Delay-robust distributed secondary frequency control for next-generation power systems: Stability analysis and controller synthesis

Abstract

Power systems worldwide are undergoing major transformation to enable a low-carbon future. These developments require new procedures for advanced control to ensure a stable and efficient system operation. Consensus-based distributed secondary frequency control schemes have the potential to ensure real-time frequency restoration and economic dispatch simultaneously in future power systems with significant contribution of renewable energy sources. However, owing to their distributed nature, these control schemes critically depend on communication between different controlled units. Thus, robustness against communication uncertainty is crucial for their reliable operation. In this work, control design and stability analysis of delay-robust secondary frequency control in next-generation power systems are studied. The main contributions of the present thesis can be summarised as follows: (i) A design procedure for a consensus-based secondary frequency controller in microgrids is proposed that ensures robustness with respect to heterogeneous fast-varying communication delays and simultaneously provides the option to trade off the L2-gain performance against the number of required communication links; (ii) The conditions for robust stability of a consensus-based frequency control scheme applied to a power system model with second-order turbine-governor dynamics in the presence of heterogeneous time-varying communication delays and dynamic communication topology are derived; (iii) The performance of the proposed consensus-based secondary frequency controller is analysed in a detailed model capturing the dynamic behaviour of a real system. The results provide insights to the robustness of the closed-loop system with respect to unmodelled (voltage and higher-order generator) dynamics as well as communication delays.

Type
Publication
PhD thesis at University of Leeds
Sultan Alghamdi
Sultan Alghamdi
PhD Candidate @ UoL (Alumni)