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Abstract

In recent decades, the number of smart digital controllers employed in elec-

tric power systems has increased drastically. Either from the moderniza-

tion of existing analog ones or the introduction of new, data-driven, or

even optimization-based controllers, they are now dominating the behav-

ior of power systems. However, this introduces a challenge in the simulation

of power system dynamics, as the existing numerical simulation methods are

very time-consuming when tackling the resulting hybrid differential-algebraic

systems. In this paper, a novel interpolation-based method is proposed for

performing fast and accurate dynamic simulations of electric power systems

equipped with smart digital controllers. This method fully exploits the poten-

tial of variable time-step integration methods without requiring a time-step

reduction in the case of discrete events stemming from digital controllers.

Therefore, it accelerates the numerical simulation of large-scale systems con-

taining many non-equation-based smart digital controllers, while maintaining
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accuracy. The performance of the proposed method is showcased using both

conventional and smart digital controllers.

Keywords: smart digital controllers, power system dynamic simulations,

power system modeling, hybrid differential-algebraic equations,

discontinuities.

1. Introduction

1.1. Background and Motivation

Electric power systems are continuously expanding, with new interconnec-

tions and components installed daily. Moreover, the introduction of Smart

Grids and the widespread use of microgrids is accompanied by the introduc-

tion of smart digital controllers, incorporated to handle the optimal operation

of local units, implement p2p communication and negotiations, optimize the

wide-scale operation of the systems, etc. The majority of existing conven-

tional controllers (e.g., PI-based) and all the modern controllers (e.g., Ma-

chine Learning-based, fuzzy logic, MPC-based, etc.) are digital and discrete

in nature, thus leading to a mixture of continuous and discrete behavior of

power systems. The dynamic response of such systems is usually character-

ized with the use of large-scale, hybrid, stiff, differential-algebraic equations

(DAEs) [1].

The proliferation of smart digital controllers in power systems introduces

significant challenges to their modeling and simulation. More specifically, the

digital control actions, defined by their sampling and action time intervals,

insert thousands of discrete changes [2] that can alter the DAEs describing the

system and introduce discontinuities. Figure 1 shows the discrete time events
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introduced in a small system equipped with three digital controllers, each

with a different sampling rate. Each vertical bar in the figure represents the

sampling of at least one controller and thus a discrete event. In this example,

three digital controllers with different sampling times equal to 0.1 s, 0.12 s,

and 0.15 s are considered.

When performing a dynamic study of the system, simulating the DAEs

with a variable step numerical method, these discrete events define the time

instances when the simulation needs to stop and restart. Therefore, it gives

an indication of the computational burden imposed by these digital con-

trollers due to the required time-step reduction and system initialization.

In large-scale systems, addressing the multiple discontinuities introduced by

the digital controllers remains an open challenge and requires special and

time-consuming treatment.

Overall, discrete events in DAEs can be categorized as state events and

time events [2]. The events happening at specific points in time, that are

known in advance, are called “time events” while the events triggered by

rules applied to the state variable values of the system are called “state

events”. The operation of smart digital controllers with specific sampling

and action times is a classical example of time events. On the other hand,

the operation of transformer tap changers due to a change in the system’s

voltage is considered a state event.

However, in the case of digital controllers used, many of the state events

are transformed into time events. For instance, a digital AVR controller with

overexcitation limit (OXL): while the OXL will trigger a state event when the

field current is violated, the actual detection of the limit crossing and activa-
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Figure 1: Discrete events in a system with three digital controllers with sampling time

0.1 s, 0.12 s, and 0.15 s, over a 5 s simulation.

tion of the control will take place at the next time sampling period depending

on the digital controller frequency. Thus, this paper is concerned only with

the treatment of “time events” stemming from digital control actions.

One of the simplest and most used methods of treating time events [2]

relies on the preparation of an exhaustive time-event list at the beginning of

the simulation. Then, the simulation proceeds to the next event, reduces the

time-step to land on the exact event time, changes the equation set of the

system, computes new initial values, and restarts the integration with the

new DAEs and initial values [3]. While this method is the most accurate,

it can become computationally intensive and handicaps variable time-step

methods since the step size is limited to the intervals between time events

(see Fig. 1).

A second approach shifts all the discontinuities taking place within a

time-step to the end of the time-step [4]. This approach is fast and com-

putationally inexpensive. However, it leads to simplified simulations, the

artificial synchronization of events, and introduces inaccuracies. Moreover,

the simulation can be stuck between two or more alternating states (also
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called limit-cycle) due to the aggregation of events at the end of a time step.

Ref. [4] introduces precautions to reduce such simulation failures.

Finally, another treatment employs Filippov theory [5] to make a con-

tinuous bridge between the vector fields on two sides of the discontinuity

surface [6]. This method can especially be helpful for systems with chatter-

ing problems [7]. A solution based on Filippov theory is proposed for the

chattering problem of PI controllers in [8, 9]. Although it can provide an

effective way to treat a discontinuity, it still has a high computational bur-

den, especially when treating hundreds or thousands of events, and requires

extensive modifications to the existing DAE solvers.

Therefore, as more and more smart digital controllers are introduced in

smart grids, there is an urgent need for a method that is accurate but at

the same time has high computational performance. The existing methods

are either accurate but computationally heavy or fast but with the cost of

accuracy loss [10].

1.2. Highlights and Contributions

In this paper, we propose a novel method for handling discrete time events

in a system containing multiple smart digital controllers. The method is

based on an interpolating treatment of the discrete events, within each time

step, without stopping the simulation method or reducing the time step.

Thus, variable time-step methods are not hindered and the computational

burden is significantly reduced.The proposed method is capable of incorpo-

rating phasor-domain dynamic studies of both equation-based and black-box

smart digital controllers. This means that the digital controllers’ sampling

actions (time events) are not a burden for the simulation, and they can be
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accurately yet quickly simulated without the need for any simplification, re-

laxation, or replacement by their analog counterparts.

The proposed method uses interpolation to estimate the state variables

of the system (digital controller inputs). A similar approach is employed in

modern EMT simulators to determine the on or off state of the switching

devices [11, 12], the proposed method calculates the digital controller out-

puts and refines them in each Newton iteration of the non-linear solver by

including them in the state variables vector of the system. This means that

the digital controller outputs also affect the convergence test of the solver

and the time step selection through the error estimate scheme.

The proposed method is developed considering a variable time step ap-

proach which means that the time step selection is affected by the error

estimate calculations similar to the simulation of a system under control by

analog controllers. In other words, the time steps are not limited nor re-

duced by the time events of the digital controller. This also means that the

proposed method is able to solve the systems under control by non-equation-

based smart digital controllers using a variable time step scheme.

The main contributions of the paper can be highlighted as follows:

• A new, fast, interpolation-based method (IBM) for incorporating and

analyzing multiple smart digital controller models in power system dy-

namic simulations while maintaining accuracy.

• A prototype solver with the proposed IBM and showcasing its accuracy

and performance on three example systems with equation-based and

smart, black-box, digital controllers.

The rest of the paper is organized as follows. First, the modeling back-
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Figure 2: General schematic of a continuous system controlled by a digital controller that

controls the error u(t)− y(t)

ground and solution methods are introduced in Section 2. Then, the pro-

posed methodology is presented in Section 3. Section 4 introduces the test

case systems, and a comparison between the proposed approach and other

existing approaches is provided. Finally, the paper concludes in Section 5

with practical comments and future steps.

2. Smart Digital Controllers in Dynamic Studies

Let’s consider a continuous system controlled by a digital controller, as

shown in Fig. 2. For simplicity, the continuous system is described by an

Initial Value Problem (IVP) of Ordinary Differential Equations (ODEs).

ẏ(t) = f(y(t), e(t))

y(0) = y0, e(0) = e0

(1)

where y is the vector of differential states with y0 the initial value vector and

e(t) is the digital controller output at time t with e0 its initial value.

As seen in Fig. 2, the digital controller takes as input the variables y at

the time t = kT , where k ∈ N and T is the controller sample time. Then,

the controller uses the historical controller actions and the control inputs to
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compute the next digital control output ek. If we assume a single historical

value used in the controller algorithm, then the digital controller model for

sampling time kT , is defined as follows:

ek = ζ(ek−1,y(kT )) (2)

where ζ is the control function. While ζ can be a conventional equation-based

function, in many recent applications it could also be a black box. That is

either because the internal control function is unavailable for proprietary

reasons or it cannot be formulated using DAEs (e.g., optimization-based

controllers, AI-based controllers, etc.).

To interface with the continuous system, the digital signal ek is then

converted into a piecewise analog signal e(t). For instance, a zero-order-hold

approach can be used as shown below:

e(t) = ek, t ∈ [kT, (k + 1)T [ (3)

In most applications, the signals ek (controller’s discrete output) and

y(kT ) (discrete sample of output) are quantized. A q-bit uniform quanti-

zation method is used to quantize the digital signals. The quantization is

performed after each Newton iteration in the corrector step. Let Ue and Uy

be the measures of the intervals in which e and y take values, a q-bit uniform

quantization can be performed as [13]:

eq,k = round

(
ek2

q

Ue

)
· Ue

2q

yq(kT ) = round

(
y(kT )2q

Uy

)
· Uy

2q

(4)
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2.1. Integration Scheme

To perform a dynamic simulation of the system with the smart digital

controllers, an appropriate integration scheme must be used. An example of

such a scheme is presented below in three steps:

2.1.1. Integration Method

In this work, a variable time-step predictor-corrector integration method

is used, where yn is the solution of y(tn) at time tn (n ∈ N) and hn = tn−tn−1

is the selected time-step size. The predictor provides an initial estimate of

the solution y
(0)
n using, in most cases, an explicit integration method.

Then, the corrector calculates the exact solution of yn using an implicit

integration method. This is usually obtained by solving an implicit set of

discretized equations using an iterative Newton method.

In this work, the pair of second-order Adams-Bashforth and Adams-

Moulton [14] methods are used in the predictor-corrector approach.

2.1.2. Convergence Test

In the corrector phase, after each Newton iteration, a convergence test

is applied on yn according to the user-specified threshold. The Newton it-

erations continue until the condition is satisfied. A maximum number of

iterations is usually used to safeguard against non-converging situations.

2.1.3. Time-step Selection

For each time step solution, an error test is performed based on Milne’s

estimate approach to adjust the size of the next time step [14]. This approach

states that in the case of predictor-corrector methods, the error estimate can
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be calculated using the difference between the predictor and corrector mul-

tiplied by a coefficient that depends on the chosen pair of methods. For the

pair of second-order Adams methods chosen in this work, it can be computed

using:

dn =

∣∣∣∣∣yn − y0
n

3(hn−1

hn
)

∣∣∣∣∣
∞

≤ Tolerance (5)

Based on the error estimated by (5) for each time step, three situations

might occur:

1. If the estimated error is less than the Tolerance set by the user, the

next time step sizes will increase until they reach the Tolerance.

2. If the estimated error is more than the Tolerance, the current time step

will be rejected and the integration restarts for this time step with a

smaller size hn.

3. If the estimated error is more than the Tolerance and the time step is

already at the minimum value, the current time step is accepted, but

a warning is issued to the user.

2.2. Incorporating Smart Digital Controllers

When incorporating the Smart Digital Controllers in the dynamic simu-

lation, several discrete events are introduced in the process described above.

Figure 3 shows the “normal” time steps (hn) and their solutions (yn−1 and

yn) based on the variable time-step method described above, and the smaller

smart digital controller time sampling times and their solutions and outputs

(yn,i and en,i). The black horizontal piece-wise lines show the ZOH con-

troller signal e(t), and the approximate solutions are shown with blue and

red crosses for the main time steps and intermediate time steps, respectively.
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Let pn be the number of digital controller actions happening within the

time step hn = tn − tn−1. We denote en,g with g ∈ [1, pn] the value of e at

time tn,g, where tn−1 < tn,g < tn. It should be noted that there is no reason

that sample times kT should coincide with the integration time steps tn as

shown in Fig. 3.

As described in the introduction, solving this combined system in an ac-

curate and fast way is extremely challenging. The traditional method would

be to reduce the time-step hn to coincide with the controller actions, and

significantly limit the variable time-step method. However, a new method

is proposed in the next section to address the computational and accuracy

problems.

2.3. State Events

As mentioned before, a state event happens due to the conditions of

the system. Changing a tap of a transformer due to a voltage violation or

reaching a variable to its maximum value are examples of state events. In a

system under control by continuous analog controllers, such events must be

detected in the time steps and located accurately in a time step. Then, the

time step must be reduced to land exactly on the event to ensure accuracy.

This is the accurate approach for a continuous controller since it addresses

the event immediately without delay.

However, in the case of a system with digital controllers, due to the

discrete nature of the controllers, the state event happening in the system

will not be addressed by the controller until the next sampling action. In

other words, the state event is shifted to the next time event of the digital

controller.
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Figure 3: Example of the integration time steps and the intermediate control actions in a

variable time-step simulation with smart digital controllers.

hn

tn−1 tn

State event shifted to the next sampling

tn,1 tn,2

Figure 4: A scheme showing the state event shifted to the next time event in a system

controller by digital controllers.

An example of this phenomenon is depicted in Fig. 4. The vertical lines

indicate the sampling actions of the digital controller found in the time step
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hn, and the red cross shows the state event between two sampling actions.

In other words, the red cross shows the time the conditions leading to the

state event occurrence are satisfied. Nevertheless, due to its discrete nature,

the digital controller is not able to act accordingly until the next sampling

action. Therefore, the state event will be addressed with a delay. This

means that while a system exclusively controlled with digital controllers is

under simulation, the state events become time events, and no detection or

time step reduction is required to land on state events.

Finally, it should be noted that, if there is a state event that is not going

to be addressed by the digital controller, the only option is to typically reduce

the time step to land on it. However, this will not be expensive for the solver

since there are not many state events (compared to time events of digital

controllers) happening during the simulation.

3. Proposed Interpolation-based Method

This section describes the proposed Interpolation-based Method (IBM) to

handle the digital control actions. Instead of reducing the time step to land

on the events defined by the digital control actions (noted as tn,g in Fig. 3),

this method allows to take large time steps while including the impact of

the controller’s signal by interpolating the state variables at sampling times

(tn,g) of the digital controllers.

Let’s consider the solution of a specific time-step hn = tn−tn−1, as shown

in blue in Fig. 3. The residual function of the implicit step to be solved for

t = tn is denoted by g:

g(yn, en,pn) = 0 (6)

where only the last controller output before the time instant tn is neces-
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sary (en,pn). However, the controller output en,pn depends on the multiple

controller actions between tn−1 and tn. These are given by:

en,1 = ζ(en,0, yn,1, tn,1)

...

en,g = ζ(en,g−1, yn,g, tn,g)

...

en,pn = ζ(en,pn−1 , yn,pn , tn,pn)

(7)

where en,0 is the controller output at the previous time-step and yn,g, g ∈

[1, pn], is the controlled system state variables at the intermediate time tn,g

with an intermediate time step hn,g = tn,g − tn−1.

In this work, we interpolate the intermediate state variables yn,g using a

polynomial function wn. Then, using the interpolated values, the controller’s

output signal is computed and the final value en,pn is used in (6). One example

of interpolation function is:

yn,g =wn(tn,g) = yn−1 + hn,gẏn−1

+
h2n,g
h2n

(yn − yn−1 − hnẏn−1)
(8)

where a second-order Taylor expansion interpolator is used. It is notewor-

thy that to control and bound the integration method error, the integra-

tion method should have a higher order of local error than the interpolation

polynomial [15]. Therefore, for most second-order integration methods, the

Taylor interpolant polynomial with an order equal to the integration method

(2nd order) has been found to be adequate.

The equations defined in (7) are included in the system of equations for
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the solution of the time step tn. Thus, the problem is extended by adding pn

new equations related to en,g (g ∈ [1, pn]).

For the new extended problem, a new state variable vector zn is defined

combining the vector yn and the controller’s signals en,g (g ∈ [1, pn]):

zn =

zn,1

zn,2

 (9)

with:

zn,1 = yn (10)

zn,2 =
[
en,1 en,2 . . . en,g . . . en,pn

]T
(11)

Also, a new residual vector is considered for the new state variable vector

zn:

g̃ =

g̃1

g̃2

 (12)

with:

g̃1(zn) = g(yn, en,pn) (13)

g̃2(zn) =



en,1 − ζ(en,0,yn,1)

...

en,g − ζ(en,g−1,yn,g)

...

en,pn − ζ(en,pn−1 ,yn,pn)


(14)
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Consequently, and writing it in terms of interpolating polynomials:

g̃(zn) =



g(yn, en,pn)

en,1 − ζ(en,0,wn(tn,1))

...

en,g − ζ(en,g−1,wn(tn,g))

...

en,pn − ζ(en,pn−1 ,wn(tn,pn))


(15)

Then, the new residual vector g̃ can be solved for zn to find yn.

3.1. Newton Iterations

At the m-th Newton iteration, the solution vector and interpolator func-

tion are defined as y
(m)
n and w

(m)
n , respectively. Also, y

(m)
n,g and e

(m)
n,g are the

value as at the interpolated steps. The IBM internal equations are thus

expressed as:

y(m)
n = w(m)

n (tn)

y(m)
n,g = w(m)

n (tn,g), ∀g ∈ [1, pn]

e(m)
n,g = ζ(e

(m)
n,g−1,y

(m)
n,g ), ∀g ∈ [1, pn]

(16)

The Newton iteration is then solved with:

J (m)
n (z(m+1)

n − z(m)
n ) = −g̃(z(m)

n ) (17)

where J
(m)
n is the Jacobian matrix of the extended system (15) at the m-th

Newton iteration, given by:

J (m)
n =

 ∂g̃1
∂zn,1

∂g̃1
∂zn,2

∂g̃2
∂zn,1

∂g̃2
∂zn,2

 (18)
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Computing J
(m)
n can be extremely challenging, especially when the smart

digital controller is proprietary or black-box in nature. While there exist

some automatic differentiation tools to compute the Jacobian in a numerical

way [16], it should be noted that the equations and states at (14) relate to

different time instances and the interpolation-based approximations can vary

significantly between iterations.

To avoid these issues and accelerate the computations, an approximate

Jacobian matrix can be used. For that purpose, the following approximation

is employed:

J (m)
n =

 ∂g̃1
∂zn,1

∂g̃1
∂zn,2

≈ diag(0pn−1,
∂g̃1

∂en,pn
)

∂g̃2
∂zn,1

≈ 0 ∂g̃2
∂zn,2

≈ Ipn

 (19)

The cross derivative ∂g̃2
∂zn,1

is set to zero to achieve a derivative-free method

with respect to the controller input signal. The derivative of the controller

to its own states is set to Ipn in lack of more specific knowledge and to avoid

rank deficiency of the matrix. In this way, the controller is treated as a

black box with inputs and outputs. Therefore, this simplification may be

necessary in the case of simulating non-equation-based controllers. However,

the consequence of this simplification is that more Newton iterations may be

needed to converge since we are ignoring the impact of state variables on the

controller’s output.

The flowchart of the proposed approach for one time step is depicted in

Fig. 5. It should be noted that the new extended state variable vector zn is

used for the convergence test and the error estimation as it is reflected in the

flowchart. Therefore, the controllers’ outputs are also affecting the time step

adjusting process.
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Figure 5: Flowchart of the interpolation-based method for one time step

4. Numerical Case Studies

In this section, the following three test cases are considered to evaluate the

performance of IBM compared to the classical Step-size Reduction Method
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(SRM), and the simplified simulation method (SSM) described briefly in

Section 1:

1. A general system consisting of two ODEs controlled by an equation-

based integral digital controller.

2. A single-machine infinite-bus (SMIB) system having a synchronous gen-

erator controlled by an equation-based governor digital controller and

a black-box fuzzy AVR digital controller connected to an infinite bus.

3. A modified Kundur test system consisting of 4 synchronous genera-

tors and an HVDC link between two areas. The first two genera-

tors have equation-based AVRs while the rest have black-box fuzzy

AVRs. The same equation-based governor digital controller is used for

all of them. Furthermore, an equation-based power oscillations damp-

ing (POD) controller is considered for the HVDC link.

For all the case studies, a variable time-step predictor-corrector method

using the pair of second-order Adams-Bashforth and Adams-Moulton [14] is

used. Moreover, the number of bits considered for quantizing the controller’s

signal is equal to 18 and the minimum and maximum values for time steps are

considered hmin = 0.001 s and hmax = 1 s, respectively. Also, the increasing

and decreasing rates for altering the time steps are 1.25 and 0.5. Finally, it

should be noted that in the case of SRM, lower time steps than hmin can

be accepted if the distance between consecutive discrete events of digital

controllers is smaller.

All the models and the solution algorithms are implemented in MATLAB

and all methods involve the solution of the same DAEs.
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4.1. A single integral controller

In this section, a test system controlled by a single integral controller is

considered. Referring back to Fig. 2, for the continuous system a set of two

differential equations formulated as (20) is considered:ẏ1
ẏ2


︸ ︷︷ ︸

ẏ

=

 a b

−b 0


︸ ︷︷ ︸

A

y1
y2


︸ ︷︷ ︸

y

+

−b
0


︸ ︷︷ ︸

B

e(t) (20)

An integral controller with a gain KI = 0.07 and sampling time T = 0.1 s is

considered. The digital integral controller is defined as:

ek = ek−1 +KIT (u(kT )− y2(kT )) (21)

where u(kT ) is the set point (considered constant).

The simulated output for a step set point change is shown in Figs. 6 and

7 for one stable and one unstable system, respectively. As can be seen, no

visible difference can be detected between the output trajectories of SRM and

IBM. However, SSM is not able to find the correct steady-state nor follow

fluctuations accurately. This is because SSM has been proposed for handling

state events and they are usually scarce during a simulation. Therefore,

shifting one event to the end of the time step can hardly cause a significant

accuracy problem. On the contrary, in the case of digital controllers, multi-

ple time events arising from the operation of multiple digital controllers in

each time step are pushed to the end of the time step compromising the ac-

curacy. Another reason causing the accuracy loss is due to considering only

one time event per controller per time step shifted to the end of it. SSM

cannot consider multiple interconnected time events arising from one digital
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Figure 6: Output results for the stable system with the Integral controller
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Figure 7: Output results for the unstable system with the Integral controller

controller since each controller output depends on the previous one with a

different input coming from the system for a different point in time.

The total number of Newton iterations required to solve the system is

summarized in Table 1 as a benchmark to assess the performance of IBM

compared to SRM and SSM. It can be seen that, in both the stable and

unstable scenarios, IBM is faster than SRM, having a performance similar to
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Table 1: Performance comparison between IBM, SSM, and SRM for a system containing

one Integral controller in terms of the number of Newton iterations

System parameters SRM SSM IBM

Stable case 5473 810 1133

Unstable case 5333 2173 2403
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Figure 8: Step size results for the stable system with the Integral controller

SSM. This can be explained from Fig. 8 and Fig. 9, where the time-step size

is plotted for all methods. While SRM is blocked by the digital controller

sampling time, IBMmanages to increase the time-step size without sacrificing

accuracy.

4.2. Single machine model with excitation system and governor

In this section, a synchronous machine connected to an infinite bus (SMIB)

by a tie of transmission lines is considered as shown in Fig. 10. The syn-

chronous machine is controlled by a fuzzy-based excitation controller and a

governor, as illustrated in Fig. 11. The DAEs describing the generator and
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Figure 9: Step size results for the unstable system with the Integral controller

G

Figure 10: Schematic of the single machine infinite bus system

the schematics of the fuzzy-based exciter and governor systems are presented

in Appendices Appendix A and Appendix B, respectively. It is noticeable

that while the governor is an equation-based controller, the fuzzy AVR is

non-equation-based and modeled as a black-box with an input and output

[17]. The sampling time of the Governor and AVR are considered equal to

20 and 6 ms, respectively.

A short circuit with low impedance is applied at the end of the line

connected to the infinite bus at time t = 1 s and cleared after 0.2 s by

disconnecting the line. Figure 12 shows the output voltages of the generator.

Furthermore, the output active and reactive power, and frequency of the

generator are illustrated in Figs. 13, 14, and 15. In addition, the output
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Figure 11: Overview of a synchronous machine with digital Governor and Exciter digital

controllers
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Figure 12: The generator’s voltage output of SMIB system

signal for the excitation system and the governor is illustrated in Figs. 16

and 17. It can be seen that the simulation outputs are almost identical in all

three methods for all the simulated signals.
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Figure 13: Active power of the generator of SMIB system
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Figure 14: Reactive power of the generator of SMIB system

In addition, as can be seen in Fig. 17, the governor reaches its upper

and lower limits equal to 0.9 and 0.1, showing the non-linear nature of the

simulated model. This also shows the ability of IBM to catch the state events

caused by the controller reaching its limits without the need to reduce the

step size. As discussed in section 2.2, it is achieved by the fact that the

state events translate to time events since they are not seen by the digital
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Figure 15: Frequency of the generator of SMIB system
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Figure 16: Output of the digital excitation system of the generator of SMIB system

controller before its next sampling. The same phenomenon happens for SRM

and SSM as well since all the controllers are digital. However, SRM is forced

to reduce the time step while SSM just shifts the sampling (therefore the

state event) to the end of the time step. This delay can be seen in the same

figure.

The number of Newton iterations and the execution time required to solve
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Figure 17: Output of the digital governor of the generator of SMIB system

Table 2: Performance comparison between IBM, SSM, and SRM for the SMIB system

Method Number of Newton iterations Run time (s)

SRM 25491 9.35

SSM 670 0.43

IBM 483 1.90

the described system are summarized in Table 2. It can be seen that IBM is

about 52 and 5 times faster than traditional SRM in terms of Newton itera-

tions and execution time, respectively. The step sizes taken to simulate the

SMIB system are shown in Fig. 18, justifying the accelerated execution time.

It is noticeable that SSM is the fastest while it still suffers from lack of accu-

racy as is evident in Fig. 17. However, it maintains better accuracy compared

to the previous case study since the trajectories have fewer fluctuations.
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Figure 18: Step size results for SMIB system

4.3. Kundur test system

In this section, the Kundur test network [18], illustrated in Fig. 19 along-

side its initial power flows, consisting of four synchronous generators, and

two loads is considered as the test case. In addition, an HVDC link parallel

with the tie between the two areas of the system is considered. Similar to

the previous case study, each generator is controlled by a digital AVR and

Governor. While the AVR model used for generators 1 and 2 is considered

equation-based, the non-equation-based fuzzy AVR is utilized for generators

3 and 4. So, the system has 4 digital governors, 4 digital exciters for the gen-

erators, and a power oscillations damping (POD) controller for the HVDC

link [19], therefore, 9 controllers in total. The sampling time of digital gov-

ernors and digital exciters for generators 1 to 4 are considered 20 ms, 30 ms,

40 ms, 50 ms and 5 ms, 6 ms, 7 ms, 8 ms, respectively, and 90 ms for the

POD controller. It should be noted that the sampling times were selected

slightly different, and asynchronous to showcase the proposed method in a
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Figure 19: Schematic of modified Kundur network

more realistic setting. The DAEs describing the generator and the schematics

of all the controllers are presented in Appendices Appendix A and Appendix

B, respectively. For this case study, SSM fails to converge with the default

setting of maximum time step size equal to 1 s since too many time events

are neglected or shifted to the end of large time steps. Therefore, SSM’s

maximum time step size is limited to 0.1 s. This limits the number of time

events falling in each time step.

A short circuit with a low impedance on bus 3 for 0.2 s is simulated as the

disturbance. The voltage, speed deviation, AVR, governor, and POD output

of the first generator are illustrated in Figs. 20, 21, 22, 23, and 24 respectively.

It is shown that the simulated results are almost identical between SRM and

IBM. Even though SSM’s maximum time step size is limited, it still fails to

provide an accurate solution, missing all the fluctuations from the point at

which its maximum time step size is reached.

The performance of the methods is compared using the number of Newton
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Figure 20: Bus 1 voltage magnitude of Kundur system
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Figure 21: Speed deviation of generator 1 of Kundur system

iterations and the execution time required to solve the Kundur test network,

and the results are summarized in Table 3. Again, it can be seen that IBM

is much faster than SRM (about 16 times), as justified by the time-step size

shown in Fig. 25. Also, by comparing all three case studies, it can be noted

that, as the number of digital controllers of the system under simulation

increases, SRM becomes slower at a much faster rate than IBM. The reason
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Figure 22: Output of the digital excitation system of generator 1 of Kundur system
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Figure 23: Output of the digital governor of generator 1 of Kundur system

is that as the number of controllers grows, the difference between two adjacent

sampling times becomes smaller and limits the step size further while this is

not the case in IBM. In the case of SSM, it can be seen that it is still the

fastest method despite the limit on its time step size. Further limiting the

maximum step size leads SSM to be slower than IBM, while its accuracy will

not be improved much due to numerous numbers of events.
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Figure 24: Output of the digital POD of Kundur system

Table 3: Performance comparison between IBM, SSM, and SRM for Kundur test system

Method Number of Newton iterations Run time (s)

SRM 64158 327.26

SSM 795 4.84

IBM 959 19.54

Table 4: Number of time events in every case study

Case study Number of time events

A 650

B 4333

C 19347

Finally, the number of time events calculated based on the simulation

time and controllers’ sampling rate for all the case studies are summarized

in Table. 4.
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Figure 25: Step size results for Kundur system

5. Conclusion

In this paper, a novel, fast, accurate method is proposed for incorporat-

ing smart digital controllers in time-domain numerical simulations of power

systems. Contrary to traditional methods, the proposed method does not

impose step size reduction in case of discrete events imposed by the sam-

pling of digital controllers. Instead, the impact of the digital controllers on

the systems is handled internally to the time step, using an interpolation-

based approach. Furthermore, the proposed method is able to integrate

non-equation-based controllers modeled as a black box into the dynamic sim-

ulation of the system. It should be noted that IBM has been developed to

capture the accurate dynamics of digital controllers in RMS simulations.

The switching devices introducing time events in EMT simulations operate

hundreds of times faster, forcing the EMT solvers to have time steps many

times smaller than the digital controller sampling rate. This means for EMT

simulations, the solver is already taking small enough time steps not to be
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affected (further limited) by the sampling rate of digital controllers.

Three test cases are used to assess the performance and accuracy of the

method compared to the classical step-reduction approach, and simplified

simulation method. The results show good accuracy and high performance

for IBM. Moreover, we showed that, as the number of controllers increases,

the performance benefit becomes more noticeable. In addition, it was shown

that the simplified simulation is not able to simulate systems containing

multiple digital controllers effectively.

For future work, a large-scale test system study is under preparation,

incorporating the proposed method in industrial-level simulation software.

Moreover, an approach to incorporate the method in a special Modelica dig-

ital controller mock-up is made, to facilitate the use of the method without

extensive changes to the system solvers. Also, the accuracy and performance

of the method against non-smooth simulations such as cycling can be inves-

tigated.

Appendix A. Synchronous generator model

The DAEs of the second-order synchronous machine including the motion

equations (fourth order in total) are formulated below [18].

• Differential equations:
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˙∆ωr =
1

2H
(Tm − Te −KD∆ωr) (A.1)

δ̇ = ω0∆ωr (A.2)

1

ωN

ψ̇f = vf −Rf if (A.3)

1

ωN

˙ψq1 = −Rq1iq1 (A.4)

• Algebraic equations:

0 = ψd − Lddid − Ldf if (A.5)

0 = ψq − Lqqiq − Lqq1iq1 (A.6)

0 = ψf − Lff if − Ldf id (A.7)

0 = ψq1 − Lqq1iq − Lq1q1iq1 (A.8)

0 = vd +Raid + ψq (A.9)

0 = vq +Raiq − ψd (A.10)

0 = vd − cos θorvx − sin θorvy (A.11)

0 = vq − sin θorvx + cos θorvy (A.12)

0 = id − cos θorix − sin θoriy (A.13)

0 = iq − sin θorix + cos θoriy (A.14)

Appendix B. Controllers

The schematic of the AVR and the governor controlling the synchronous

machine, and the POD controller is presented in Fig. B.26, Fig. B.27, and

Fig. B.28, respectively. In addition, the values for the parameters of the
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Figure B.26: Schematic of the AVR used to control the synchronous generator
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Figure B.27: Schematic of the governor used to control the synchronous generator
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Figure B.28: Schematic of the POD controller used to control the HVDC line

exciter, the governor, and the POD controller are summarized in Table B.5,

Table B.6, and Table B.7, respectively. Finally, the fuzzy AVR schematic is

illustrated in Fig. B.29.
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Figure B.29: Schematic of the fuzzy exciter used to control the synchronous generator

Table B.5: Parameter values for the AVR

Parameter TSM Kp Ki Ge Te Kf Tf

Value 0.2 0.003 0.004 1 0.12 0.8 0.9

Table B.6: Parameter values for the governor

Parameter Kp Ki T1

Value 12 0.2 0.3

Table B.7: Parameter values for the POD controller

Parameter kd Tf

Value 8 0.1
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