Fast and accurate simulation of smart digital controllers in power system dynamic studies

Abstract

In recent decades, the number of smart digital controllers employed in electric power systems has increased drastically. Either from the modernization of existing analog ones or the introduction of new, data-driven, or even optimization-based controllers, they are now dominating the behavior of power systems. However, this introduces a challenge in the simulation of power system dynamics, as the existing numerical simulation methods are very time-consuming when tackling the resulting hybrid differential-algebraic systems. In this paper, a novel interpolation-based method is proposed for performing fast and accurate dynamic simulations of electric power systems equipped with smart digital controllers. This method fully exploits the potential of variable time-step integration methods without requiring a time-step reduction in the case of discrete events stemming from digital controllers. Therefore, it accelerates the numerical simulation of large-scale systems containing many non-equation-based smart digital controllers, while maintaining accuracy. The performance of the proposed method is showcased using both conventional and smart digital controllers.

Publication
Sustainable Energy, Grids and Networks
Mehran Jafari
Mehran Jafari
PhD Candidate @ CUT
Petros Aristidou
Petros Aristidou
Assistant Professor