy is considered,
in which all EVs are connected for charging within 30 minutes
after the return time at full charging power, aiming to recover
the energy lost during the last trip.

E. Basic Household Load Profile

To formulate the total household load profile, we need to
combine the basic household load profile with the individual
EV load profile. Thus, the basic load consumption for 218
residential houses from smart-meter data has been used [13].
Profiles are randomly assigned to each household in the under-
study DN using a uniform distribution. The consumption
profile of each residential house is configured so that the cumu-
lative consumption is equal to 90% of the average of the three
most critical consumption net load values actually measured
at the substation. The 90% has been used, considering the
remaining 10% of the power consumed in losses.

F. PV Generation Profile

Statistical data of installed rooftop PV capacities were used
to define a probability mass function (PMF), shown in Fig. 2.
Based on this PMF, the PV capacity at each residential unit
was randomly assigned. The maximum power of one-phase
and three-phase is 4.16 kWp and 10.4 kWp accordingly, based
on the limits set by the DSO. Due to the geographic proximity
of the households, we assume that the PV generation profile
is identical in per unit system (shown in Fig. 3) but scaled
according to the installed PV capacity.

0 6 12 18 24

0

0.2

0.4

0.6

Time

P
V

G
n
en

er
a
ti
o
n
(p

.u
.)

Fig. 3. Daily rooftop PV generation profile in per-unit (p.u.) values, used
uniformly across all households.

Fig. 4. Single-line diagram of the suburban low-voltage distribution network,
comprising three feeders connected to a 22/0.4 kV transformer.

G. Monte Carlo-based Analysis Method

The methodology proposed to analyze the impact of EVs on
LV DN is shown in Algorithm 1. A MC-based analysis was
implemented, considering 300 iterations of the daily analysis
at 30-minute intervals. In each iteration, there are different
placements of EVs, PVs, and loads (nodes and phases). Once
the MC simulation is complete, the script outputs several
performance metrics and data, including transformer and line
loading, voltage deviation, and voltage unbalanced factor.

Algorithm 1 MC-based analysis method
Require: Network data, household basic load profile, driving

profile PDF, EV type data, EV charging infrastructure, PV
generation profile.
for PV Pen. ∈ {20%,40%,60%} do

for EV Pen. ∈ {0%,20%,40%,60%,80%} do
for i ∈ {0,. . .,300} do ▷ MC iterations

• Randomly assign basic
household load profiles

• Basic load modification based
on 3-day average substation
measurements

• Randomly assign individual EV
and PV profiles to the
corresponding units

• Run quasi-dynamic simulation
end for

end for
end for
Present MC analysis results



4

Fig. 5. Daily load profile of the base residential demand (blue curve, right
axis) and the average EV charging demand (left axis) under different EV
penetration levels (0%–80%).

III. CASE STUDY DESCRIPTION AND ANALYSIS METRICS

A. Distribution Network System Model

The proposed methodology is tested on a realistic three-
phase LV DN in a suburban area, based on data from the
Cyprus DSO. The network comprises a substation equipped
with an 11/0.4 kV, 315 kVA delta-wye (∆-Y) transformer.
Three radial feeders extend from the substation, with a total
of 61 nodes, as depicted in Fig. 4. Each feeder serves 30
residential customers who are randomly assigned to nodes
(max. three per node) in each iteration, with the exception
of Feeder 2, which includes 24 customers due to the feeder
scale. Therefore, a total of 84 customers are considered. For
network modeling, the open-source Pandapower power-flow
solver has been used [14]. It is important to mention that only
the weekdays of July are simulated, as this period is considered
the most stressful due to high cooling demands, which can lead
to transformer overloading and undervoltage issues.

B. Analysis Metrics

1) Transformer and Line Loading Metric: The maximum
transformer loading (TL) and line loading (LL) are calculated
using (2), expressed as a percentage of the single-phase
nominal apparent power S1ϕ-nominal. Among the three phases
Sa, Sb, and Sc, the percentage loading of the most loaded
phase is determined. For line loading, the analysis identifies
the line that is the most loaded from the total number of lines.

Max Loading (%) =
max{Sa, Sb, Sc}

S1ϕ-nominal
· 100 (2)

2) Voltage Deviation and Unbalance Metric: The voltage
deviation metric is defined as the minimum average voltage
of the most affected node at each time interval and iteration.
To evaluate voltage imbalance within the DN, the voltage
unbalance factor (VUF) is calculated according to IEC 61000-
2. This metric is critical for identifying significant voltage
deviations and determining whether power quality remains
within acceptable limits under varying operating patterns.

IV. RESULTS AND DISCUSSIONS

A. Transformer Loading

Figure 5 illustrates the average load profiles for EV charging
and the basic network load. Based on the driving patterns

Fig. 6. Average transformer loading profile during a weekday under varying
EV and PV penetration levels.

Fig. 7. Statistical distribution of transformer loading under different EV and
PV penetration levels.

derived from the questionnaire, the majority of EV charging
occurs during high-demand hours, contributing to an increase
in peak consumption. As further depicted in Fig. 6, increas-
ing EV penetration significantly impacts transformer loading,
particularly between 15:00 and 20:00. With higher PV pen-
etration, a slight reduction in maximum transformer loading
is observed. However, after 18:00 (when the PV contribution
ceases) and before 10:00 (when EV charging demand is low),
the integration of PV has no discernible impact on transformer
loading, as evidenced by overlapping profile lines.

At high EV penetration levels, the EV demand alone be-
comes comparable to the base residential load, effectively dou-
bling the total network demand during peak hours. A detailed
sensitivity analysis, presented in Fig. 7, and summarized in
Table II, quantifies these effects. Specifically, for every 20%
increase in EV penetration, the maximum transformer loading
rises by approximately 25%, assuming a constant level of PV.

B. Line Loading

The results of the impact analysis on line loading are
presented in Fig. 8, and their summary in Table II. For
every 20% increase in penetration of EVs, the maximum line
loading increases by around 10-13% with constant integration
of PVs. However, for every 20% increase in PV penetration,
the maximum line loading is reduced by approximately 1- 3%.
In all scenarios, there are no instances of overloading any lines
within the network. The most heavily loaded lines are those
that connect the transformer’s low-voltage side to the feeders.
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Fig. 8. Statistical distribution of line loading under different EV and PV
penetration levels, showing the sensitivity of lines stress to both technologies.

TABLE II
SUMMARY OF IMPACT ANALYSIS RESULTS

Test Case TL LL VUF Vavg
(PV-EV) (Maximum) (Maximum) (Maximum) (Minimum)

20%-0% 57% 31% 1.5% 0.96 p.u
20%-20% 87% 46% 1.7% 0.95 p.u
20%-40% 112% 55% 1.8% 0.94 p.u
20%-60% 131% 67% 2.0% 0.93 p.u
20%-80% 158% 78% 2.1% 0.93 p.u
40%-0% 55% 30% 1.5% 0.97 p.u
40%-20% 81% 41% 1.6% 0.95 p.u
40%-40% 104% 53% 1.8% 0.94 p.u
40%-60% 128% 63% 1.9% 0.94 p.u
40%-80% 152% 72% 2.1% 0.93 p.u
60%-0% 55% 29% 1.5% 0.96 p.u
60%-20% 80% 42% 1.6% 0.95 p.u
60%-40% 103% 51% 1.8% 0.94 p.u
60%-60% 122% 63% 1.9% 0.94 p.u
60%-80% 149% 71% 2.1% 0.93 p.u

C. Voltage Deviation and Voltage Unbalance Factor

The average voltage decreases as EV penetration increases,
with a reduction of approximately 0.01 p.u. for every 20%
rise in EV adoption. According to the Cyprus DSO, the lower
voltage limit is set at 0.9 p.u. Consequently, as illustrated in
Fig. 9, voltage limit violations are evident in scenarios with
60% and 80% penetration of EV. It is important to note that PV
penetration has a negligible impact on minimum voltage levels
within the network. This is mainly attributed to the fact that
the lowest voltage levels occur during periods of limited PV
generation, underscoring that high-demand intervals remain
challenging for voltage regulation, regardless of overall PV
integration.

Similarly, the maximum VUF exhibits a marginal increase
of 0.2% for every 20% rise in EV penetration. However, it
remains unaffected by the level of PV penetration for the same
reason, as maximum VUF typically coincides with periods of
minimal PV generation. These observations are substantiated
by the data presented in Table II.

V. CONCLUSIONS

This paper introduces a modeling technique for EVs and
PVs, with an impact analysis methodology, to assess the effects
of uncontrolled charging of EVs on DNs. The methodology
incorporates the stochastic nature of driving patterns to repli-
cate real-world scenarios closely. The findings indicate that

Fig. 9. Minimum voltage deviation across the network under varying EV and
PV penetration levels.

increasing EV adoption is likely to result in challenges such
as transformer overloading. Due to peak generation of PVs and
peak charging timings of EVs, the integration of photovoltaic
energy has minimal impact on performance metrics.

Future work will extend the proposed framework to en-
compass both urban and rural areas, focusing on diverse
charging infrastructures and varying network characteristics.
Furthermore, the integration of electrified heating and cooling
systems, such as heat pumps, along with storage systems and
their distinct operational schemes in coordination with electric
vehicles will be explored. These enhancements aim to refine
the methodology, enabling more realistic analyses and offering
alternative solutions to mitigate challenges in future networks.
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